Как выделить корень в питоне

Как извлечь корень в Python (sqrt)

Но обо всём по порядку.

Что такое квадратный корень

Корнем квадратным из числа «X» называется такое число «Y», которое при возведении его во вторую степень даст в результате то самое число «X».

Операция нахождения числа «Y» называется извлечением квадратного корня из «X». В математике для её записи применяют знак радикала:

Нотация питона отличается в обоих случаях, и возведение в степень записывается при помощи оператора » ** «:

a = 2 b = a ** 2 print(b) > 4

import math import random # пример использования функции sqrt() # отыщем корень случайного числа и выведем его на экран rand_num = random.randint(1, 100) sqrt_rand_num = math.sqrt(rand_num) print(‘Случайное число = ‘, rand_num) > Случайное число = 49 print(‘Корень = ‘, sqrt_rand_num) > Корень = 7.0

Квадратный корень

Положительное число

import math print(math.sqrt(100)) > 10.0

А можете — из вещественных:

import math print(math.sqrt(111.5)) > 10.559356040971437

Легко проверить корректность полученных результатов с помощью обратной операции возведения в степень:

print(math.sqrt(70.5)) > 8.396427811873332 # возвести в степень можно так print(8.396427811873332 ** 2) > 70.5 # а можно с помощью функции pow() print(pow(8.396427811873332, 2)) > 70.5

Отрицательное число

Функция sqrt() не принимает отрицательных аргументов. Только положительные целые числа, вещественные числа и ноль.

Такая работа функции идёт вразрез с математическим определением. В математике корень спокойно извлекается из чисел меньше 0. Вот только результат получается комплексным, а таким он нужен для относительно узкого круга реальных задач, вроде расчетов в сфере электроэнергетики или физики волновых явлений.

print(math.sqrt(-1)) > ValueError: math domain error

Функция sqrt() корректно отрабатывает с нулём на входе. Результат тривиален и ожидаем:

Кубический корень

Само название функции sqrt() намекает нам на то, что она не подходит для извлечения корня степени отличной от двойки. Поэтому для извлечения кубических корней, сначала необходимо вспомнить связь между степенями и корнями, которую продемонстрируем на корне квадратном:

# Квадратный корень можно извлечь с помощью операции возведения в степень «**» a = 4 b = a ** 0.5 print(b) > 2.0

👉 Таким образом, извлечь кубический корень в Python можно следующим образом:

Корень n-степени

То, что справедливо для корня третьей степени, справедливо и для корней произвольной степени.

# извлечём корень 17-й степени из числа 5600 x = 5600 y = 17 z = pow(x, (1/y)) print(z) > 1.6614284717080507 # проверяем корректность результата print(pow(z, y)) > 5600.0

Но раз уж мы разбираемся с математической темой, то попытаемся мыслить более обобщённо. С помощью генератора случайных чисел с заданной точностью будем вычислять корень случайной степени из случайного числа:

import random # точность можно задать на ваше усмотрение x = random.randint(1, 10000) y = random.randint(1, 100) z = pow(x, (1 / y)) print(‘Корень степени’, y, ‘из числа’, x, ‘равен’, z) # при проверке вероятны незначительные расхождения из-за погрешности вычислений print(‘Проверка’, pow(z, y)) # но специально для вас автор накликал целочисленный результат > Корень степени 17 из числа 6620 равен 1.6778624404513571 > Проверка 6620.0

Решение реальной задачи с использованием sqrt

Корень — дитя геометрии. Когда Пифагор доказал свою знаменитую теорему, людям тут же захотелось вычислять стороны треугольников, проверять прямоту внешних углов и сооружать лестницы нужной длины.

Соотношение a2 + b2 = c2, где «a» и «b» — катеты, а «c» — гипотенуза — естественным образом требует извлекать корни при поиске неизвестной стороны. Python-а под рукой у древних греков и вавилонян не было, поэтому считать приходилось методом приближений. Жизнь стала проще, но расчет теоремы Пифагора никто не отменял и в XXI веке.

📡 Решим задачку про вышку сотовой связи. Заказчик требует рассчитать высоту сооружения, чтобы радиус покрытия был 23 километра. Мы неспешно отходим на заданное расстояние от предполагаемого места строительства и задумчиво смотрим под ноги. В голове появляются очертания треугольника с вершинами:

Модель готова, приступаем к написанию кода:

Расчёт выполнен, результат заказчику предоставлен. Можно идти пить чай и радоваться тому, что теперь ещё больше людей смогут звонить родным и сидеть в интернете.

Источник

Извлечение корней в Python

Под извлечением корня из какого-либо числа чаще всего подразумевают нахождение решение уравнения x в степени n = value, соответственно для квадратного корня, число n — это два, для кубического — 3. Чаще всего под результатом и числом подразумеваются вещественные числа.

В программировании нахождение корней используется очень часто. Разберемся, как и какими методами можно эффективно извлекать корни из числа. Вначале рассмотрим, какие способы есть в Python, и определим самый эффективный. Потом более подробно разберём, как можно найти не только квадратный корень из числа, но и кубический, и потом корень n степени.

Способы извлечения корня

В языке программирования Python 3 существует три способа извлечения корней:

Если же нам нужно вычислить в Python корень квадратный из суммы квадратов, то можно воспользоваться функцией hypot из модуля math. Берется сумма квадратов аргументов функции, из нее получается корень. Аргументов у функции два.

Еще одним, чуть более универсальным методом, будет использование возведения в степень. Известно, что для того, чтобы взять корень n из числа, необходимо возвести его в степень 1/n. Соответственно, извлечение квадратного корня из числа 4 будет выглядеть так:

Последний метод использует функцию pow(value, n). Эта функция в качестве аргумента value возьмет число, которое необходимо возвести в степень, а второй аргумент будет отвечать за степень числа. Как и в предыдущем методе, необходимо использовать дробь, для того, чтобы получить корень числа.

Какой метод быстрее?

Для того, чтобы определить какой же метод предпочтительнее использовать, напишем программу. Замерять время выполнения будем с помощью метода monotonic библиотеки time.

Как видно, самое быстрое решение — использовать **. На втором месте метод sqrt, а pow — самый медленный. Правда, метод sqrt наиболее нагляден при вычислении в Python квадратных корней.

Квадратный корень

Для извлечения квадратного корня самым наглядным способом, правда не самым быстрым, будет использование sqrt из модуля math.

Но можно использовать и трюки с возведением в степень 1/2, что тоже будет приводить к нужному результату.

Кубический корень

Для извлечения кубического корня в Python 3 метод sqrt не подойдет, поэтому воспользуйтесь возведением в степень 1/3:

Корень n-степени

Корень n-степени из числа в Python извлекается можно получить двумя способами с помощью возведения в степень 1.0/n:

Как было проверено выше, оператор ** быстрее. Поэтому его использовать более целесообразно. Приведем пример вычисления кубических корней в Python 3 с помощью этих двух методов:

Корень отрицательного числа

Рассмотрим, как поведут себя функции, если будем брать корень из отрицательного числа.

Как видим, функция sqrt выдаёт исключение.

Теперь посмотрим, что будет при использовании других методов.

Как видно из результата, оператор ** не выдает исключения и возвращает некорректный результат. Функция pow работает корректно. В результате получаем комплексное число 2j, что является верным.

Вывод

В Python существуют два универсальных способа для извлечения корня из числа. Это возведение в необходимую степень 1/n. Кроме того, можно воспользоваться функцией из математического модуля языка, если необходимо извлечь квадратный корень числа.

Все эти методы имеют свои преимущества и недостатки. Самый наглядный это sqrt, но подходит только для квадратный корней из числа. Остальные методы не такие элегантные, но легко могут извлечь корень нужной степени из числа. Кроме того оператор ** оказался наиболее быстрым при тестировании.

Необходимо также помнить про целочисленное деление, неправильное использование которого может приводить к ошибке в вычислении.

Источник

Как вычислить квадратный корень в Python

В Python есть предопределенная функция sqrt(), которая возвращает квадратный корень числа. Она определяет квадратный корень из значения, которое умножается на само себя и дает число. Функция sqrt() не используется напрямую для нахождения квадратного корня из заданного числа, поэтому нам нужно использовать математический модуль для вызова функции sqrt() в Python.

Например, квадратный корень из 144 равен 12.

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

Использование метода math.sqrt()

Функция sqrt() – это встроенная функция, которая возвращает квадратный корень из любого числа. Ниже приведены шаги, чтобы найти квадратный корень из числа.

Давайте напишем программу на Python.

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

Давайте создадим программу на Python, которая находит квадратный корень десятичных чисел.

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

В следующей программе мы прочитали число от пользователя и нашли квадратный корень.

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

Использование функции math.pow()

Pow() – это встроенная функция, которая используется в Python для возврата степени числа. У него два параметра. Первый параметр определяет число, а второй параметр определяет увеличение мощности до этого числа.

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

Использование оператора **

Мы также можем использовать оператор экспоненты, чтобы найти квадратный корень из числа. Оператор может применяться между двумя операндами. Например, x ** y. Это означает, что левый операнд возведен в степень правого.

Ниже приведены шаги, чтобы найти квадратный корень из числа.

Давайте реализуем вышеуказанные шаги.

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

Как мы видим в приведенном выше примере, сначала мы берем ввод(число) от пользователя, а затем используем оператор степени **, чтобы узнать степень числа. Где 0,5 равно √(символ корня), чтобы увеличить степень данного числа.

Давайте создадим программу Python, которая находит квадратный корень из указанного диапазона, в следующей программе вычисление из всех чисел от 0 до 50.

Источник

Извлечение корня в Python

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

В этой статье мы рассмотрим, как извлечь корень в Python, а также какой модуль и функция для этого используется. Но давайте обо всем по порядку.

Если мы знаем только общую площадь квадрата и хотим узнать размер одной его стороны либо же собираемся рассчитать расстояние между 2-мя точками в декартовых координатах, нам потребуется квадратный корень. Это не проблема, если речь идет о математике. Но что делать, когда речь идет о языке программирования? К нашему счастью разработчики Python предусмотрели для решения вышеописанной задачи специальную функцию. Но прежде чем продолжить, давайте немного вспомним теорию.

Квадратный корень — что это?

Квадратным корнем, полученным из числа «A», называют число «B», которое при возведении во 2-ю степень даст в итоге то самое изначальное число «A».

Непосредственную операцию, позволяющую найти значение «B», называют извлечением корня из «A». Математики применяют для обозначения этой операции специальный знак (его еще называют знаком радикала):

Когда речь идет о корне в «Питоне», ситуация обстоит иначе, причем в обоих случаях. К примеру, само возведение числа в степень записывают посредством оператора «**«:

Ответ в консоли «Пайтона» будет равняться четырем.

Касаемо квадратного корня, то он в Python представлен функцией sqrt(). Однако она существует не сама по себе, а в рамках соответствующего математического модуля math. Таким образом, перед началом работы этот модуль надо будет импортировать, но это абсолютно не сложно сделать на практике:

import math

Идем дальше. Наша функция sqrt() принимает лишь один параметр – значение, из которого нам надо извлечь . Давайте напишем простенький код и задействуем float в качестве типа данных возвращаемого значения.

import math

import random

# попробуем функцию sqrt() на практике

# найдем корень случайного числа с последующим выводом его на экран

rand_num = random.randint(5, 55)

print(‘Наше случайное число = ‘, rand_num)

print(‘Искомое значение корня = ‘, sqrt_rand_num)

Вы можете попробовать работу этого кода у себя на компьютере или на любом онлайн-компиляторе. Вот, к примеру, компилятор для Python 3.

Результат может быть таким:

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

Так как мы используем модуль random, результат будет различаться при каждом выполнении кода.

Но никто не мешает сделать все намного проще:

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

Положительные числа

Функция sqrt() предназначена для работы с положительными значениями. Если число больше либо равно нулю, то неважно, какой тип данных у него, ведь извлечение корня возможно как из целых, так и из вещественных чисел.

Из целых:

Из вещественных:

Сомневаетесь в корректности итоговых результатов предыдущего примера? Просто выполните обратное возведение в степень:

Также не забывайте, что сделать это можно и посредством специальной функции pow:

Отрицательные значения и ноль

Функция sqrt в «Питоне» — вещь полезная и знать ее нужно, однако она не принимает отрицательного числа — лишь положительные (целые и вещественные), а также ноль.

Такая ограниченная возможность использования не соответствует математическим канонам, ведь в реальной жизни специалисты по математике без проблем извлекают и из отрицательных значений. Да, результат будет комплексным и пригодится лишь для решения довольно узкого спектра задач, типа расчетов волновых явлений в физике либо вычислений в энергетической сфере.

Учитывайте вышесказанное, если пытаетесь извлекать корни в Python посредством этой функции. Передав отрицательное значение, вы получите error:

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

А вот если говорить про ноль, то ошибки не будет, так как код отработает корректно. Однако результат тут очевиден, поэтому практическая ценность данной возможности весьма условна:

Хотите знать о «Питоне» намного больше? Добро пожаловать на специализированный курс в «Отус»!

Источник

Три или четыре способа извлечь корень

Речь в первую очередь идёт о корректности (точности вычислений). Производительность на втором месте.

Как выделить корень в питоне. Смотреть фото Как выделить корень в питоне. Смотреть картинку Как выделить корень в питоне. Картинка про Как выделить корень в питоне. Фото Как выделить корень в питоне

2 ответа 2

Ещё можно посмотреть в какой код переводятся эти варианты и убедиться, что код разный:

P.S. Ну и, конечно, если нужно получить сразу много корней, то лучше использовать векторизованный Numpy для этого. Использование для задачи range/sqrt/sum векторизированных функций даёт 50-кратное ускорение:

Если коротко, то разница в реализации. И очевидно в скорости выполнения, входных и выходных параметрах. А вообще-то интересно заглянуть, что там во встроенных функциях.

pow(x, n)

math.sqrt()

math.pow()

И немного документации math.pow(). Здесь хотелось бы перевести одно заключение из документации:

В отличие от встроенного оператора **, math.pow () преобразует оба своих аргумента в тип float. Используйте ** или встроенную функцию pow () для вычисления точных целочисленных степеней.

Можно сделать вывод, что под каждую конкретную задачу может быть подобран оптимальная функция для вычислений. Думаю, что тема достаточно обширна и можно исследовать, например, скорости для вычисления в том или ином случае.

Все вышеописанное для версии python 3.х.x.

Для pow() были найдены данные строки

Для math.pow() реализация немного интересней:

Можно копать дальше, не уверен есть ли необходимость. Но инетересно же) можно так же увидеть еще одну интересную реализацию для long_pow() здесь

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *