Как выглядит золото в глине

Металлоискатели в России / Только белая техника!

КОМПАНИЯ

УСЛУГИ

РЕСУРСЫ И СЕРВИСЫ

Где можно найти золото? Признаки золотоносных территорий

Для того, чтобы найти месторождение «дикого» золота, нужно знать, что может указать вам на наличие драгоценного металла.

Как выглядит золото в глине. Смотреть фото Как выглядит золото в глине. Смотреть картинку Как выглядит золото в глине. Картинка про Как выглядит золото в глине. Фото Как выглядит золото в глине

Узнайте все о геологии

Для начала, крайне важно узнать основные факты о геологии конкретной территории. Самое главное — знания о типах горных пород, которые сопутствуют золоту. Посмотрите данные о больших месторождениях и выясните, есть ли такие же в вашей местности. Часто золото находится в пределах одной породы или на местах столкновения двух пород.

Кстати, места столкновения пород наиболее перспективны для поиска. Как сообщают геологи, в таких «контактных точках» обычно ранее было высокое давление и температура, а это уже условия для появления и концентрации золота. Найти «контактную точку» можно по изменению цвета горной породы.

Сопутствующие породы

Встретив их, высока вероятность отыскать золотоносную жилу.

Это черные пески (магнетит, гематит). Золото почти всегда связано с железом. В реках с золотым песком часто перемешан черный песок. Так что черная, красноватая, или даже оранжевая почва — признак золота. Металлоискатели на таких почвах обычно «сходят с ума», выдавая море беспорядочных сигналов, поэтому лучше пользоваться специальными, созданными именно для поиска золота.

Также отметим, что кварц, содержащий драгоценный металл, отнюдь не белоснежный, как мы привыкли. Из-за содержания того же железа кварц имеет несколько «ржавый» внешний вид с красноватыми и коричневыми пятнами.

Старицы рек и высохшие русла

Если учесть, что многие реки в Сибири золотоносные, имеет смысл поискать их старицы или высохшие русла. Поиск здесь не затруднен текущей водой, золотые самородки вполне можно найти металлоискателем. Но все же предварительно лучше выяснить, на каких реках мыли или моют золото особенно успешно. Высохшее русло может найтись в полукилометре от русла нынешнего.

Высокие берега

Еще можно поискать золото на высоких берегах золотоносных рек. Естественный процесс, когда русло реки углубляется, а наносы золота остаются выше отметки воды. И такие вот наносы часто остаются без внимания старателей, поскольку большинство золотодобытчиков сосредоточены вокруг кромки воды и на мелководье. Отложения на берегах остаются нетронутыми.

Русла древних рек

Бывает, что мало кто вообще знает, что некогда в данной местности протекала река. И пересохла она на закате Юрского периода, например. А тогда, 200 миллионов лет назад, река была золотоносна, несла тысячи грамм драгметалла в своих бурных водах. За многие миллионы лет рельеф местности изменился, например, на месте реки может образоваться возвышенность, а золото все же еще можно найти.

Отыскать древнее русло реки на самом деле довольно просто, если вы знаете, как искать. Например, сравните горные породы. Гладкая, полированная галька в горах — это как раз признак того, что камни долгое время находились в потоке воды. Такая галька, например, встречается в горах Грузии — там, где как раз ищут золото.

Изучив старые и старинные отчеты о золотодобыче, вы вполне можете отправиться в конкретно намеченное место и проверить всё самостоятельно.

Удачи в поисках золота!

Источник

Добыча золота из глины, его свойства и особенности

Присутствует ли золото в глине, как и где его добывают? Ответ на этот вопрос наверняка был известен всем золотодобытчикам прошлых веков. Металл искали на дне рек и морей, залежи его до сих пор имеются в коренных подстилающих породах водоемов. Но большая часть золота все же содержится в речной глине и горных породах.

Во времена золотой лихорадки люди, нашедшие жилу золота близ берега реки, перемывали весь находящийся в верхних слоях песок, изучали каждый комок глины в надежде добраться до дна и найти там настоящие богатства. Работа была кропотливой, требовала усилий и не всегда приносила плоды. С появлением техники исследование дна реки вместе с глинистыми, песчаными и илистыми слоями ускорилось.

Как выглядит золото в глине. Смотреть фото Как выглядит золото в глине. Смотреть картинку Как выглядит золото в глине. Картинка про Как выглядит золото в глине. Фото Как выглядит золото в глине

Добыча золота из глины

Коренная подстилающая порода

Золото не менее чем в 19 раз тяжелее воды, поэтому оно оседает на дно водоема. Исключением являются случаи, когда поток воды оказывается быстрее, чем сила тяжести, которая тянет крупицы золота вниз. Под воздействием все той же силы тяжести крупицы золота не плывут по дну реки, а постепенно по нему перемещаются, наталкиваясь на естественные препятствия и застревая в иле и глине.

Постепенно поток воды и вовсе перестает воздействовать на золото, оно погружается на дно водоема, становясь частью коренной подстилающей породы, залегающей на глубине 9–12 метров от поверхности воды, а иногда и от верхнего слоя ила. Именно в этой породе ищут золотоносные россыпи. Чтобы добраться до нее, необходим колоссальный труд не только людей, но и машин. Преодолеть водные и земляные препятствия и достигнуть породы бывает непросто. Иногда на это уходит несколько недель и даже месяцев.

Ложная коренная подстилающая порода

Если дно реки в большей своей части состоит из глины, то золото может быть между ним и нижней коренной породой. Находится оно в нескольких плотных слоях глины, именуемых ложной коренной подстилающей породой. Золото тяжелее глины, но в случае обильного ее наслоения на одном и том же месте металл не проникает вглубь прослойки, сохраняясь на ее поверхности.

Находится такое золото в первых 15 сантиметрах слоя. Ложная коренная подстилка может состоять из нескольких слоев глины разной толщины, от нескольких сантиметров до одного-двух метров. Чтобы расчистить такой слой и достигнуть золотоносных россыпей, уходит много времени. В связи с этим каждый слой расчищают по отдельности, двигаясь вправо либо влево по его поверхности до тех пор, пока не появится новый пласт глины. По достижении краев разработку слоя прекращают и начинают двигаться вглубь породы, получая золото из глины уже следующего слоя.

Присутствие золота в разработанном слое глины не означает его наличия в следующих слоях. Собственно, расположение под одним слоем породы аналогичного также представляется сомнительным. Вместе с тем работа с глиняными пластами позволяет добыть крупные самородки. Естественно, величину их нельзя сравнивать с золотом, добытым из коренной подстилающей породы, но при разработке россыпи глинистую породу нельзя обходить стороной.

При разработке золотоносного дна реки важно понимать, что золото не статично, под воздействием потока воды оно постоянно перемещается, потому, обнаружив жилу, имеет смысл продолжить ее раскапывание в сторону движения течения.

И в обычной глине, взятой со дна какой-либо реки, золото также можно обнаружить. На сегодняшний день хорошо известно, что получить золото из глины нельзя. В прошлом же такие находки не раз становились причиной заблуждений, связанных с природой и местом нахождения металла. Многие исследователи полагали, что золото все же присутствует в глине, объясняя свою теорию схожестью между цветом этих совершенно разных по своей структуре веществ.

Источник

Способ извлечения золота из глинистого рудного и техногенного сырья

Владельцы патента RU 2496891:

Изобретение относится к способу извлечения тонкого золота из глинистого рудного и техногенного сырья. Способ включает электровзрывную обработку сырья высоковольтными электрическими разрядами. При этом электровзрывную обработку ведут для дезинтеграции глиняных агрегатов до частиц с размером, не превышающим 5-9 мкм. Способ осуществляют при раздельном выходе из реактора концентрата фракции крупнодисперсных частиц и выводом в лоток суспензии с тонкодисперсными частицами породы и тонкого золота с последующим осаждением тонкого золота на коврике в лотке и обработкой концентрата из крупнодисперсных частиц для получения вторичных продуктов и выделения золота. Концентрат из крупнодисперсных частиц обрабатывают соляной кислотой и используют полученные хлориды кальция и магния в качестве антигололедных материалов, а из осадка выщелачивают золото. Также из концентрата крупнодисперсных частиц, содержащего карбонаты, удаляют воду, добавляют 1-2% хлористого натрия, обжигают в течение 1 часа при 850±50°С, охлаждают и выщелачивают полученные оксиды кальция и магния водой, раствор используют для получения строительных растворов или сырья для вяжущих материалов, а из осадка нацело выщелачивают золото. Техническим результатом изобретения является повышение извлечения золота крупностью менее 50 мкм. 2 з.п. ф-лы, 2 пр.

Изобретение относится к области обогащения рудного минерального сырья и направлено на повышение степени извлечения тонкого золота крупностью менее 50 мкм из рудных и техногенных россыпей. По данным [Меламуд B.C. Перспективы использования умеренно термофильных сульфидокисляющих бактерий в биогидрометаллургии золота // В. сб. трудов I международного симпозиума «Золото Сибири». Красноярск, 1999. С.115-117] из всего золота в литосфере 75% золотин представлено частицами крупностью 0,9-0,01 мм. Основные резервы будущего, связаны с мелким и тонким золотом. В первичных рудах золото представлено частицами менее 0,01 мм, более половины частиц золота имеют величину 1-5 мкм. Оно находится в самородной форме преимущественно в виде мельчайших частиц в сульфидах, при этом 85% золотин, как показал анализ руд канадских месторождений, имеют размер менее 10 мкм.

Значительная доля золота с крупностью частиц золота менее 50 мкм накоплена в техногенных россыпях и отвалах. Золото такой же крупности содержится в корах выветривания, составляет основу большинства россыпей, включая и гигантскую россыпь «Сухой лог» в которой крупность частиц золота 50 мкм и менее и практически все оно связано с сульфидами. Гравитационными методами такое золото практически не извлекается. По данным [Афанасенко С.И. «Золотая жила техногенных отвалов». Проблемы освоения техногенного комплекса месторождений золота. Материалы Межрегиональной конференции. Магадан, 15-17.08.2010 г] на современных промывочных приборах теряется от 20 до 50% золота при первичной промывке россыпей. Как правило, при промывке извлекается 70-76% золота крупностью 0,25-0,1 мм, 45-50% крупностью 0,1-0,05 мм и 15-19% крупностью менее 0,05 мм. Таким образом, современная технология, основанная на традиционных методах гравитационного обогащения, оставляет в отвалах более половины золота.

Тонкое золото, крупностью менее 50 мкм, практически не извлекается гравитационными методами из глинистых россыпей, кор выветривания с высоким содержанием глин, отвалов действующих и закрытых шахт и рудников, в которых после помола в шаровых мельницах это золото, как правило, имеет трудно-извлекаемую гравитацией форму чешуек, которые практически не смачиваются водой. Поэтому такие частицы, несмотря на высокий удельный вес, способны плавать по поверхности воды и не извлекаться на концентрационных столах. Рудное и техногенное сырье, содержащее тонкое и супертонкое золото, с высоким содержанием глинистых компонентов является наиболее сложным объектом для извлечения золота, потому что из-за малых размеров частиц золота гравитационные методы неэффективны, а частицы золота могут взаимодействовать с глинистыми частицами с образованием на поверхности частиц золота плотной, скорлупообразной рубашки. Кроме того, вследствие чрезвычайно низкой проницаемости водных растворов через глинистые компоненты для извлечения золота из сырья с высоким содержанием глин не применим и метод кучного выщелачивания, а содержание глин в ряде крупных золотоносных россыпей Сибири, от Урала до Дальнего Востока, превышает 60%. Таким образом, увеличение объемов добычи золота связано исключительно с новейшими разработками, позволяющими добывать это тонкое золото не традиционными методами.

Известен способ извлечения золота из иловых техногенных отложений [Патент РФ №2340689, МПК С22В 11/00]. В соответствии с этим патентом извлечение тонкодисперсного, ультратонкодисперсного и коллоидного золота из глинисто-иловых отложений с размером частиц менее 50 микрон осуществляют приготовлением сухой смеси из иловых отложений с хлорной известью, к смеси добавляют воду, к суспензии добавляют раствор серной кислоты после чего сорбируют золото сорбентом растительного типа. Недостатком этого, также не традиционного способа, является высокий расход коррозионно-активных реагентов, так как на 100 г сырья расходуется 5 г хлорной извести и 250 мл 10% серной кислоты. Способ не применим при наличии в сырье карбонатов кальция, образующих с серной кислотой гипс.

Прототипом изобретения является способ извлечения мелких зерен полезного компонента при разработке песков глинистых россыпей и валунчатых окисленных руд кор выветривания по [Патент РФ №2214867, МПК В03В 5/00, В03В 7/00]. Способ включает промывку, дезинтеграцию, гравитационное обогащение в шлюзах глубокого наполнения, грохочение, гравитационное обогащение в шлюзах мелкого наполнения, сполоск концентрата с улавливающих поверхностей и доводку концентрата, причем пульпу перед подачей на шлюз глубокого наполнения в бункере гидровашгерда подвергают электровзрывной обработке и активации, а промывку и дезинтеграцию глинистых катышей выполняют действием ударных волн, раскрывая минеральные зерна, а также в процессе промывки и дезинтеграции глинистых катышей осуществляют активацию среды, способствуя коагуляции минеральных зерен при гравитационном обогащении и флокуляции глиняных частиц при водоподготовке. Способ осуществляется следующим образом.

Недостатком способа является традиционный гравитационный способ получения концентратов золота на конечной стадии процесса в турбулентном потоке воды, при котором тонкое золото теряется с промывной водой, так как в турбулентном потоке скорости осаждения одинаковых по размеру частиц, например, золота, пирита и кварца относятся как 3,71:1,73:1.

Задачей изобретения является повышение степени извлечения золота крупностью менее 50 мкм из глинистых рудных и техногенных россыпей, получение полупродукта для одновременном выделении других ценных компонентов из сырья с использованием электровзрывной обработки, для дезинтеграции глинистых агрегатов до ультра- и микроагрегатных ассоциаций глинистых частиц с размером не превышающим 5-9 мкм, скорость оседания которых в воде соответствует скорости оседания частицы золота крупностью 1 мкм, в ламинарном потоке за пределами реактора в лотке, где в ламинарном потоке воды скорости осаждения частиц золота, пирита и кварца находятся уже в соотношении 14,29:3,14:1.

Технический результат в изобретении достигается следующим образом. После электровзрывной обработки рудного и техногенного сырья, полученный концентрат из крупнодисперсных частиц поступает в бункер, из которого выводятся элеватором, для последующей обработки концентрата из крупнодисперсных частиц для получения вторичных продуктов и выделения золота. А полученная суспензия с тонкодисперсными частицами породы и тонким золотом пульпопроводом выводятся с проходной водой из установки в лоток. В лотке частицы золота оседают на коврик, а частицы породы с малой плотностью и скоростью осаждения (шлам) выносятся из лотка в отстойник. Как и в прототипе, электрический разряд и сопутствующая ему вторичная объемная кавитация, инициируемая вводимым в реактор с водой воздухом, продукты ионизации воды, разрушают минеральные частицы по спайкам и другим дефектам, по границам раздела «частица золота-минерал», окисляют сульфидную серу, переводят глинистые компоненты и часть других минералов в тонкодисперсное состояние, после чего эта суспензия с тонкодисперсными частицами породы и золота выводится из установки в лоток.

Крупнодисперсный остаток сырья, после удаления из сырья электровзрывным способом глины, пылеватых частиц и тонкого золота может направляться на извлечение из него других ценных продуктов физико-химическими методами.

Пример №1 выполнения способа.

Для извлечения тонкого золота электровзрывной обработке подвергали хвосты обогащения Берикульской шахты (Кемеровская область) с содержанием глинистых и других легко разрушаемых компонентов 40-43%. Содержание золота крупностью менее 50 мкм в исходном сырье составляло 1,83 г/т, из которого содержание золота крупностью менее 10 мкм составляло 0,17 г/т.

Опыт №1. Пренебрегая золотом крупностью менее 10 мкм, подачу воды в реактор осуществляли со скоростью 3,57 м/ч, равной скорости осаждения частиц золота шарообразной формы с диаметром 10 мкм. После заполнения реактора водой включали источник питания и транспортером подавали в реактор 20 кг влажного сырья с объемной плотностью 1,66 г/см 3 в течение 10 минут для поддержания соотношения Т:Ж=1:4. В результате был получен концентрат из крупнодисперсных частиц в количестве 63% от исходной массы с содержанием золота 1,5 г/т, пригодный для выщелачивания любым известным способом. Степень извлечения золота в концентрат составила 81,97% с уменьшением массы на

Опыт №2 с установкой лотка на выходе тонкодисперсной суспензии.

Пример №2 с установкой лотка на выходе тонкодисперсной суспензии.

Опыт №2. В 1000 г образца тяжелого концентрата после электровзрывной обработки сырья добавляли 1-2% хлористого натрия и обжигали при температуре 850±50°C в течение 1 часа по реакциям:

После охлаждения обожженного концентрата из него трижды, порциями по 400 мл, вымывали при перемешивании водой гидроксиды кальция и магния, декантировали полученное молоко. После декантации последней порции молока и сушки твердой фазы, масса второго концентрата составила 574 г. Таким образом, действительное содержание карбонатов оказалась ниже, чем предполагалось по результатам фазового анализа. Тем не менее, исходя из соотношения СаСО3:CaMg(CO3)2=1:14 в результате опыта было получено известковое молоко с соотношением гидроксидов кальция и магния 8:7, которое может использоваться в строительстве и производстве вяжущих.

Опыт №3. В 1000 г образца тяжелого концентрата после электровзрывной обработки сырья порциями добавляли HCl для растворения карбонатов:

После декантации осветленной жидкости, промывки и выпаривания осадка получили 411 г сухого концентрата. Анализом сухого остатка от раствора хлоридов установлены, кроме хлоридов кальция и магния, хлориды железа, меди и цинка с содержанием 0,9, 2,1 и 1,3% по массе металлов в сухом остатке соответственно. Таким образом, полученный раствор хлоридов можно использовать в качестве сырья для антигололедных покрытий или для электрохимического получения металлов из раствора хлоридов.

Предлагаемый способ для извлечения тонкого золота из рудного и техногенного сырья позволяет повышать степень извлечения металла за счет улавливания тонкого золота размером менее 50 мкм, позволив сделать процесс извлечения тонкого золота технически результативным и экономически выгодным

1. Способ извлечения тонкого золота из глинистого рудного и техногенного сырья, включающий электровзрывную обработку водной суспензии сырья высоковольтными электрическими разрядами, отличающийся тем, что в процессе электровзрывной обработки осуществляют дезинтеграцию глиняных агрегатов сырья до частиц с размером, не превышающим 5-9 мкм при раздельном выводе из реактора концентрата из крупнодисперсных частиц и суспензии с тонкодисперсными частицами породы и тонкого золота в лоток с последующим осаждением тонкого золота на коврике в лотке и обработкой концентрата из крупнодисперсных частиц для получения вторичных продуктов и выделения золота.

2. Способ по п.1, отличающийся тем, что концентрат из крупнодисперсных частиц обрабатывают соляной кислотой до полного растворения карбонатов и используют полученные хлориды кальция и магния в качестве антигололедных материалов, а из осадка нацело выщелачивают золото.

3. Способ по п.1, отличающийся тем, что из концентрата крупнодисперсных частиц, содержащего карбонаты, удаляют воду, добавляют 1-2% хлористого натрия, обжигают в течение 1 ч при 850±50°С, охлаждают и выщелачивают полученные оксиды кальция и магния водой, раствор используют для получения строительных растворов или сырья для вяжущих материалов, а из осадка нацело выщелачивают золото.

Источник

Технология извлечения золота из глинистых кор выветривания Южного Урала

Прогнозная оценка малых месторождений золота только в Челябинской области по сумме Р1+Р3 составляет более 150 т золота при запасах единичных месторождений от 1 до 5 т. Многие месторождения представлены глинистыми корами выветривания. Золото в них очень мелкое, часто пластинчатое, большей частью связанное и заключено в глинистых рыхлых породах. Среднее содержание в рудах достигает 8-10 г/т. Однако разработка таких месторождений по рудным схемам (добыча, переработка на золотоизвлекательных фабриках) или методом кучного выщелачивания экономически нецелесообразна. Это связано с тем, что фабрики для переработки глинистых руд с весьма мелким золотом технологически сложные и капиталовложения в их строительство не окупаются из-за небольших запасов месторождений. Кучное выщелачивание имеет ограниченное применение из-за низкого извлечения золота из глинистых руд.

Стандартные россыпные технологии на глинистых корах выветривания также неприменимы. Извлечение весьма мелкого золота из глинистых руд на обычных промывочных приборах чрезвычайно низкое, что также делает добычу нерентабельной.

Иргиредметом проведена разработка рациональной технологии обогащения для Тамбовского месторождения Челябинской области. Это одно из месторождений глинистых кор выветривания с весьма мелким золотом. В результате найден вариант, обеспечивающий экономически приемлемые результаты добычи золота из этого месторождения.

Предварительно в ОАО «Иргиредмет» были проведены технологические исследования большеобъемной валовой пробы. При этом изучался состав и гранулометрия пород, а также гранулометрия и характеристики золота.

В результате исследований пород было установлено, что они на 70 % состоят из интенсивно обохренных, глиняных, рыхлых обломков слюдистого состава, наибольший линейный размер которых достигает 200 мм. Слюды в процессе выветривания изменились и превратились в светлую тонкозернистую охряную массу. В свежих сколах четко прослеживается полосчатость, обусловленная чередованием глинистого слоя со слоем лимонитов. Около 30 % материала проб составляет мелкозернистая фракция (крупностью минус 2 мм) и диспергированная глина.

Эксперименты показали, что глинистые обломки постепенно разрушаются в воде в статических условиях. После этого материал пробы в течение 3-5 минут полностью дезинтегрируется во вращающемся барабанном грохоте, частично погруженном в воду.

Материал пробы после дезинтеграции представлен, в основном, мелкозернистой фракцией: массовая доля илисто-глинистой фракции крупностью минус 0,1 мм в нем составляет 70 %. Однако исследования показали, что рыхлые породы не являются труднопромывистыми, так как глины непластичные, несвязанные и легко дезинтегрируются. Это – благоприятный фактор, в определенной мере упрощающий технологию обогащения. В то же время доля фракции минус 0,1 мм, достигающая 70 %, создает значительные трудности для процесса обогащения, так как обычные приемы грохочения на гидровашгерде и шлюзовые технологии обогащения, очевидно, для таких пород не подходят.

Таким образом, золото в Тамбовском месторождении достаточно сложное для извлечения. Свободного золота всего 23,5 %, и оно относится к весьма мелкому, пластинчатому и чешуйчатому. Такое золото практически нельзя извлечь на шлюзовых приборах. По расчетам и многочисленным опытным данным извлечение такого золота не может составлять более 15-25 % даже при использовании шлюзов мелкого наполнения.

Экспериментальные исследования в лаборатории Иргиредмета показали, что свободное золото Тамбовского месторождения с низкой эффективностью улавливается на отсадочной машине (извлечение 25-26 %) и на концентрационном столе (37-39 %).

Извлечение свободного золота существенно повышается при использовании гравитационно-центробежных полей, реализованных в центробежных концентраторах типа «Нельсон» и «Итомак». Наибольшее извлечение свободного золота по операции в концентраторе типа «Нельсон» из необесшламленных песков получено равным 55,0 %, в концентраторе типа «Итомак-КН-0,1» – 71,9 %. Оно повышается до 80,6 % при использовании этого же аппарата, но при раздельном обогащении обесшламленного материала и шламов. В соответствии с данным уровнем извлечения содержание гравитируемого золота можно считать равным 0,151 г/т (0,332 г/м 3 ).

В результате экспериментов выяснилось, что при использовании центробежных концентраторов значительная часть «плавучего» золота теряется с илисто-глинистой фракцией и жидкой фазой пульпы. Снизить потери плавучего золота позволило использование центробежно-барботажного концентратора.

Таким образом, свободное золото из руд Тамбовского месторождения, несмотря на сложные условия, может быть в значительной мере извлечено с использованием центробежных и центробежно-барботажных концентраторов.

Для оценки возможности извлечения связанного золота в Иргиредмете были проведены тестовые испытания на кучное выщелачивание хвостовых продуктов центробежных концентраторов «Итомак» и надрешетного продукта виброгрохота (из которых удалена основная масса илисто-глинистой фракции). Исследования показали, что извлечение золота при этом на 10-20 % выше, чем при кучном выщелачивании недезинтегрированных руд коры выветривания.

В результате технологических исследований Иргиредметом предложена комплексная технология обогащения руд коры выветривания Тамбовского месторождения. Она включает извлечение свободного золота центробежно-гравитационными методами и извлечение связанного золота из продуктов гравитационного обогащения методом кучного выщелачивания.

Гравитационное обогащение предусматривает:

— дезинтеграцию и грохочение по крупности 10 (8) мм в скруббер-бутаре;

— классификацию фракции минус 10 (8) мм в гидроциклонах и на виброгрохотах;

— обогащение песковой фракции в центробежных концентраторах типа «Итомак»;

— обогащение сливной фракции – в центробежно-барботажных концентраторах типа ЦБК-450.

Расчетное (ожидаемое) извлечение свободного золота по данной схеме в концентрат, пригодный для пирометаллургической переработки, составляет 62,7 %. Такое извлечение обеспечивает экономически приемлемые показатели добычи золота при гравитационной технологии. Более высокое извлечение свободного золота в рассматриваемом случае экономически нецелесообразно, так как хвосты обогащения планируется перерабатывать повторно методом кучного выщелачивания, при этом свободное золото будет извлечено вместе со связанным.

Извлечение золота из хвостов гравитационного обогащения методом кучного выщелачивания составляет около 90 %. С учетом этого общее извлечение золота из руд коры выветривания Тамбовского месторождения при их переработке в два этапа составляет около 85 %.

Таким образом, разработанная двухэтапная схема переработки кор выветривания позволяет быстро получить золото по относительно недорогой гравитационной технологии, а также получить хвосты гравитационного обогащения, лучше поддающиеся дальнейшему кучному выщелачиванию.

Гравитационная технология обогащения реализована на предприятии в виде промывочного прибора с проектной производительностью 70 м 3 /ч.

По результатам промышленной эксплуатации промприбора сквозное извлечение свободного золота по схеме составило 67,5-69,0 %. При этом золото крупностью минус 0,25+0,1 мм по данной технологии извлекается на 94-96 %, крупностью минус 0,1+0,063 мм – на 72-90 % и минус 0,063 мм – на 38-54 %.

Выход песковой и сливной фракции гидроциклонов составил 48-52 % соответственно. Причем слив гидроциклонов практически на 100 % представлен материалом крупностью мельче 0,1 мм и направлялся на обогащение на два центробожно-барботажных концентратора ЦБК-450. Извлечение золота в концентрат ЦБК-450 составило 65 % по операции при выходе концентрата 0,04 %.

Уровень извлечения золота на центробежном концентраторе «Итомак-20» при оптимальной нагрузке и соотношении Ж:Т составил 81-83 %.

На перечистных центро-бежных концентраторах «Итомак-1,0» и «Итомак-0,1», золото извлекалось на 92-93 и 94-95 % соответственно.

Конечный гравио-концентрат имеет достаточно высокое содержание для плавки в руднотермической печи и получения товарного золота в виде слитков.

По данной гравитационной технологии переработано около 6000 м 3 породы и получено около 2 кг золота. Хвосты гравитации накапливаются для извлечения золота методом кучного выщелачивания.

Выполненные исследования и практическая их реализация являются важным этапом в разработке эффективных технологий переработки глинистых руд с весьма мелким золотом.

Коры выветривания – весьма сложные для обогащения объекты. Они существенно отличаются по минералогическому составу глин, гранулометрии и морфологии золота, содержанию шлиховых фракций и др. Попытки отрабатывать их простыми стандартными технологиями обычно заканчиваются убытками. Выбор технологий их обогащения должен осуществляться на основе технологических исследований большеобъемных представительных валовых проб. Это позволяет выбрать оптимальный вариант обогащения и добиться экономически приемлемого извлечения золота, а также избежать неоправданных и значительных затрат на реализацию нерациональных технологических схем обогащения в промышленных условиях.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *