Как выигрывать в камень ножницы бумага
Как научиться побеждать в «Камень, ножницы, бумага»
БЕНДЖАМИН ДЖЕЙМС ДАЙСОН, преподаватель психологии британского Университета Сассекса, соавтор исследования «Влияние негативных результатов на принятие иррациональных решений в игре «Камень, ножницы, бумага»:
Однажды я увидел, как два студента, писавших у меня диплом, играют перед моим кабинетом в «камень, ножницы, бумагу», чтобы определить, кто пойдет первым. Один из них был уверен в своей победе, я поинтересовался почему, мы стали рассматривать возможные стратегии и в итоге вместе написали целое исследование. Нам было любопытно доказать, что на принятие решений в этой игре влияют эмоции, и продемонстрировать, как именно. Мы не ставили себе целью научиться всегда выигрывать, но попутно выяснили, какие модели поведения этому способствуют. Например, в первом раунде большинство игроков бессознательно выбирают камень. Дело даже не в том, что он ассоциируется с надежностью, — просто мы начинаем игру с этого жеста, когда трясем кулаком. Поэтому в первом коне лучше «выкидывать» бумагу.
Среднестатистический человек поступает так: если предмет выиграл, эйфория от победы заставляет поставить на него снова — мы любим делать вещи, за которые получаем вознаграждение. И наоборот, поставив на ножницы и проиграв, в следующем раунде вы вероятнее всего смените тактику, выбрав более сильный предмет — камень. На самом деле следить нужно за тем, что выбирает соперник. Если он проиграл, повторите в следующем раунде его предмет, а если победил — ставьте на более сильный.
Действовать в зависимости от поведения соперника — это грамотная стратегия, но что если противник понял, что вы делаете, и пытается подстроиться? Тогда игра становится гораздо сложнее. В этой ситуации есть только один способ защитить себя от проигрыша — перемешивать стратегии в случайном порядке, чтобы ваши действия не были предсказуемыми. Один раз можно даже специально поддаться.
Нашей целью было не научить людей жульничать, а заставить пересмотреть решения, продиктованные эмоциями. И неудача, и победа по‑своему делают нас уязвимыми. Ошибку, описанную в нашем исследовании, часто повторяют игроки в рулетку, неосознанно следуя принципу Мартингейла: поставив на черное или красное и выиграв, они упорно продолжают ставить только на «счастливый» цвет и быстро разоряются. Профессиональные игроки в покер знают, что даже из проигрыша можно извлечь выгоду, если сохранять хладнокровие.
6975 раз сыграл в «Камень, ножницы, бумагу» 31 участник исследования — противником была компьютерная программа, действующая по смешанной стратегии равновесия. Сыграв «вничью», игроки начинают вести себя, как если бы проиграли, потому что на подсознательном уровне «ничья» воспринимается как поражение. В международном чемпионате по игре в «Камень, ножницы, бумага», прошедшем 16 апреля в лондонском пабе Green Man, приняли участие игроки из 196 стран.
Все секреты победы в игре «Камень, ножницы, бумага»
Невозможно вспомнить, когда появилась эта игра. Она была с нами с самого детства — в нее играли даже наши родители и дедушки. Однако, они вряд ли знали оптимальные стратегии, как победить в игре «Камень, ножницы, бумага». Мы обязательно про это расскажем, а сначала — немного истории и правил.
Когда появилась «Камень, ножницы, бумага»
На самом деле «Камень, ножницы, бумага» пришла к нам из Японии. Она довольно распространена в Азии — играть в нее любят и в Южной Корее, и в Малайзии и даже в Непале. По японски ее название звучит «Джан, кен, пон». Первые два слога в названии, по-видимому, представляют собой одно слово, которое означает «два кулака». Слово «пон» в японском языке ничего не обозначает, но возможно оно попало в название из китайского, ведь сами японцы предполагают, что игра пришла к ним из Китая.
Популярна игра и в Корее, где она называется «кай-бай-по», что означает, как вы могли догадаться, «Камень, ножницы, бумага». Можно сказать, что корейцы пользуются этой игрой даже чаще, чем русские — и во взрослом возрасте они не стесняются определить очередность при помощи этой игры.
Правила «Камень, ножницы, бумага»
Два игрока. Три фигуры. Три попытки. Только один конечный результат. Камень бьет ножницы, которые бьют бумагу, которая бьет камень. Ни один из предметов не является доминантным над всеми другими. Каждая игра заканчивается явным победителем и проигравшим, а в случае страшной ничьей — мгновенным реваншем. Чтобы определить победителя из двух участников игры, нужно в среднем 1,5 попытки, для определения победителя из трех игроков нужно в среднем 2,25 попытки. По теории вероятностей в классическом варианте вероятность победы, проигрыша и переигровки — одинаковая: 1/3=0,333. Это идеальный интернациональный способ жеребьевки. В «камень, ножницы, бумага» нет места предвзятости, мухлежу или несправедливости. Все просто.
С другой стороны, если все было так просто, то не существовало бы глобальных научных исследований и соревнований по этой «простой» игре. Да, вы все правильно поняли: есть всемирный чемпионат по игре в «камень, ножницы, бумага» и организация the World Rock Paper Scissors Association («Всемирная ассоциация «камень, ножницы, бумага»»). Несмотря на то, что исход идеальной игры случаен, при наличии определенных навыков игры с реальными противниками ее исход можно предугадать, так как многие люди сознательно не действуют случайным образом или даже не способны на такое. Но вам же это вся эта общеобразовательная информация неинтересна, вам рецепт успеха подавай, верно? Тут все действительно просто.
Как всегда побеждать в «Камень, ножницы, бумага»
Есть несколько стратегий. Начнем с научной. В 2015 году трое китайских исследователей Чжицзянь Ван, Бин Сюй и Хай-джун Чжоу провели масштабный эксперимент. Они наблюдали за 360 студентами, разделенными на 60 команд по шесть человек, каждая из которых должна была сыграть 300 раундов в «камень, ножницы, бумага». На все про все ушло более двух часов. И вот выводы, к которым пришли ученые:
То есть, давайте представим, что вы показали ножницы, а ваш соперник выиграл камнем. Во второй раз он наверняка снова выберет камень, значит вам надо выбрать бумагу. Итак, первое правило:
Если вы победили, соперник ожидает в следующем раунде от вас тот же предмет, которым вы только что его победили. Другими словами, если вы показали камень, который победил ножницы, то соперник ждет от вас опять камень и готовится показать бумагу. Значит, вам надо показать ножницы. Следовательно, второе правило:
Профессиональные игроки в «камень, ножницы, бумага» говорят, что хоть и есть только 27 возможных комбинаций в трех раундах, восемь из них — «Великие восемь гамбитов» — являются наиболее широко используемыми и имеют полуофициальные названия.
В дополнение к этим комбинациям, обсуждая выигрышные стратегии, профессиональные игроки в один голос говорят о способности предсказать следующий ход противника через положение и движение его играющей руки. В 2012 году японцы построили робота по имени Janken (так по-японски называется эта игра). Он побеждал человека в «камень, ножницы, бумага» со стопроцентным результатом не с помощью определенной стратегии, а за счет анализа движений с помощью высокоскоростной камеры. Для распознавания ему было достаточно 20 миллисекунд. Спустя год ученые из лаборатории Исикавы Оку изобрели вторую версию машины, который распознавал движения всего лишь за миллисекунду.
Вдобавок ко всему, профессиональные игроки в «камень, ножницы, бумага» обратили внимание, что новички чаще других фигур показывают камень. Стало быть, если ваши друзья, с которыми вы засиделись в баре, не суперпрофи в «камень, ножницы, бумага», то вы знаете как минимум три способа, как не стать крайним и не платить за всех по счету, или как гарантированно получить последний кусок пиццы. Не благодарите.
Как гарантировано, победить в камень ножницы бумага?
Кто же не помнит старую добрую игру, которая умеет не только развлекать, но и решать конфликтные ситуации, где нужно выбирать «кто пойдет за добавкой». Существует даже усложненная версия этой простой игры, предложенная в сериале «Теория большого взрыва» — камень, ножницы, бумага, ящерица, спок!
Но не будем отвлекаться на игру физиков-ядерщиков, а вернемся к нашему бытию, а именно к классической версии. Множество склонны думать, что это детская игра построена на чистом везении, и никакой смысловой нагрузки не несет, …но эти люди серьезно ошибаются.
Будь все так просто, то в нее било бы не так интересно играть, но на самом деле люди, как и ожидалось, очень даже предсказуемые существа, и если знать секрет, то вполне можно управлять людьми, и не только…
Вот мы плавно и подошли к важности вопроса:
Как победить в камень ножницы бумага?
За ответом на который, вполне логично было бы обратится к Грэму Уокеру, который является ветераном Всемирных Чемпионатов по этой забаве. (Как Вы не знали, что существуют соревнования мирового уровня в столь детскую игру?)
Так вот, игра не на везучесть, а следовательно можно иметь преимущество над соперником, если знать определенные секреты.
Один из таких секретов – это заставить соперника не использовать одну фигуру (ножницы например).
Так же можно влиять на выбор оппонента, это уже второй способ.
В любом из случаев, все сводится к умению манипулировать своим соперником так, чтобы он даже не догадывался об этом.
В игре есть своеобразная фигура, которая является слабым звеном, от этого факта и нужно отталкиваться.
Опытные игроки заметили, что по каким-то причинам новички чаще всего показывают «камень», может он им кажется самым надежным выбором, а может они, таким образом, хотят показаться сильным противником, но факт остается фактом.
Поэтому запомните раз и навсегда – камень сугубо для новичков, и если Вам посчастливилось встретиться в «поединке» с новобранцем, то смело показывайте «бумагу» — не ошибетесь!
Но если Ваш оппонент тертый калач, то простой «бумагой» тут уже не отделаться. Мало шансов, что такой человек покажет камень, поэтому рациональнее всего показать «ножницы». Это, по сути, беспроигрышный вариант: Вы либо побьете «бумагу», либо попросту будет ничья.
Так же в процессе игры, нужно запоминать происходящее, и если Ваш противник два раза подряд повторит один и тот же жест, то согласно статистике вероятность того, что он и в третий раз покажет то же самое маленькая, поскольку никто не любит быть предсказуемым.
В таком случае нужно проявить смекалку, например, если вы дважды заметили «ножницы, значит следующими будут: либо «бумага» либо же «камень», в такой ситуации рациональнее всего показать бумагу – это приведет к выигрышу в случае с «камнем» либо опять же к ничье.
Так же не стоит забывать о «подготовке почвы», в игре, как и в любом другом жизненном деле, можно применять элементарные психологические уловки, с помощью которых можно прекрасно влиять на сознание Вашего соперника, перед началом поединка.
Уловка заключается в повторении нужных жестов при разговоре, скрывая их под обычную жестикуляцию. Давно известно, что у человека очень восприимчивое подсознание к жестам и мимике, а это значит, что ваш собеседник прореагирует на эти жесты, не зависимо от того хочет он этого или нет, он просто не будет подозревать о влиянии на себя.
Данный трюк срабатывает благодаря заложенной в человека склонности подражать себе подобным. Во время чемпионата в «камень, ножницы, бумага», организованного в 2011 году, было проведено исследование реакции соперников, в результате выяснилось, что игроки чаще всего делали повтор последнего движения того с кем играют.
Но тут стоит заметить один нюанс, фокус с показыванием жеста перед игрой, может сработать всего лишь один раз.
Пример: Вы говорите, что покажите «камень», оппонент начинает подозревать, что в сказанном есть подвох и на самом деле Вы не будете показывать «камень», поэтому он точно не покажет «бумагу» (которая бьет «камень»), а попросту выберет «ножницы» или тот же «камень». В итоге у Вас снова получится беспроигрышный вариант: либо ничья, либо выигрыш.
Так же новички любят использовать в следующем раунде ту фигуру, которая их в прошлом побила.
Кто бы мог подумать, что в столь безобидной игре, тоже вполне можно применять элементарную психологию. И вообще забавно смотреть на взрослых, которые играют в детские игры. Думаю, больше всего удовольствия от изучения таких подопытных получил бы профессор Лайтман, из прекрасного сериала «Теория лжи».
Как выигрывать в игре камень-ножницы-бумага? (реализация оптимальной стратегии в Wolfram Mathematica)
Перевод поста Джона Маклуна (Jon Mcloone, директор департамента международного бизнеса и стратегического развития Wolfram Research). Оригинал поста: How to Win at Rock-Paper-Scissors
Скачать пост в виде документа Mathematica
С точки зрения математики игра камень-ножницы-бумага (см. Дополнение 1 в конце) не является особо интересной. Стратегия равновесия Нэша очень проста: случайно и с одинаковой вероятностью выбирайте из трех вариантов, и при условии проведения большого числа игр ни вы, ни ваш соперник не сможете одержать победу. Хотя, при обсчитывании стратегии при помощи компьютера всё ещё возможно выиграть у человека после большого числа игр.
Моя девятилетняя дочь показала мне программу, созданную ей при помощи Scratch, которая выигрывала абсолютно каждый раз просто отслеживая, какой выбор сделали вы, перед тем, как сделать свой! Но я познакомлю вас с простым решением, которое выигрывает у человека в камень-ножницы-бумагу без обмана.
Поскольку того, кто всегда совершает абсолютно случайный выбор победить невозможно, мы будем рассчитывать на то, что люди не очень-то и случайны. Если компьютер сможет заметить некий шаблон, по которому вы действуете в своих попытках быть случайным, он станет на шаг ближе к тому, чтобы предсказать ваши будущие действия.
Я думал о создании алгоритма в качестве одной из тем нашего курса статистики в рамках концепции Computer-Based Math. Но первая же статья, на которую я наткнулся в поисках предсказательных алгоритмов, рассматривала решение при помощи сложной конструкции на основе копула-распределений. Это решение было трудным для понимания школьника (а возможно, и для меня), поэтому я решил разработать более простое решение, которое я мог бы объяснить простыми словами. И пусть даже оно уже и было разработано ранее, намного веселее создавать вещи по-своему, чем находить их готовую реализацию.
Для начала нам необходимо просто иметь возможность начать игру. На тот момент уже была разработана и доступна демонстрация, позволяющая играть в камень-ножницы-бумагу, но это было не совсем то, что мне нужно, поэтому я написал свою версию. Этот пункт не требует особых пояснений:
По большей части этот код описывает пользовательский интерфейс и правила игры. Вся стратегия компьютерного игрока содержится в этой функции:
где 1 соответствует камню, 2 — бумаге и 3 — ножницам. Это оптимальное решение. Как бы вы ни играли, вы выиграете столько же игр, сколько и компьютер, и ваш показатель побед будет колебаться в районе нуля.
Итак, теперь было бы интересно переписать функцию chooseGo чтобы осуществлять предсказание касаемо вашего выбора, используя данные о последних играх, хранящиеся в переменной history. Первым шагом будет анализ совершённых в течение последних нескольких игр выборов и поиск всех случаев вхождения какой-либо последовательности. Наблюдая за тем, что человек делал в каждой следующей игре, мы можем обнаружить некий шаблон поведения.
Первый аргумент функции представляет собой историю прошлых игр. Например, в наборе данных, представленных ниже, компьютер (вторая колонка — второй элемент каждого подсписка) только что сыграл бумагу (ей соответствует число 2) против камня, сыгранного человеком (число 1). Это видно по последнему элементу списка. Также видно, что такая ситуация уже возникала дважды, и оба раза следующим ходом человека был снова камень.
Второй аргумент это количество последних элементов истории, по которым и будет вестись поиск. В данном случае в качестве аргумента функции передано число 1, что осуществляет поиск в данных только случаев вхождения <1,2>. Если мы выберем 2, то функция будет искать вхождения последовательности <3,2>, <1,2>и вернёт пустой список, поскольку такая последовательность ранее не встречалась.
Третий аргумент, All, указывает на то, что в искомых последовательностях должны совпадать и ходы человека, и ходы компьютера. Аргумент можно изменить на 1, чтобы смотреть только на историю ходов человека (то есть предполагая, что человеческий выбор зависит только от его же предыдущих ходов), или 2, чтобы обращать внимания только на второй столбец, то есть на историю ходов компьютера (то есть предполагая, что человек отвечает на предыдущие ходы компьютера независимо от того, какие сам совершал ходы и, следовательно, независимо от того, выиграл он или проиграл).
Например, в данном случае мы находим, что человек выбирал после камня, вне зависимости от того, что в тех же играх выбирал компьютер.
Имея большое количество данных, мы можем обойтись только аргументом All, и программа сможет сама решить, чьи ходы, компьютера или человека, более важны. Например, если история ходов компьютера игнорируется человеком в ходе осуществления выбора, тогда набор данных, полученый для какой-либо истории ходов компьютера будет иметь то же распределение, что и для любой другой истории ходов компьютера, при условии, что данных о предыдущих играх достаточно. Осуществляя поиск по всем парам игр, получим тот же результат, как и если бы мы сначала выбирали данные по истории ходов компьютера, а потом использовали это подмножество для показанной выше функции. То же произойдёт в случае, если имеет значение только история ходов компьютера. Но при этом, производя поиск при учёте обоих этих предположений по отдельности можно получить более верные совпадения в истории, и больше всего это проявляется в случаях, когда набор данных об играх поначалу мал.
Таким образом из этих двух проверок мы можем обнаружить, что первый даёт оценку в 100%, что следующим выбором человека будет камень, а второй показывает, что с 75% вероятностью человек выберет камень и с 25% вероятностью — ножницы.
И здесь я несколько застопорился в решении задачи.
В данном случае два предсказания по крайне мере более менее близки по результату, хотя и расходятся в численных значениях вероятностей. Но если вы проводите поиск по трём «срезам» данных c рядом различных длин истории, и результаты предсказаний противоречивы — как их объединить?
Я поместил заметку об этой проблеме в папку «Написать про это в блог» и забыл о ней до тех пор, пока несколько недель назад не произошёл спор о том, как осветить концепцию «статистической значимости» в курсе Computer-Based Math.
Я понял, что вопрос состоит не в том, как скомбинировать полученные предсказания, а в том, как определить, какое из предсказаний наиболее значимое. Одно из предсказаний могло бы быть более значимым, чем остальные, поскольку оно отражает более выраженную тенденцию или, может быть, основано на большем наборе данных. Это было неважно для меня, и поэтому я просто использовал p-значение теста на значимость (с нулевой гипотезой о том, что оба игрока играют случайно), чтобы упорядочить полученные предсказания.
Думаю, мне следовало бы прислушаться к нашему же первому принципу о том, что первым шагом в решении любой математической проблемы является “верная постановка вопроса”.
Теперь, если мы возьмём последний полученный нами результат, обнаруживается, что лучшее предсказание — камень, имеющее p-значение 0.17. Это значит, что лишь с вероятностью 0.17, данные, используемые для данного предсказания, отклоняются от дискретного равномерного распределения (DiscreteUniformDistribution[<1,3>]), причём скорее случайно, чем из-за систематической ошибки, производимой человеческом или по какой-либо другой причине, которая могла изменить распределение.
Чем меньше это p-значение, тем более уверенными мы можем быть в том, что нашли настоящий шаблон поведения. Так что мы просто осуществляем предсказания для различных длин истории и срезов данных и выбираем предсказание с наименьшим p-значением.
И делаем такой выбор, который побьёт выбор человека.
Здесь вы видите результат. Вы можете скачать и самостоятельно опробовать его с сайта Wolfram Demonstrations.
Когда программа имеет слишком мало данных, она играет случайно, так что начинаете вы на равных. Поначалу, когда она только начинает обучаться, она принимает несколько глупые решения, поэтому вы можете вырваться вперёд. Но после 30-40 игр она начинает получать действительно значимые предсказания, и вы увидите, как ваш показатель побед опустится в отрицательную область и так там и останется.
Конечно, такое решение хорошо только против примитивных попыток казаться случайным. Его предсказуемость делает его подверженным возможному проигрышу против хорошо просчитанной и намеченной стратегии. Крайне интересно попробовать победить эту программу при помощи интуиции. Это возможно, но если вы перестанете думать либо будете думать слишком усердно, вы скоро отстанете. Конечно, программа могла бы с лёгкостью это сделать, применяя тот же алгоритм с целью предсказать следующий ход этой программы.
Такой подход ведёт к началу некой «гонки вооружений», соревнований по написанию алгоритмов, которые будут выигрывать в камень-ножницы-бумагу у алгоритма соперника, и единственный способ прекратить это — вернуться к стратегии равновесия Нэша, осуществляя выбор через RandomInteger[<1,3>].
Дополнение 1
В том случае, если вы не знаете, как играть в эту игру, правила таковы: вы выбираете камень, ножницы или бумагу, используя один из трёх жестов, показанных одновременно вами и вашим соперником. Камень побеждает ножницы (делает их тупыми), ножницы побеждают бумагу (они её режут), а бумага побеждает камень (она его заворачивает). Победивший получает одно очко, в случае ничьей оба игрока не получают очков.
Благодарю Сергея Шевчука за помощь, оказанную в переводе данного поста.
«Камень-ножницы-бумага» и теория игр
Игра «камень-ножницы-бумага» отлично подходит для того, чтобы решить, кому придётся выносить мусор. Но замечали ли вы, что происходит, когда вместо трёх выбрасываний игра продолжается раунд за раундом? Сначала вы выбираете принцип, который даёт вам преимущество, но потом противник быстро понимает его и обращает в свою пользу. В процессе изменения стратегий вы постепенно достигаете точки, в которой ни одна из сторон не может дальше совершенствоваться. Почему же такое происходит?
В 1950-х математик Джон Нэш доказал, что в любом виде игры с конечным количеством игроков и конечным количеством вариантов (таком, как «камень-ножницы-бумага») всегда существует смешение стратегий, при которой ни один игрок не может показать результатов лучше изменением только собственной стратегии. Теория таких устойчивых наборов стратегий, которые называются «равновесиями Нэша», совершила революцию в области теории игр, изменила направление развития экономики и способы изучения и анализа всего — от политических договоров до сетевого трафика. А ещё она позволила Нэшу получить в 1994 году Нобелевскую премию.
Так как же выглядит равновесие Нэша в игре «камень-ножницы-бумага»? Давайте смоделируем ситуацию, в которой есть вы (Игрок A) и ваш противник (Игрок B), снова и снова играющие в игру. В каждом раунде победитель получает очко, проигравший теряет очко, а ничья засчитывается как ноль очков.
Предположим, Игрок B выбрал (глупую) стратегию выбора в каждом раунде бумаги. Через несколько раундов побед, проигрышей и ничьих вы скорее всего заметите его систему и выработаете выигрышную контрстратегию, выбирая в каждом раунде ножницы. Давайте назовём этот набор стратегий (ножницы, бумага). Если в результате каждого раунда получаются ножницы против бумаги, то вы проложите себе дорогу к идеальной победе.
Но Игрок B вскоре замечает недальновидность этого набора стратегий. Увидев, что вы выбираете ножницы, он переключается на стратегию постоянного выбора камня. Этот набор стратегий (ножницы, камень) начинает выигрывать для Игрока B. Но, разумеется, теперь вы перейдёте к бумаге. На протяжении этих этапов игры Игроки A и B используют то, что называется «чистыми» стратегиями — единственные стратегии, выбираемые и реализуемые постоянно.
Очевидно, здесь нельзя достичь равновесия: для каждой чистой стратегии, например «всегда выбирать камень», можно выработать контрстратегию, например «всегда выбирать бумагу», которая заставит изменить стратегию ещё раз. Вы и ваш противник постоянно будете преследовать друг друга в круге стратегий.
Но вы также можете попробовать «смешанную» стратегию. Предположим, что вместо выбора одной стратегии вы можете в каждом раунде случайным образом выбирать одну из чистых стратегий. Вместо «всегда выбирать камень» смешанная стратегия может иметь вид «в половине случаев выбирать камень, в другой половине выбирать ножницы». Нэш доказал, что когда допустимы такие смешанные стратегии, в каждой подобной игре должна быть по крайней мере одна точка равновесия. Давайте её найдём.
Какова же разумная смешанная стратегия для «камня-ножниц-бумаги»? Интуитивно кажется разумным, что это «выбирать камень, бумагу или ножницы с равной вероятностью». Такая стратегия записывается как . Это означает, что камень, ножницы и бумага выбираются с вероятностью
. Является ли эта стратегия хорошей?
Предположим, что стратегия вашего противника имеет вид «всегда выбирать камень». Это чистая стратегия, которую можно обозначить как . Какими будут результаты игры при наборе стратегий
для Игрока A и
для Игрока B?
Чтобы получить более чёткую картину игры, мы построим таблицу, в которой будут показаны вероятности каждого из девяти возможных результатов каждого раунда: камень у A, камень у B; камень у A, бумага у B; и так далее. В приведённой ниже таблице верхняя строка обозначает выбор Игрока B, а левый столбец — выбор Игрока A.
A | B | К | Б | Н |
К | 0 | 0 | |
Б | 0 | 0 | |
Н | 0 | 0 |
Каждый элемент таблицы обозначает вероятность пары выбранных вариантов для каждого раунда. Это просто произведение вероятностей того, что каждый из игроков сделает соответствующий выбор. Например, вероятность того, что Игрок A выберет бумагу, равна , а вероятность того, что Игрок B выберет камень, равна 1, то есть вероятность (камень у A, камень у B) равна
. Но вероятность (бумага у A, ножницы у B) равна
, поскольку вероятность выбора Игроком B ножниц равна нулю.
Как же проявит себя Игрок A при своём наборе стратегий? Игрок A выиграет одну треть времени (бумага, камень), проиграет в одну треть времени (ножницы, камень) и в одну треть времени сыграет вничью (камень, камень). Мы можем вычислить количество очков, которые в среднем получит Игрок A в каждом раунде, вычислив сумму произведения каждого результата на соответствующую вероятность:
Таким образом, в среднем Игрок A будет получать по 0 очков за раунд. Вы будете выигрывать, проигрывать и играть вничью с одинаковой вероятностью. В среднем, количество побед и поражений уравновесят друг друга, и по сути, оба игрока придут к ничьей.
Но как мы уже говорили, вы можете улучшить свои результаты, изменив свою стратегию, предполагая, что противник не будет менять свою стратегию. Если вы перейдёте к стратегии (0,1,0) («каждый раз выбирать бумагу»), то таблица вероятностей будет выглядеть так:
A | B | К | Б | Н |
К | 0 | 1 | 0 |
Б | 0 | 0 | 0 |
Н | 0 | 0 | 0 |
В каждом раунде вы будете заворачивать в свою бумагу камень противника и получать за каждый раунд по одному очку.
То есть эта пара стратегий — для A и
для B — не является равновесием Нэша: вы, как Игрок A, можете улучшить свои результаты, изменив стратегию.
Как мы увидели, чистые стратегии, похоже, не ведут к равновесию. Но что, если ваш противник попробует использовать смешанную стратегию, например ? Это стратегия «в половине случаев выбираем камень; бумаге и ножницам достаётся по четверти случаев». Вот, как будет выглядеть таблица вероятностей:
A | B | К | Б | Н |
К | |||
Б | |||
Н |
А вот таблица «вознаграждений» с точки зрения Игрока A; это количество очков, получаемых Игроком A в каждом из результатов.
A | B | К | Б | Н |
К | 0 | -1 | 1 |
Б | 1 | 0 | -1 |
Н | -1 | 1 | 0 |
С помощью умножения мы объединим две таблицы, чтобы вычислить среднее количество очков, получаемых Игроком A за каждый раунд.
В среднем Игрок A снова за раунд зарабатывает 0 очков. Как и раньше, этот набор стратегий, для A и
для B, в результате приводит к ничьей.
Но как и раньше, вы, как Игрок A, можете улучшить свои результаты, сменив стратегию: против стратегии Игрока B , Игрок A должен выбрать
. Вот таблица вероятностей:
A | B | К | Б | Н |
К | |||
Б | |||
Н |
а вот итоговый результат для A:
То есть этот набор стратегий — для A и
для B — даёт в среднем Игроку A по
очка за раунд. После 100 игр Игрок A будет впереди на 6,25 очка. У Игрока A есть большой стимул к изменению стратегии. То есть набор стратегий
для A и
для B тоже не является равновесием Нэша.
Но теперь давайте рассмотрим пару стратегий для A и
для B. Вот соответствующая таблица вероятностей:
A | B | К | Б | Н |
К | |||
Б | |||
Н |
Благодаря симметрии мы можем быстро вычислить общий результат:
И снова вы и ваш противник пришли к ничьей. Но разница здесь в том, что никакой из игроков не имеет стимула к изменению стратегий! Если Игрок B перешёл бы к любой неуравновешенной стратегии, где один вариант выбора — допустим, камень — выбирался чаще других, то Игрок A просто бы изменил свою стратегию и стал чаще выбирать бумагу. В конце концов это привело бы к положительному общему результату Игрока A в каждом раунде. Именно это и происходит, когда Игрок A выбирает стратегию против стратегии Игрока B
.
Разумеется, если Игрок A перейдёт от к неуравновешенной стратегии, Игрок B аналогичным образом сможет получить преимущество. Поэтому ни один из игроков не может улучшить свои результаты только за счёт изменения собственной стратегии. Игра достигла равновесия Нэша.
Доказанный Нэшем факт, что такие игры имеют подобные равновесия, очень важен по нескольким причинам. Одна из причин заключается в том, что многие ситуации из реальной жизни можно смоделировать в виде игр. Когда группа людей вынуждена выбирать между личной и коллективной выгодой — например, при переговорах или в процессе конкуренции за общие ресурсы — можно увидеть, что используются стратегии и оцениваются выигрыши. Работа Нэша оказала такое большое влияние в том числе и благодаря вездесущей природе этой математической модели.
Другая причина заключается в том, что равновесие Нэша, в некотором смысле, является положительным результатом для всех игроков. При достижении этого равновесия никто из игроков не может улучшить свои результаты, меняя собственную стратегию. Могут существовать коллективные результаты, которых можно достичь, когда все игроки действуют в идеальном сотрудничестве, но если вы можете контролировать только себя, то равновесие Нэша будет наилучшим из результатов, которого вы можете добиться.
Поэтому можно надеяться, что «игры» наподобие экономических пакетов стимулирования, налоговых кодексов, условий договоров и конструкций сетей приведут к равновесиям Нэша, при которых отдельные лица, действующие в собственных интересах, придут к устраивающему всех результату и системы станут стабильными. Но играя в такие игры, разумно ли будет предположить, что игроки естественным образом придут к равновесию Нэша?
Есть искушение думать так. В нашей игре «камень-ножницы-бумага» мы сразу смогли догадаться, что ни один из игроков не смог бы сыграть лучше, кроме как играя совершенно случайно. Но частично так получается потому, что предпочтения всех игроков известны всем остальным игрокам: все знают, сколько каждый другой выиграет и проиграет при каждом из результатов. Но что, если предпочтения более скрыты и сложны?
Представьте новую игру, в которой Игрок B получает три очка, когда он побеждает против ножниц, и одно очко за любую другую победу. Это изменит смешанную стратегию: Игрок B чаще будет выбирать камень, надеясь на тройное вознаграждение при выборе Игроком A ножниц. И хотя разница в очках не влияет непосредственно на вознаграждения Игрока A, получившееся изменение стратегии Игрока B приведёт к новой контрстратегии A.
А если каждое из вознаграждений Игрока B было бы разным и скрытым, то Игроку A потребовалось бы какое-то время на выяснение стратегии Игрока B. Должно пройти много раундов, прежде чем Игрок A догадается, допустим, как часто Игрок B выбирает камень, чтобы понять, как часто ему нужно выбирать бумагу.
Теперь представьте, что в «камень-ножницы-бумагу» играют 100 человек, и у каждого из них есть разный набор тайных вознаграждений, каждое из которых зависит от того, сколько из 99 своих противников они побеждают с помощью камня, ножниц или бумаги. Сколько времени уйдёт на вычисление всего лишь правильной частоты выбора камня, ножниц или бумаги, которая необходима для достижения точки равновесия? Скорее всего, очень много. Возможно, больше, чем будет длиться сама игра. Возможно, дольше, чем срок жизни самой Вселенной!
По меньшей мере, совсем неочевидно, что даже абсолютно рациональные и вдумчивые игроки, выбирающие хорошие стратегии и действующие в собственных интересах, в результате прийдут к равновесию в игре. Эта мысль лежит в основе статьи, опубликованной онлайн в 2016 году. В ней доказывается, что не существует общего решения, которое во всех играх смогло бы привести хотя бы к приближенному равновесию Нэша. Нельзя сказать, что идеальные игроки никогда не стремятся к равновесию в играх — часто они действительно стремятся. Это просто значит, что нет никаких причин полагать, что если в игру играют идеальные игроки, равновесие будет достигнуто.
Когда мы разрабатываем транспортную сеть, мы можем надеяться, что все игроки, то есть водители и пешеходы, каждый из которых стремится найти скорейший путь домой, коллективно достигнут равновесия, в котором ничего нельзя выиграть, выбрав другой маршрут. Мы можем надеяться, что невидимая рука Джона Нэша направит их таким образом, что их конкурентные и совместные интересы — выбор кратчайшего возможного маршрута при избежании транспортных пробок — создадут равновесие.
Но наша игра в «камень-ножницы-бумагу» с постоянно увеличивающейся сложностью показывает, что таким надеждам, возможно, не суждено сбыться. Невидимая рука может и управлять некоторыми из таких игр, но другие игры сопротивляются ей, заманивая игроков в ловушку бесконечной конкуренции за выигрыш, который постоянно находится вне пределов досягаемости.