Как вывести формулу площади трапеции
Площадь трапеции
Площадь трапеции, формулы расчета, определение,
способы найти площадь, нахождение площади
через величины и примеры площади трапеции.
Все формулы расчета площади трапеции
через основания и угол, периметр, радиус,
синус и две стороны, диагональ,
высоту, среднюю линию.
Площадь трапеции через окружность вписанную можно
найти, зная радиус окружности вписанной в трапецию
и некоторые другие величины.
Формулы площади трапеции
Площадь любых трапеций
Ⅰ. Площадь трапеции через основания и высоту:
\[ S = \frac <2>\cdot h \]
a,b — основания трапеции;
h — высота трапеции;
Ⅱ. Площадь трапеции через высоту и среднюю линию:
\[ S = mh \]
m — средняя линия трапеции;
h — высота трапеции;
Ⅲ. Площадь трапеции через диагонали и угол между ними:
\[ S =\frac<1><2>d_1d_2 \cdot \sin \alpha \]
\( d_1, d_2 \) - диагонали трапеции;
sin α — синус угла альфа в трапеции;
Ⅳ. Площадь трапеции через периметр, высоту и боковые стороны:
\[ S = \frac
P — периметр трапеции;
c,d — боковые стороны трапеции;
h — высота трапеции;
Ⅴ. Площадь трапеции через основания и боковые стороны:
\[ S = \frac <2>\cdot \sqrt
a,b — основания трапеции;
с,d — боковые стороны трапеции;
Ⅵ. Площадь трапеции через основания и углы:
a,b — основания трапеции;
α — угол при основании a в трапеции;
β — угол при основании b в трапеции;
sin α — синус угла альфа в трапеции;
sin β — синус угла бетта в трапеции;
Площадь равнобедренной трапеции
Ⅰ. Площадь трапеции через синус угла, среднюю линию и боковую сторону:
l — средняя линия равнобедренной трапеции;
d — боковая сторона равнобедренной трапеции;
α — угол альфа при боковой стороне d равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
Ⅱ. Площадь трапеции через диагонали и синус угла:
\[ S = \frac
d — диагональ равнобедренной трапеции;
α — угол между двумя диагоналями в равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
Ⅲ. Площадь трапеции через радиус вписанной окружности и основания:
r — радиус вписанной окружности равнобедренной трапеции;
a, b — основания равнобедренной трапеции;
Ⅳ. Площадь трапеции через основания:
a, b — основания равнобедренной трапеции;
Ⅴ. Площадь трапеции через основания и среднюю линию:
l — средняя линия равнобедренной трапеции;
a, b — основания равнобедренной трапеции;
Ⅵ. Площадь трапеции через синус угла и стороны:
\[ S = c \cdot \sin α \cdot (a-c \cdot \cos α) \]
a — нижнее основание равнобедренной трапеции;
с — боковая сторона равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
cos α — косинус угла альфа в равнобедренной трапеции;
Ⅶ. Площадь трапеции через угол и радиус вписанной окружности:
r — радиус вписанной окружности равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
Определения трапеции
Трапеция — это четырехугольник, у которого две
стороны параллельны а две другие нет.
Зная углы трапеции, можно определить, к какому виду
она относится. Всего различают три вида трапеций:
Площадь равнобедренной, прямоугольной трапеции,
можно найти через формулы площади обычной трапеции.
Формул, с помощью которых, можно найти площадь трапеции
через описанную окружность около трапеции, не существует.
Элементы трапеции
Любая трапеция является четырехугольником,
поэтому у трапеции 4 угла и 4 стороны.
Основание трапеции — это сторона, противолежащая
сторона которой параллельна.
Боковая сторона трапеции — это сторона, противолежащая
сторона которой не параллельна.
Средняя линия трапеции — это отрезок, соединяющий
середины боковых сторон трапеции.
Диагональ трапеции — это отрезок, соединяющий две
вершины, которые лежат в разных концах трапеции.
Высота трапеции — это отрезок, соединяющий меньшее основание с большим,
образуя при этом два угла по 90 градусов на большей стороне.
Основания у трапеции не могут быть никогда равны.
Боковые стороны могут быть равны только,
если трапеция — равнобедренная.
Площадь трапеции — это площадь геометрической фигуры,
у которой четыре стороны и четыре угла, причем только
две стороны параллельны а остальные нет.
Как найти площадь трапеции
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. В этой статье мы расскажем, как посчитать площадь трапеции. Эту тему подробно изучают в школе в 8-м классе.
Но в классической программе учителя дают далеко не все формулы, с помощью которых можно вычислить нужное значение. И ограничиваются, как правило, одной или двумя.
Мы же дадим максимально развернутый ответ на этот вопрос. Ведь трапеция – это весьма примечательная и сложная фигура в геометрии. А соответственно, и формулы для вычисления ее площади отличаются определенной сложностью и громоздкостью.
Тут нет банальных «перемножить длины сторон», как у площади прямоугольника. Все гораздо мудреней.
Что такое трапеция
Но для начала будет нелишним напомнить, что из себя представляет трапеция.
Трапеция – это геометрическая фигура, которая является четырехугольником, и у которой две противоположные стороны параллельны.
Последнее утверждение очень важное. ТОЛЬКО ДВЕ противоположные стороны параллельны у трапеции. Ведь если бы обе пары лежали на параллельных прямых, то это был бы уже параллелограмм.
Вот так выглядит трапеция:
А вот так параллелограмм:
Кстати, именно по этому принципу древний математик Евклид и разделил все четырехугольники на две большие категории.
Именно он впервые описал разные геометрические фигуры, в том числе трапеции и параллелограммы. И все свои соображения подробно изложил в книге «Начала», которая датируется 300 годом до нашей эры.
Что такое площадь
Раз уж мы решили вычислять эту величину, напомним, что она обозначает.
Площадь – это численное значение геометрической фигуры, нарисованной в двухмерном (плоском) пространстве. А проще говоря, это пространство, которое ограничено границами фигуры, и находится как бы внутри нее.
В нашем случае площадь трапеции – это область, закрашенная синим цветом:
Кстати, в древности вместо термина «площадь» говорили «квадратура». Считалось, что любую фигуру можно разбить на равные квадраты со стороной «один». Частично это понятие докатилось и до наших дней.
Ведь именно в «квадратных метрах» мы измеряем площадь комнаты/квартиры/дачи/офиса. И в «квадратных километрах» частенько озвучивают площадь какой-то территории. Например, когда в телевизионных новостях говорят о масштабах лесных пожаров или наводнений.
Главная формула для вычисления площади трапеции
Та формула, которую изучают в школе, основана на вычислении площади трапеции по длине ее оснований и высоте.
Основания трапеции – это стороны, которые лежат на параллельных прямых. Другая пара сторон называется боковыми.
Высота – это отрезок, проведенный из вершины любого угла к противоположному основанию под углом 90 градусов.
То есть мы имеем вот такие исходные данные:
Здесь «a» и «b» являются основаниями трапеции, а «h» — высотой.
И тогда формула для вычисления площади трапеции выглядит вот так:
Например, если длины сторон и высота равны:
то площадь такой трапеции будет равна:
Опять же заметьте, если стороны и высота у трапеции обозначались в сантиметрах, то площадь будет измеряться в квадратных сантиметрах (то самое понятие «квадратуры», о котором мы писали выше).
То же самое – миллиметры/квадратные миллиметры, метры/квадратные метры, километры/квадратные километры и так далее.
Доказательство теоремы о площади трапеции
Любая формула в геометрии требует доказательства. И в нашем случае, формулы вычисления площади трапеции также доказывают во время уроков.
Возьмем для примера трапецию:
В ней AD и BC – основания, BH – высота. Нам надо доказать, что:
Доказательство строится на том, что если провести диагональ BD, то она разделит нашу трапецию на два треугольника. Это будут треугольники ABD и BCD.
И чтобы получить площадь нашей трапеции, нужно посчитать отдельно площади этих треугольников и сложить их.
А как вычислять площадь треугольника, мы уже знаем (или должны знать, согласно школьному курсу). Надо перемножить длину его основания и высоту и поделить на два.
У треугольника ABD высота – это BH. А у треугольника BCD в силу его выпуклости нам пришлось продлить зрительно основание BC, чтобы получить высоту DH1.
Но в случае с трапецией высоты равны, то есть BH = DH1. И тогда формулу площади для второго треугольника можно заменить на:
И наконец, с учетом всего вышесказанного начинаем вычислять площадь нашей трапеции. Она равна:
Как часто говориться на уроках геометрии – что и требовалось доказать!
Извиняемся за столь подробное описание доказательства. Но, во-первых, это требуется в рамках школьной программы. А во-вторых, всегда ведь интересно докопаться до самой сути и понять, как и почему именно так что-то устроено.
Как еще можно найти площадь трапеции (другие формулы)
На этот раз мы уже не будем приводить подробные доказательства каждой из формул. Иначе это займет слишком много времени и места. Просто поверьте, все они правильные и по ним можно вычислить площадь трапеции.
По высоте и средней линии
Средняя линия – это та, которая делит боковые стороны трапеции на две равные части. Формула площади выглядит совсем просто:
По четырем сторонам
Тут формула гораздо сложнее:
Площадь трапеции через диагонали
По основанию и углам при нем
Формулы площади для равнобедренной трапеции
Равнобедренная трапеция – та, у которой боковые стороны равны. А соответственно, они еще и соприкасаются с основаниями под одинаковыми углами.
Это частный случай, и для него верны все перечисленные формулы. Но с учетом равенства сторон и углов формулы заметно упрощаются.
По четырем сторонам
По малому основанию, боковой стороне и углу у большого основания
По большому основанию, углу при нем и боковой стороне
По основаниям и углам
Как видите, формулы громоздкие и весьма сложные сами по себе. Без калькулятора здесь точно не обойтись. С другой стороны, они крайне редко применяются. И служат скорее дополнительными средствами.
Вот и все, что мы хотели рассказать о том, как вычислять площадь трапеции.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (1)
Теперь любой школьник сможет блеснуть знаниями перед учителем, продемонстрировав несколько способов нахождения площади трапеции. Я уже далеко не школьник, но тоже было интересно.
Как найти площадь трапеции
Трапеция — геометрическая фигура, две противоположных стороны которой параллельны, а две других не параллельны. На рисунке трапеция изображается таким способом, чтобы параллельными оказались нижняя и верхняя стороны, которые получили название «основания». Верхняя сторона короче нижней. Такой рисунок используется для наглядности, так легче понять, как выполнять дополнительные построения, необходимые для решения задач.
Боковые стороны могут быть расположены под произвольными углами к основаниям. Если одна из сторон перпендикулярна основанию, то трапецию называют прямоугольной. При равных боковых сторонах — равнобедренной.
Важные линии трапеции
Для решения задачи нахождения площади трапеции необходимо использовать ряд линий, так или иначе характеризующих трапецию. Это высота, диагональ и средняя линия.
Высота — перпендикулярный отрезок, соединяющий верхнее и нижнее основание. На рисунках принято проводить перпендикуляр из вершины угла, чтобы не загромождать схему. Но на практике высоту можно опускать с любой точки верхнего основания.
Диагональ — отрезок, соединяющий противоположные вершины трапеции. У каждой трапеции две диагонали, разбивающие фигуру на два равных треугольника.
Средняя линия — отрезок, соединяющий середины боковых сторон. Длина линии равна половине суммы длин оснований.
Вторая средняя линия — отрезок, соединяющий середины оснований. У равнобедренной трапеции совпадает с высотой.
Названные линии используются при вычислении площади трапеции. Это одна из геометрических фигур, площадь которой можно найти разными способами. Почему нужно знать все формулы, как найти площадь трапеции? В условиях задач часто приведена только часть данных о фигуре, например, углы и диагонали, длина сторон, средняя линия и высота и т.д.
Формулы площади трапеции
Для каждого, или почти каждого случая найдены готовые формулы, в которые остается только подставить числовые данные, чтобы найти площадь произвольной трапеции. Рассмотрим самые распространенные случаи.
Самый простой способ вычисления площади — по длине оснований и высоте. Зная эти величины, используем формулу S = 1/2(a + b)*h. Сначала найдем сумму длин оснований, затем разделим на два и умножим на высоту. Именно такой порядок действий даст желаемый результат. На практике, когда, например, нужно найти площадь трапециевидного земельного участка, используется чаще всего именно эта формула. Измерить длину оснований не сложно, как и высоту фигуры.
Вторая задача — как узнать площадь трапеции через длину средней линии. Вспомним, что длина этой линии равна половине суммы оснований. Фактически получаем ту же формулу, что и в предыдущем случае, только записываем ее по-другому S=mh, где m – длина средней линии.
Третья задача — как найти площадь трапеции через диагонали. Кроме длины диагоналей нужен еще и хотя бы один из углов между ними. Для определения площади достаточно умножить длины диагоналей между собой и затем на синус любого угла между ними. Эта задача не сложнее предыдущих, зная угол в градусах, найти синус можно по специальным таблицам.
Четвертая задача — как найти площадь трапеции, зная все стороны. Здесь все несколько труднее. Необходимо произвести ряд вычислений, не отличающихся большой сложностью, но занимающих некоторое время. Распишем процесс вычисления по алгоритму:
Все выглядит достаточно громоздко, но если воспользоваться готовой формулой, то не так и страшно.
Для равнобедренной трапеции формула упрощается:
Пятая задача — формула Герона для трапеции. S = (a + b)/4|a — b| · √(p — a)(p — b)(p — a — c)(p — a — d). Здесь тоже задействовано все четыре стороны и Р – полупериметр. Наиболее распространенная ошибка, когда вместо полупериметра, то есть суммы длин сторон разделенной на 2, используют периметр.
Шестая задача — площадь трапеции через синус угла. Для решения этой задачи нужно знать длину оснований и синусы углов при нижнем основании. Формула выглядит так: S=2(b2−a2)⋅sin(α+β)sin(α)⋅sin(β). Для ее использование необходимы первичные знания по тригонометрии.
Седьмая задача — найти площадь трапеции, зная радиус вписанной окружности и длину оснований. Формула не представляет сложности S=r⋅(a+b)=1/2√a⋅b⋅(a+b), важно только не перепутать порядок действий.
Формул для трапеции значительно больше, но владея теми, которые названы выше, вы справитесь с любой задачей.
Площадь трапеции
Существует множество способов найти площадь трапеции. Обычно репетитор по математике владеет несколькими приемами ее вычисления, остановимся на них подробнее:
1) , где AD и BC основания, а BH-высота трапеции. Доказательство: проведем диагональ BD и выразим площади треугольников ABD и CDB через полупроизведение их оснований на высоту:
, где DP – внешняя высота в
Сложим почленно эти равенства и учитывая, что высоты BH и DP равны, получим:
Вынесем за скобку
Что и требовалось доказать.
Следствие из формулы площади трапеции:
Так как полусумма оснований равна MN — средней линии трапеции, то
2) Применение общей формулы площади четырехугольника.
Площадь четырехугольника равна половине произведения диагоналей, умноженной на синус угла между ними
Для доказательства достаточно разбить трапецию на 4 треугольника, выразить площадь каждого через «половину произведения диагоналей на синус угла между ними» (в качестве угла берется , сложить получившиеся выражения, вынести
за скобку и раскладываю эту скобку на множители методом группировки получить ее равенство выражению
. Отсюда
3) Метод сдвига диагонали
Это мое название. В школьных учебниках репетитор по математике не встретит такого заголовка. Описание приема можно найти только в дополнительных учебных пособиях в качестве примера решения какой-нибудь задачи. Отмечу, что большинство интересных и полезных фактов планиметрии репетиторы по математике открывают ученикам в процессе выполнения практической работы. Это крайне неоптимально, ибо школьнику нужно выделять их в отдельные теоремы и называть «громкими именами». Одно из таких – «сдвиг диагонали». О чем идет речь? Проведем через вершину B прямую параллельную к АС до пересечения с нижним основанием в точке E. В таком случае четырехугольник EBCA будет параллелограммом (по определению) и поэтому BC=EA и EB=AC. Нам сейчас важно первое равенство. Имеем:
Заметим, что треугольник BED, площадь которого равна площади трапеции, имеет еще несколько замечательных свойств:
1) Его площадь равна площади трапеции
2) Его равнобедренность происходит одновременно с равнобедренность самой трапеции
3) Верхний его угол при вершине B равен углу между диагоналями трапеции (что очень часто используется в задачах) 4) Его медиана BK равна расстоянию QS между серединами оснований трапеции. С применением этого свойства я недавно столкнулся при подготовке ученика на мехмат МГУ по учебнику Ткачука, вариант 1973 года (задача приводится внизу страницы).
Спецприемы репетитора по математике.
Иногда я предлагаю задачи на весьма хитрый путь нахождении я площади трапеции. Я отношу его к спецприемам ибо на практике репетитор их использует крайне редко. Если вам нужна подготовка к ЕГЭ по математике только в части B, можно про них и не читать. Для остальных рассказываю дальше. Оказывается площадь трапеции в два раза больше площади треугольника с вершинами в концах одной боковой стороны и серединой другой, то есть треугольника ABS на рисунке: Доказательство: проведем высоты SM и SN в треугольниках BCS и ADS и выразим сумму площадей этих треугольников:
Так как точка S – середина CD, то (докажите это сами).Найдем cумму площадей треугольников:
Так как эта сумма оказалась равной половине площади трапеции, то — вторая ее половина. Ч.т.д.
В копилку спецприемов репетитора я бы отнес форму вычисления площади равнобедренной трапеции по ее сторонам: где p – полупериметр трапеции. Доказательство я приводить не буду. Иначе ваш репетитор по математике останется без работы :). Приходите на занятия!
Задачи на площадь трапеции:
Замечание репетитора по математике: Нижеприведенный список не является методическим сопровождением к теме, это только небольшая подборка интересных задач на вышерассмотренные приемы.
1) Нижнее основание равнобедренной трапеции равно 13, а верхнее равно 5. Найдите площадь трапеции, если ее диагональ перпендикулярна боковой стороне.
2) Найдите площадь трапеции, если ее основания равны 2см и 5см, а боковые стороны 2см и 3см.
3) В равнобокой трапеции большее основание равно 11, боковая сторона равна 5, а диагональ равна Найти площадь трапеции.
4) Диагональ равнобокой трапеции равна 5, а средняя линия равна 4. Найти площадь.
5) В равнобедренной трапеции основания равны 12 и 20, а диагонали взаимно перпендикулярны. Вычислить площадь трапеции
6) Диагональ равнобокой трапеции составляет с ее нижним основанием угол . Найти площадь трапеции, если ее высота равна 6см.
7) Площадь трапеции равна 20, а одна из ее боковых сторон равна 4 см. Найдите расстояние до нее от середины противоположной боковой стороны.
8) Диагональ равнобокой трапеции делит ее на треугольники с площадями 6 и 14. Найти высоту, если боковая сторона равна 4.
9) В трапеции диагонали равны 3 и 5, а отрезок, соединяющий середины оснований равен 2. Найти площадь трапеции (Мехмат МГУ, 1970г).
Я выбирал не самые сложные задачи (не стоит пугаться мехмата!) с расчетом на возможность их самостоятельного решения. Решайте на здоровье! Если вам нужна подготовка к ЕГЭ по математике, то без участия в этом процессе формулы площади трапеции могут возникнуть серьезные проблемы даже с задачей B6 и тем более с C4. Не запускайте тему и в случае каких-либо затруднений обращайтесь за помощью. Репетитор по математике всегда рад вам помочь.
Колпаков А.Н.
Репетитор по математике в Москве, подготовка к ЕГЭ в Строгино.
Спасибо Вам, Александр Николаевич! Вы мне очень помогли. Мой муж метролог, сейчас повышает квалификацию и мне пришлось помогать ему делать курсовик. Так вот формула вычисления площади равнобедренной трапеции по ее сторонам (а я уже многое забыла со школы) мне очень помогла, в интернете ничего подобного не нашла. Спасибо Вам большое.
Уважаемый Александр Николаевич!
Если Вам не трудно, помогите решить задачу №8 из предложеных Вами. Если я правильно поняла Вас, здесь нужно применить Ваш метод сдвига диагонали?
Буду очень признательна.
С уважением Водяева С В
Нет, диагональ трапеции трогать не нужно. Обозначьте буквой икс высоту трапеции и выразите с помощью площадей 6 и 14 ее основания. Затем проведите вторую высоту. От трапеции отсекутся два равных боковых треугольника. У каждого из них один из катетов — высота трапеции (то есть икс), а второй катет — полуразность оснований. Затем запишите теорему Пифагора для одного из боковых треугольников. Подставьте туда боковую строну 4, и полученные выражения для катетов. Ответом к задаче будет корень уравнения.
Уважаемый Александр Николаевич! Сын готовился к ГИА и не смог решить задачу, которая опубликована у Вас последней (№9). Натолкните на путь истинный, если можно, у нашего преподавателя математики пока тоже нет решения. Заранее спасибо.
Через вершину верхнего основания трапеции проведите параллельно диагонали отрезок до его пересечения с основанием. Образуется треугольник, две стороны которого будут равны диагоналям трапеции. Длина медианы, проведенной к третьей стороне данного треугольника, равна длине отрезка, соединяющего середины оснований (это не сложно доказать). Площадь треугольника, очевидно, равна площади трапеции (в моем справочнике этот факт назван теоремой о сдвиге диагонали трапеции).
Извините,Александр я не понимаю почему в 3-ем доказательстве площади трапеции площадь треугольника EBD равна площади трапеции ABCD, прежде чем такое утверждать, надо доказать что треугольник EBD=ABCD-трапеции. Не могли бы вы подсказать как это доказать?!
Не очень понял, что именно Вам не ясно. На странице опубликовано достаточно добротное доказательство. Я специально писал так, чтобы в нем можно было разобраться без всякого репетитора по математике, то есть самостоятельно. Равенство площадей следует из равенства выражений, отвечающих за площади. Изучите материал повнимательнее.
Откуда вы знаете что площадь треугольника BED равна площади трапеции ABCD? Нам формулу площади трапеции вывести надо, а выводится формула площади треугольника BED. Нет, конечно, мы знаем чему равна площадь трапеции по формуле, ну надо же формулу как-то вывести, а вы пишите,что площадь треугольника BED равна площади трапеции. Откуда вы это знаете? Вы же не доказали это! Поэтому и непонятно!
В третьем пункте не выводится ни площадь треугольника, ни площадь трапеции. Доказывается только равенство этих площадей. Формула же площади трапеции выведена в самом начале страницы. Читайте внимательнее. Советую найти хорошего репетитора по математике, чтобы он объяснил Вам все доказательства в отдельности, ибо в комментариях к странице не совсем удобно вести полноценную разъяснительную работу. Обучение математике — живой процесс!
Спасибо большое, помогла последняя формула, которую не доказывали. Буду и дальше к ГИА по математике (теперь уже к ЕГЭ) готовиться вместе с вашим сайтом.
Спасибо большое за такие подробные доказательства!
Диагональ равнобокой трапеции равна 5, а средняя линия равна 4. Найти площадь. Не могу решить. Подскажите какой формулой тут воспользоваться.
Базовой прямой формулы нет. Сделайте так: через любую вершину верхнего основания проведите прямую, параллельную одной из диагоналей до пересечения с нижним основанием. Образуется треугольник с площадью, равной площади трапеции. Легко найти все его стороны, а затем и площадь. Удачи!
Спасибо, очень пригодилось.
И как же выйти на площадь трапеции в 9 задаче? Подскажите, пожалуйста. Не могу сообразить. Заранее огромное спасибо репетитору по математике за помощь.
Воспользуйтесь методом «сдвига диагонали». Получится треугольник со сторонами, которые равны диагоналям трапеции и медианой, равной длине отрезка, соединяющего середины ее оснований. Правда последнее необходимо будет доказать. По двум сторонам и медиане найти площадь полученного треугольника несложно.
спасибо.Еще раз обращаюсь за помощью-заело с задачей:
Плот проплывает путь из А в В за 6 часов,а моторная лодка из В в А за 2 часа.За какое время моторная лодка преодолеет такое же расстояние в стоячей воде?Подскажите,пожалуйста,направление решения.Заранее признательна.
Александр, подскажите пожалуйста как во втором доказательстве площади трапеции мы можем выразить площадь 4-х треугольников? Ведь нам известны только две диагонали трапеции и угол между ними
Там вроде все внятно изложено. Выражать площади треугольников нужно через кусочки диагоналей. После всех преобразований они сложатся в полные диагонали.
Можно ли найти площадь неправильного четырёхугольника, если известны длины всех его сторон в отдельности (периметр)?
Нет, конструкция будет «плавающей». В случае правильного четырехугольника легко привести показательный пример — ромб. С неправильным ситуация аналогичная.
Уважаемый Александр Николаевич! Есть похожая на Вашу 6 задачу: Диагональ равнобокой трапеции составляет с ее нижним основанием угол 60. Найти площадь трапеции, если большее основание равно 6 см.
Натолкните, пожалуйста, на путь истинный.
Здравствуйте! Воспользуйтесь теоремой о сдвиге диагонали. Получится равносторонний треугольник (равнобедренный с углом 60 градусов), имеющий сторону 6 см. Его площадь равна площади трапеции.