Как вызывать функцию в питоне
Введение в Python
Поиск
Новое на сайте
Функции в Python
Функция это блок организованного, многократно используемоего кода, который используется для выполнения конкретного задания. Функции обеспечивают лучшую модульность приложения и значительно повышают уровень повторного использования кода.
Создание функции
Существуют некоторые правила для создания функций в Python.
Пример функции в Python:
Вызов функции
После создания функции, ее можно исполнять вызывая из другой функции или напрямую из оболочки Python. Для вызова функции следует ввести ее имя и добавить скобки.
Аргументы функции в Python
Вызывая функцию, мы можем передавать ей следующие типы аргументов:
Обязательные аргументы функции:
Если при создании функции мы указали количество передаваемых ей аргументов и их порядок, то и вызывать ее мы должны с тем же количеством аргументов, заданных в нужном порядке.
Аргументы, заданные по-умолчанию
Аргумент по умолчанию, это аргумент, значение для которого задано изначально, при создании функции.
Аргументы произвольной длины
Иногда возникает ситуация, когда вы заранее не знаете, какое количество аргументов будет необходимо принять функции. В этом случае следует использовать аргументы произвольной длины. Они задаются произвольным именем переменной, перед которой ставится звездочка (*).
Ключевое слово return
Выражение return прекращает выполнение функции и возвращает указанное после выражения значение. Выражение return без аргументов это то же самое, что и выражение return None. Соответственно, теперь становится возможным, например, присваивать результат выполнения функции какой либо переменной.
Область видимости
Некоторые переменные скрипта могут быть недоступны некоторым областям программы. Все зависит от того, где вы объявили эти переменные.
В Python две базовых области видимости переменных:
Переменные объявленные внутри тела функции имеют локальную область видимости, те что объявлены вне какой-либо функции имеют глобальную область видимости.
Это означает, что доступ к локальным переменным имеют только те функции, в которых они были объявлены, в то время как доступ к глобальным переменным можно получить по всей программе в любой функции.
Рекурсия
Рекурсией в программировании называется ситуация, в которой функция вызывает саму себя. Классическим примером рекурсии может послужить функция вычисления факториала числа.
Напомним, что факториалом числа, например, 5 является произведение всех натуральных (целых) чисел от 1 до 5. То есть, 1 * 2 * 3 * 4 * 5
Рекурсивная функция вычисления факториала на языке Python будет выглядеть так:
Рецепт создания функции в Python
Как видно, при вызове команды help() с именем нашей функции в качестве аргумента мы получаем написанную нами документацию.
Сопровождайте ваши функции качественной документацией и программисты, которые будут работать с вашим кодом после вас будут вам благодарны.
Работаем с функциями в Python
Функция – это структура, которую вы определяете. Вам нужно решить, будут ли в ней аргументы, или нет. Вы можете добавить как аргументы ключевых слов, так и готовые по умолчанию. Функция – это блок кода, который начинается с ключевого слова def, названия функции и двоеточия, пример:
Эта функция не делает ничего, кроме отображения текста. Чтобы вызвать функцию, вам нужно ввести название функции, за которой следует открывающаяся и закрывающаяся скобки:
Пустая функция (stub)
Иногда, когда вы пишете какой-нибудь код, вам нужно просто ввести определения функции, которое не содержит в себе код. Я сделал небольшой набросок, который поможет вам увидеть, каким будет ваше приложение. Вот пример:
А вот здесь кое-что новенькое: оператор pass. Это пустая операция, это означает, что когда оператор pass выполняется, не происходит ничего.
Передача аргументов функции
Теперь мы готовы узнать о том, как создать функцию, которая может получать доступ к аргументам, а также узнаем, как передать аргументы функции. Создадим простую функцию, которая может суммировать два числа:
Каждая функция выдает определенный результат. Если вы не указываете на выдачу конкретного результата, она, тем не менее, выдаст результат None (ничего). В нашем примере мы указали выдать результат a + b. Как вы видите, мы можем вызвать функцию путем передачи двух значений. Если вы передали недостаточно, или слишком много аргументов для данной функции, вы получите ошибку:
Вы также можете вызвать функцию, указав наименование аргументов:
Стоит отметить, что не важно, в каком порядке вы будете передавать аргументы функции до тех пор, как они называются корректно. Во втором примере мы назначили результат функции переменной под названием total. Это стандартный путь вызова функции в случае, если вы хотите дальше использовать её результат.
Вы, возможно, подумаете: «А что, собственно, произойдет, если мы укажем аргументы, но они названы неправильно? Это сработает?» Давайте попробуем на примере:
Ошибка. Кто бы мог подумать? Это значит, что мы указали ключевой аргумент, который функция не распознала. Кстати, ключевые аргументы описана ниже.
Есть вопросы по Python?
На нашем форуме вы можете задать любой вопрос и получить ответ от всего нашего сообщества!
Telegram Чат & Канал
Вступите в наш дружный чат по Python и начните общение с единомышленниками! Станьте частью большого сообщества!
Паблик VK
Одно из самых больших сообществ по Python в социальной сети ВК. Видео уроки и книги для вас!
Ключевые аргументы
Функции также могут принимать ключевые аргументы. Более того, они могут принимать как регулярные, так и ключевые аргументы. Это значит, что вы можете указывать, какие ключевые слова будут ключевыми, и передать их функции. Это было в примере выше.
Вы также можете вызвать данную функцию без спецификации ключевых слов. Эта функция также демонстрирует концепт аргументов, используемых по умолчанию. Каким образом? Попробуйте вызвать функцию без аргументов вообще!
Функция вернулась к нам с числом 3. Почему? Причина заключается в том, что а и b по умолчанию имеют значение 1 и 2 соответственно. Теперь попробуем создать функцию, которая имеет обычный аргумент, и несколько ключевых аргументов:
Выше мы описали три возможных случая. Проанализируем каждый из них. В первом примере мы попробовали вызвать функцию, используя только ключевые аргументы. Это дало нам только ошибку. Traceback указывает на то, что наша функция принимает, по крайней мере, один аргумент, но в примере было указано два аргумента. Что же произошло? Дело в том, что первый аргумент необходим, потому что он ни на что не указывает, так что, когда мы вызываем функцию только с ключевыми аргументами, это вызывает ошибку. Во втором примере мы вызвали смешанную функцию, с тремя значениями, два из которых имеют название. Это работает, и выдает нам ожидаемый результат: 1+4+5=10. Третий пример показывает, что происходит, если мы вызываем функцию, указывая только на одно значение, которое не рассматривается как значение по умолчанию. Это работает, если мы берем 1, и суммируем её к двум значениям по умолчанию: 2 и 3, чтобы получить результат 6! Удивительно, не так ли?
*args и **kwargs
Вы также можете настроить функцию на прием любого количества аргументов, или ключевых аргументов, при помощи особого синтаксиса. Чтобы получить бесконечное количество аргументов, мы используем *args, а чтобы получить бесконечное количество ключевых аргументов, мы используем *kwargs. Сами слова “args” и “kwargs” не так важны. Это просто сокращение. Вы можете назвать их *lol и *omg, и они будут работать таким же образом. Главное здесь – это количество звездочек. Обратите внимание: в дополнение к конвенциям *args и *kwargs, вы также, время от времени, будете видеть andkw. Давайте взглянем на следующий пример:
Сначала мы создали нашу функцию, при помощи нового синтаксиса, после чего мы вызвали его при помощи трех обычных аргументов, и двух ключевых аргументов. Функция показывает нам два типа аргументов. Как мы видим, параметр args превращается в кортеж, а kwargs – в словарь. Вы встретите такой тип кодинга, если взгляните на исходный код Пайтона, или в один из сторонних пакетов Пайтон.
Область видимость и глобальные переменные
Концепт области (scope) в Пайтон такой же, как и в большей части языков программирования. Область видимости указывает нам, когда и где переменная может быть использована. Если мы определяем переменные внутри функции, эти переменные могут быть использованы только внутри это функции. Когда функция заканчиваются, их можно больше не использовать, так как они находятся вне области видимости. Давайте взглянем на пример:
Если вы запустите этот код, вы получите ошибку:
Это вызвано тем, что переменная определенна только внутри первой функции, но не во второй. Вы можете обойти этот момент, указав в Пайтоне, что переменная а – глобальная (global). Давайте взглянем на то, как это работает:
Этот код работает, так как мы указали Пайтону сделать а – глобальной переменной, а это значит, что она работает где-либо в программе. Из этого вытекает, что это настолько же хорошая идея, насколько и плохая. Причина, по которой эта идея – плохая в том, что нам становится трудно сказать, когда и где переменная была определена. Другая проблема заключается в следующем: когда мы определяем «а» как глобальную в одном месте, мы можем случайно переопределить её значение в другом, что может вызвать логическую ошибку, которую не просто исправить.
Советы в написании кода
Одна из самых больших проблем для молодых программистов – это усвоить правило «не повторяй сам себя». Суть в том, что вы не должны писать один и тот же код несколько раз. Когда вы это делаете, вы знаете, что кусок кода должен идти в функцию. Одна из основных причин для этого заключается в том, что вам, вероятно, придется снова изменить этот фрагмент кода в будущем, и если он будет находиться в нескольких местах, вам нужно будет помнить, где все эти местоположения И изменить их.
Сайт doctorsmm.com предлагает Вам персональные предложения по покупке лайков в ВК к постам и публикациям. Здесь Вы найдете дешевые цены на услуги, а также различные критерии, подходящие к любой ситуации. На сервисе также доступно приобретение репостов, голосов в голосования и опросы сети.
Копировать и вставлять один и тот же кусок кода – хороший пример спагетти-кода. Постарайтесь избегать этого так часто, как только получится. Вы будете сожалеть об этом в какой-то момент либо потому, что вам придется все это исправлять, либо потому, что вы столкнетесь с чужим кодом, с которым вам придется работать и исправлять вот это вот всё.
Подведем итоги
Теперь вы обладаете основательными знаниями, которые необходимы для эффективной работы с функциями. Попрактикуйтесь в создании простых функций, и попробуйте обращаться к ним различными способами.
Являюсь администратором нескольких порталов по обучению языков программирования Python, Golang и Kotlin. В составе небольшой команды единомышленников, мы занимаемся популяризацией языков программирования на русскоязычную аудиторию. Большая часть статей была адаптирована нами на русский язык и распространяется бесплатно.
E-mail: vasile.buldumac@ati.utm.md
Образование
Universitatea Tehnică a Moldovei (utm.md)
Функции в Python
Введение
Определение
Вот пример простой функции:
Для определения функции нужно всего лишь написать ключевое слово def перед ее именем, а после — поставить двоеточие. Следом идет блок инструкций.
Функция инкрементирует глобальную переменную i и возвращает None (по умолчанию).
Вызовы
Для вызова функции, которая возвращает переменную, нужно ввести:
Для вызова функции, которая ничего не возвращает:
Функцию можно записать в одну строку, если блок инструкций представляет собой простое выражение:
Функции могут быть вложенными:
Функции — это объекты, поэтому их можно присваивать переменным.
Инструкция return
Возврат простого значения
Возврат нескольких значений
Пока что функция возвращала только одно значение или не возвращала ничего (объект None). А как насчет нескольких значений? Этого можно добиться с помощью массива. Технически, это все еще один объект. Например:
Аргументы и параметры
В функции можно использовать неограниченное количество параметров, но число аргументов должно точно соответствовать параметрам. Эти параметры представляют собой позиционные аргументы. Также Python предоставляет возможность определять значения по умолчанию, которые можно задавать с помощью аргументов-ключевых слов.
Параметр — это имя в списке параметров в первой строке определения функции. Он получает свое значение при вызове. Аргумент — это реальное значение или ссылка на него, переданное функции при вызове. В этой функции:
x и y — это параметры, а в этой:
При определении функции параметры со значениями по умолчанию нужно указывать до позиционных аргументов:
Если использовать необязательный параметр, тогда все, что указаны справа, должны быть параметрами по умолчанию.
Выходит, что в следующем примере допущена ошибка:
Для вызовов это работает похожим образом. Сначала нужно указывать все позиционные аргументы, а только потом необязательные:
На самом деле, следующий вызов корректен (можно конкретно указывать имя позиционного аргумента), но этот способ не пользуется популярностью:
А этот вызов некорректен:
При вызове функции с аргументами по умолчанию можно указать один или несколько, и порядок не будет иметь значения:
Можно не указывать ключевые слова, но тогда порядок имеет значение. Он должен соответствовать порядку параметров в определении:
Если ключевые слова не используются, тогда нужно указывать все аргументы:
Второй аргумент можно пропустить:
Чтобы обойти эту проблему, можно использовать словарь:
Значение по умолчанию оценивается и сохраняется только один раз при определении функции (не при вызове). Следовательно, если значение по умолчанию — это изменяемый объект, например, список или словарь, он будет меняться каждый раз при вызове функции. Чтобы избежать такого поведения, инициализацию нужно проводить внутри функции или использовать неизменяемый объект:
Еще один пример изменяемого объекта, значение которого поменялось при вызове:
Дабы не допустить изменения оригинальной последовательности, нужно передать копию изменяемого объекта:
Указание произвольного количества аргументов
Позиционные аргументы
При вызове функции нужно вводить команду следующим образом:
Python обрабатывает позиционные аргументы следующим образом: подставляет обычные позиционные аргументы слева направо, а затем помещает остальные позиционные аргументы в кортеж (*args), который можно использовать в функции.
Если лишние аргументы не указаны, значением по умолчанию будет пустой кортеж.
Произвольное количество аргументов-ключевых слов
Как и в случае с позиционными аргументами можно определять произвольное количество аргументов-ключевых слов следующим образом (в сочетании с произвольным числом необязательных аргументов из прошлого раздела):
При вызове функции нужно писать так:
Python обрабатывает аргументы-ключевые слова следующим образом: подставляет обычные позиционные аргументы слева направо, а затем помещает другие позиционные аргументы в кортеж (*args), который можно использовать в функции (см. предыдущий раздел). В конце концов, он добавляет все лишние аргументы в словарь (**kwargs), который сможет использовать функция.
Важно, что пользователь также может использовать словарь, но перед ним нужно ставить две звездочки (**):
Порядок вывода также не определен, потому что словарь не отсортирован.
Документирование функции
Команда docstring должна быть первой инструкцией после объявления функции. Ее потом можно будет извлекать или дополнять:
Методы, функции и атрибуты, связанные с объектами функции
Если поискать доступные для функции атрибуты, то в списке окажутся следующие методы (в Python все является объектом — даже функция):
И несколько скрытых методов, функций и атрибутов. Например, можно получить имя функции или модуля, в котором она определена:
Есть и другие. Вот те, которые не обсуждались:
Рекурсивные функции
Другой распространенный пример — определение последовательности Фибоначчи:
Важно, чтобы в ней было была конечная инструкция, иначе она никогда не закончится. Реализация вычисления факториала выше, например, не является надежной. Если указать отрицательное значение, функция будет вызывать себя бесконечно. Нужно написать так:
Важно!
Рекурсия позволяет писать простые и элегантные функции, но это не гарантирует эффективность и высокую скорость исполнения.
Глобальная переменная
Вот уже знакомый пример с глобальной переменной:
За редкими исключениями глобальные переменные лучше вообще не использовать.
Присвоение функции переменной
С существующей функцией func синтаксис максимально простой:
Переменным также можно присваивать встроенные функции. Таким образом позже есть возможность вызывать функцию другим именем. Такой подход называется непрямым вызовом функции.
Менять название переменной также разрешается:
В этом примере a1, a2 и func имеют один и тот же id. Они ссылаются на один объект.
Последний пример. Предположим, встроенная функция была переназначена:
Теперь к ней нельзя получить доступ, а это может стать проблемой. Чтобы вернуть ее обратно, нужно просто удалить переменную:
Анонимная функция: лямбда
С помощью type() можно проверить тип:
На практике эти функции редко используются. Это всего лишь элегантный способ записи, когда она содержит одну инструкцию.
Изменяемые аргументы по умолчанию
Вместо этого нужно использовать значение «не указано» и заменить на изменяемый объект по умолчанию:
Функции в Python — синтаксис, аргументы, вызов, выход
Функция — это фрагмент программного кода, который решает какую-либо задачу.
Его можно вызывать в любом месте основной программы. Функции помогают избегать дублирования кода при многократном его использовании. А также имеют ряд других преимуществ, описанных ниже.
Синтаксис
💁♀️ Простой пример: Вы торгуете мёдом, и после каждой продажи вам нужно печатать чек. В нём должно быть указано: название фирмы, дата продажи, список наименований проданных товаров, их количество, цены, общая сумма, а также сакраментальная фраза «Спасибо за покупку!».
Если не пользоваться функциями, всё придётся прописывать вручную. В простейшем случае программа будет выглядеть так:
print(«ООО Медовый Гексагон») print(«Мёд липовый», end=» «) print(1, end=»шт «) print(1250, end=»р») print(«\nCумма», 1250, end=»р») print(«\nСпасибо за покупку!»)
А теперь представьте, что произойдёт, когда вы раскрутитесь, и покупатели станут приходить один за другим. В таком случае, чеки надо будет выдавать очень быстро. Но что делать, если вдруг нагрянет ваш любимый клиент и купит 10 сортов мёда в разных количествах? Далеко не все в очереди согласятся ждать, пока вы посчитаете общую сумму и внесёте её в чек.
Хорошо, что данный процесс можно легко оптимизировать с использованием функций.
Встаёт резонный вопрос: где же обещанное упрощение и куда подевались товары? Как раз для этого, мы и будем описывать состав покупки не напрямую в функции, а в отдельном списке кортежей. Каждый кортеж состоит из трёх элементов: название товара, количество и цена.
# (название, количество, цена за штуку) honey_positions = [ («Мёд липовый», 3, 1250), («Мёд цветочный», 7, 1000), («Мёд гречишный», 6, 1300), («Донниковый мёд», 1, 1750), («Малиновый мёд», 10, 2000), ]
Теперь этот список передадим в функцию как аргумент, и самостоятельно считать больше не придётся.
Да, код стал более массивным. Однако теперь для печати чека вам не придётся самостоятельно вычислять итог. Достаточно лишь изменить количество и цену товаров в списке. Существенная экономия времени! Слава функциям!
Термины и определения
Ключевое слово def в начале функции сообщает интерпретатору о том, что следующий за ним код — есть её определение. Всё вместе — это объявление функции.
# объявим функцию my_function() def my_function(): # тело функции
Аргументы часто путают с параметрами:
Ключевая особенность функций — возможность возвращать значение
# она будет принимать два множителя, а возвращать их округленное # до целого числа произведение def int_multiple(a, b): product = a * b # возвращаем значение return int(product) print(int_multiple(341, 2.7)) > 920
☝️ Главная фишка возвращаемых значений в том, что их можно использовать в дальнейшем коде: присваивать переменным, совершать с ними разные операции и передавать как аргументы в другие функции.
# найдём квадратный корень из возврата функции int_multiple # во встроенную функцию sqrt() мы передали вызов int_multiple print(math.sqrt(int_multiple(44, 44))) > 44
Важность функций
Абстракция
Человек бежит, машина едет, корабль плывёт, а самолёт летит. Всё это — объекты реального мира, которые выполняют однотипные действия. В данном случае, они перемещаются во времени и пространстве. Мы можем абстрагироваться от их природы, и рассматривать эти объекты с точки зрения того, какое расстояние они преодолели, и сколько времени на это ушло.
Мы можем написать функцию, которая вычисляет скорость в каждом конкретном случае. Нам не важно, кто совершает движение: и для человека и для самолёта средняя скорость будет рассчитываться одинаково.
def calculate_speed(distance, time): return distance / time
Это простой пример и простая функция, но абстракции могут быть куда более сложными. И именно тогда раскрывается настоящая сила функций. Вместо того чтобы решать задачу для каждого конкретного случая, проще написать функцию, которая находит решение для целого ряда однотипных, в рамках применяемой абстракции, объектов. В случае сложных и длинных вычислений, это повлечёт за собой значительное сокращение объёмов кода, а значит и времени на его написание.
Возможность повторного использования
Функции были созданы ради возможности их многократного применения. Код без функций превратился бы в огромное нечитаемое полотно, на порядки превышающее по длине аналогичную программу с их использованием.
Например, при работе с массивами чисел, вам нужно часто их сортировать. Вместо того чтобы реализовать простой алгоритм сортировки (или использовать встроенную функцию), вам пришлось бы каждый раз перепечатывать тело этой или похожей функции:
Всего 10 таких сортировок, и привет, лишние 60 строк кода.
Модульность
Разбитие больших и сложных процессов на простые составляющие — важная часть, как кодинга, так и реальной жизни. В повседневности мы занимаемся этим неосознанно. Когда убираемся в квартире, мы пылесосим, моем полы и окна, очищаем поверхности от пыли и наводим блеск на всё блестящее. Всё это — составляющие одного большого процесса под названием «уборка», но каждую из них также можно разбить на более простые подпроцессы.
В программировании модульность строится на использовании функций. Для каждой подзадачи — своя функция. Такая компоновка в разы улучшает читабельность кода и уменьшает сложность его дальнейшей поддержки.
Допустим, мы работаем с базой данных. Нам нужна программа, которая считывает значения из базы, обрабатывает их, выводит результат на экран, а затем записывает его обратно в базу.
Без применения модульности получится сплошная последовательность инструкций:
Но если вынести каждую операцию в отдельную функцию, то текст главной программы получится маленьким и аккуратным.
Это и называется модульностью.
Пространство имен
Концепция пространства имён расширяет понятие модульности. Однако цель — не облегчить читаемость, а избежать конфликтов в названиях переменных.
💁♀️ Пример из жизни: в ВУЗе учатся два человека с совпадающими ФИО. Их нужно как-то различать. Если сделать пространствами имён группы этих студентов, то проблема будет решена. В рамках своей группы ФИО этих студентов будут уникальными.
Объявление и вызов функций
def hello(): print(‘Adele is cute’)
После того как мы это сделали, функцию можно вызвать в любой части программы, но ниже самого объявления.
# код выполняется последовательно, поэтому сейчас интерпретатор # не знает о существовании функции hello hello() def hello(): print(‘Adele is cute’) > NameError: name ‘hello’ is not defined
Поэтому стоит лишь поменять объявление и вызов местами, и всё заработает:
def hello(): print(‘Adele is cute’) hello() > Adele is cute
Область видимости функций
Рассмотрим подробнее области видимости:
Локальная (L)
Локальная область видимости находится внутри def :
def L(): # переменная i_am_local является локальной внутри L() i_am_local = 5
Область объемлющих функций (E)
def e(): x = 5 def inner_e(): nonlocal x x = x + 1 return x return inner_e() print(e()) > 6
Глобальная (G)
# G num = 42 def some_function(n): res = n + num return res print(some_function(1)) > 43
Аргументы
Позиционные
Вспомним, аргумент — это конкретное значение, которое передаётся в функцию. Аргументом может быть любой объект. Он может передаваться, как в литеральной форме, так и в виде переменной.
Значения в позиционных аргументах подставляются согласно позиции имён аргументов:
Именованные
Пусть есть функция, принимающая три аргумента, а затем выводящая их на экран. Python позволяет явно задавать соответствия между значениями и именами аргументов.
def print_trio(a, b, c): print(a, b, c) print_trio(c=4, b=5, a=6) > 6 5 4
При вызове соответствие будет определяться по именам, а не по позициям аргументов.
Необязательные параметры (параметры по умолчанию)
Python позволяет делать отдельные параметры функции необязательными. Если при вызове значение такого аргумента не передается, то ему будет присвоено значение по умолчанию.
def not_necessary_arg(x=’My’, y=’love’): print(x, y) # если не передавать в функцию никаких значений, она отработает со значениями по умолчанию not_necessary_arg() > My love # переданные значения заменяют собой значения по умолчанию not_necessary_arg(2, 1) > 2 1
Аргументы переменной длины (args, kwargs)
Когда заранее неизвестно, сколько конкретно аргументов будет передано в функцию, мы пользуемся аргументами переменной длины. Звёздочка «*» перед именем параметра сообщает интерпретатору о том, что количество позиционных аргументов будет переменным:
def infinity(*args): print(args) infinity(42, 12, ‘test’, [6, 5]) > (42, 12, ‘test’, [6, 5])
Переменная args составляет кортеж из переданных в функцию аргументов.
Функции в питоне могут также принимать и переменное количество именованных аргументов. В этом случае перед названием параметра ставится » ** «:
def named_infinity(**kwargs): print(kwargs) named_infinity(first=’nothing’, second=’else’, third=’matters’) >
Здесь kwargs уже заключает аргументы не в кортеж, а в словарь.
Передача по значению и по ссылке
В Python аргументы могут быть переданы, как по ссылке, так и по значению. Всё зависит от типа объекта.
Изменяемые объекты передаются в функцию по ссылке. Изменяемыми они называются потому что их содержимое можно менять, при этом ссылка на сам объект остается неизменной.
В Python изменяемые объекты это:
Будьте внимательны при передаче изменяемых объектов. Одна из частых проблем новичков.
💭 В функциональном программировании существует понятие «функциями с побочными эффектами» — когда функция в процессе своей работы изменяет значения глобальных переменных. По возможности, избегать таких функций.
Словарь в качестве аргументов (упаковка)
Передаваемые в функцию аргументы можно упаковать в словарь при помощи оператора «**»:
def big_dict(**arguments): print(arguments) big_dict(key=’value’) >
Возвращаемые значения (return)
Что можно возвращать
Функции в Python способны возвращать любой тип объекта.
Распаковка возвращаемых значений
☝️ Обратите внимание, что количество возвращаемых значение в кортеже должно совпадать с количеством переменных при распаковке. Иначе произойдет ошибка:
Пустая функция
Иногда разработчики оставляют реализацию на потом, и чтобы объявленная функция не генерировала ошибки из-за отсутствия тела, в качестве заглушки используется ключевое слово pass :
Чистые функции и побочные эффекты
Немного функционального программирования. Есть такие функции, которые при вызове меняют файлы и таблицы баз данных, отправляют данные на сервер или модифицируют глобальные переменные. Всё это — побочные эффекты.
У чистых функций побочных эффектов нет. Такие функции не изменяют глобальные переменные в ходе выполнения, не рассылают и не выводят на печать никакие данные, не касаются объектов, и так далее.
Чистые функции производят вычисления по заданным аргументам и возвращают зависящий только от них самих результат.
Lambda функции
lambda_test = lambda a, b: pow(a, b) print(lambda_test(2, 4)) > 16
Docstring
Документировать код — особое искусство. Оно существует параллельно с разработкой и сопоставимо с ней по важности. Поэтому нередко документации в программе больше, чем самого кода.
Когда над проектом работает большая команда, а может и не одна, да и еще и много лёт подряд, то значение и важность документации возрастают прямо пропорционально.
Аннотация типов
Python — язык с динамической типизацией. По этой причине вполне возможны ситуации, когда вопреки ожиданиям разработчика в функцию подаются, например, не целые числа, а, допустим, строки. Чтобы отслеживать подобные случаи и сильнее контролировать процесс выполнения программы, была изобретена аннотация типов.
С помощью аннотации типов мы указываем, что параметры в функции имеют строго определенный тип.
При этом интерпретатор считывает аннотации типов, но никак их не обрабатывает.
Функции vs процедуры — в чем отличие?
Для языка нет различий между функциями и процедурами. Но с точки зрения программиста — это разные сущности.
Отличие в том, что функции возвращают значение, а процедуры — нет. Отсюда вытекают и разные области их применения и смысл использования. Скажем, производить некие вычисления в процедуре бессмысленно.
def proc(i, j): pow(i, j) proc(1, 200)
def func(i, j): return pow(i, j) print(func(3, 2)) > 9
И наоборот, оформлять набор инструкций, выполняющий некую обработку, в виде функции также лишено смысла:
def print_low_word(word): print(word.lower()) return 0 s = ‘GOOD’ print_low_word(s) > good
Возвращаемое значение не представляет собой никакой ценности, поэтому print_low_word(s) лучше оформить, как процедуру.
Время выполнения функции
Чтобы оценить время выполнения функции, можно поместить её вызов внутрь следующего кода:
Вложенные функции и рекурсия
Функции, которые объявляются и вызываются внутри других функций, называются вложенными.
def outerFunc(): def firstInner(): print(‘This is first inner function’) def secondInner(): print(‘This is second inner function’) firstInner() secondInner() outerFunc() > This is first inner function > This is second inner function
Рекурсия является частным случаем вложенной функции. Это функция, которая вызывает саму себя.