код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая

Код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах.

П1П2П3П4П5П6П7
П12325
П218111317
П31815
П4111522
П523131914
П625221921
П7171421

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, в какой пункт ведёт самая короткая дорога из пункта В.

Логическая функция F задаётся выражением (xy) ∧ (yz). На рисунке приведён фрагмент таблицы истинности функции F. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу, затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Тогда первому столбцу соответствовала бы переменная y, а второму столбцу — переменная x. В ответе следовало бы написать: yx.

В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.

ID операцииДатаID магазинаАртикулТип операцииКоличество упаковок,
шт.
Цена,
руб./шт.

Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.

АртикулОтделНаименованиеЕд. изм.Количество
в упаковке
Поставщик

Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.

ID магазинаРайонАдрес

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите, сколько килограмм паштета из куриной печени было продано в магазинах Заречного района за период с 1 по 10 июня включительно.

В ответе запишите только число. Ответ округлите до десятых.

Для кодирования букв К, L, М, N используются четырехразрядные последовательные двоичные числа от 1000 до 1011 соответственно. Закодируйте таким образом последовательность символов KMLN и запишите результат в восьмеричном коде.

Автомат получает на вход нечётное число X. По этому числу строится трёхзначное число Y по следующим правилам.

1. Первая цифра числа Y (разряд сотен) — остаток от деления X на 4.

2. Вторая цифра числа Y (разряд десятков) — остаток от деления X на 3.

3. Третья цифра числа Y (разряд единиц) — остаток от деления X на 2.

Исходное число: 63179. Остаток от деления на 4 равен 3; остаток от деления на 3 равен 2; остаток от деления на 2 равен 1. Результат работы автомата: 321.

Укажите наименьшее двузначное число, при обработке которого автомат выдаёт результат 301.

Запишите число, которое будет напечатано в результате выполнения следующей программы. Для Вашего удобства программа представлена на пяти языках программирования.

DIM S, N AS INTEGER

using namespace std;

Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 512×512 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.

Олег составляет таблицу кодовых слов для передачи сообщений, каждому сообщению соответствует своё кодовое слово. В качестве кодовых слов Олег использует 4-буквенные слова, в которых есть только буквы A, B, C, D, X, Y, Z, причём буквы X, Y и Z встречаются только на двух первых позициях, а буквы A, B, C, D — только на двух последних. Сколько различных кодовых слов может использовать Олег?

Электронная таблица содержит результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Определите, сколько раз за время измерений результат очередного измерения оказывался ниже результата предыдущего на 2 и более градусов.

С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «всё» или «Всё» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «всё» учитывать не следует. В ответе укажите только число.

На производстве работает автоматическая система информирования склада о необходимости доставки в цех определенных групп расходных материалов. Система устроена так, что по каналу связи на склад передается условный номер расходных материалов (при этом используется одинаковое, но минимально возможное количество бит в двоичном представлении этого числа). Известно, что был послан запрос на доставку 9 групп материалов из 19 используемых на производстве. Определите объем посланного сообщения. (Ответ дайте в битах.)

Существует исполнитель «РОБОТ», умеющий выполнять команды:

ВПРАВО – движение вправо на заданное число шагов;

ВВЕРХ – движение вверх на заданное число шагов;

ВНИЗ – движение вниз на заданное число шагов;

РАЗБИТЬ – разбить стену, стоящую прямо перед роботом по направлению движения;

ПОВТОРИТЬ [ ] – команда повторения указанных действий.

Например, чтобы пройти путь, указанный на рисунке (стрелками указано направление движения), нужно последовательно выполнить команда ВПРАВО 1 ПОВТОРИТЬ2 [РАЗБИТЬ ВПРАВО1] ВВЕРХ1 ВПРАВ02 ВНИ31 ВПРАВ02.

Укажите номер последовательности команд из перечисленных ниже, которые следует выполнить, чтобы траектория движения робота соответствовала фигуре, представленной на рисунке (робот не должен разбиться об стену).

1) ВПРАВ02 ВВЕРХ1 ПОВТОРИТЬ2 [ВПРАВО1 ВПРАВО1 РАЗБИТЬ] ПОВТОРИТЬ [ВПРАВО1 ВВЕРХ2] ВПРАВО1

2) ВПРАВО2 ВВЕРХ1 ВПРАВО2 РАЗБИТЬ ВПРАВО2 ПОВТОРИТЬ2[ВВЕРХ2 ВПРАВО1]

3) ВПРАВ02 ВВЕРХ1 ВПРАВ01 ПОВТОРИТЬ [ВПРАВ01 РАЗБИТЬ] ПОВТОРИТЬ2 [ВПРАВ01 ВВЕРХ2] ВПРАВО1

4) ВПРАВ02 ПОВТОРИТЬ2 [ВПРАВО 1 РАЗБИТЬ] ВПРАВ01 ПОВТОРИТЕ [ВПРАВО 1 ВВЕРХ2] ВПРАВО1

На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

Десятичное число, большее нуля, кратно 16. Какое минимальное количество нулей будет в конце этого числа после перевода его в двоичную систему счисления?

На числовой прямой даны три отрезка: P = [10,15], Q = [10,20] и R=[5,15]. Какова наименьшая возможная длина интервала A, что формулы

тождественно равны, то есть принимают равные значения при любом значении переменной х (за исключением, возможно, конечного числа точек).

Ниже на пяти языках программирования записан рекурсивный алгоритм F.

procedure F(n: integer);

if n > 2 then begin

Запишите подряд без пробелов и разделителей все числа, которые будут напечатаны на экране при выполнении вызова F(7). Числа должны быть записаны в том же порядке, в котором они выводятся на экран.

В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает Определите и запишите в ответе сначала количество пар элементов последовательности, разность которых четна и хотя бы одно из чисел делится на 31, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.

Квадрат разлинован на N×N клеток (1

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой нижней клетки в правую верхнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

1884
10113
13122
2356

Для указанных входных данных ответом должна быть пара чисел 35 и 15.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или пять камней или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 20 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 42.

Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 42 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 41.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может

встретиться при различной игре противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или пять камней или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 20 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 42.

Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 42 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 41.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может

встретиться при различной игре противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или пять камней или увеличить количество камней в куче в три раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 20 или 45 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 42.

Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 42 или больше камней. В начальный момент в куче было S камней; 1 ≤ S ≤ 41.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может

встретиться при различной игре противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Источник

Пракикум «Решение задач по комбинаторике»

Разделы: Математика

Комбинаторика – это раздел математики, посвящённый решению задач выбора и расположения элементов некоторого множества в соответствии с заданными правилами. Комбинаторика изучает комбинации и перестановки предметов, расположение элементов, обладающее заданными свойствами. Обычный вопрос в комбинаторных задачах: сколькими способами….

К комбинаторным задачам относятся также задачи построения магических квадратов, задачи расшифровки и кодирования.

Рождение комбинаторики как раздела математики связано с трудами великих французских математиков 17 века Блеза Паскаля (1623–1662) и Пьера Ферма (1601–1665) по теории азартных игр. Эти труды содержали принципы определения числа комбинаций элементов конечного множества. С 50-х годов 20 века интерес к комбинаторике возрождается в связи с бурным развитием кибернетики.

Основные правила комбинаторики – это правило суммы и правило произведения.

Если некоторый элемент А можно выбрать n способами, а элемент В можно выбрать m способами, то выбор «либо А, либо В» можно сделать n + m способами.

Например, Если на тарелке лежат 5 яблок и 6 груш, то один плод можно выбрать 5 + 6 = 11 способами.

Если элемент А можно выбрать n способами, а элемент В можно выбрать m способами, то пару А и В можно выбрать nm способами.

Например, если есть 2 разных конверта и 3 разные марки, то выбрать конверт и марку можно 6 способами (2 • 3 = 6).

Правило произведения верно и в том случае, когда рассматривают элементы нескольких множеств.

Например, если есть 2 разных конверта, 3 разные марки и 4 разные открытки, то выбрать конверт, марку и открытку можно 24 способами (2 • 3 • 4 = 24).

Произведение всех натуральных чисел от 1 до n включительно называется n – факториалом и обозначается символом n!

Например, 5! = 1 • 2 • 3 • 4 • 5 = 120.

Принято считать 0! равным 1.
Число перестановок из n равна n!

Например, если есть 3 шарика – красный, синий и зелёный, то выложить их в ряд можно 6 способами (3 • 2 • 1 = 3! = 6).

Иногда комбинаторная задача решается с помощью построения дерева возможных вариантов.

Например, решим предыдущую задачу о 3-х шарах построением дерева.

код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Смотреть фото код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Смотреть картинку код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Картинка про код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Фото код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая

Практикум по решению задач по комбинаторике.

1. В вазе 6 яблок, 5 груш и 4 сливы. Сколько вариантов выбора одного плода?

2. Сколько существует вариантов покупки одной розы, если продают 3 алые, 2 алые и 4 жёлтые розы?

3. Из города А в город В ведут пять дорог, а из города В в город С ведут три дороги. Сколько путей, проходящих через В, ведут из А в С?

код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Смотреть фото код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Смотреть картинку код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Картинка про код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Фото код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая

4. Сколькими способами можно составить пару из одной гласной и одной согласной букв слова «платок»?

гласные: а, о – 2 шт.
согласные: п, л, т, к – 4 шт.

5. Сколько танцевальных пар можно составить из 8 юношей и 6 девушек?

6. В столовой есть 4 первых блюда и 7 вторых. Сколько различных вариантов обеда из двух блюд можно заказать?

Ответ: 28 вариантов.

7. Сколько различных двузначных чисел можно составить, используя цифры 1, 4 и 7, если цифры могут повторяться?

1 цифра – 3 способа
2 цифра – 3 способа
3 цифра – 3 способа

Ответ: 9 различных двузначных чисел.

8. Сколько различных трёхзначных чисел можно составить, используя цифры 3 и 5, если цифры могут повторяться?

1 цифра – 2 способа
2 цифра – 2 способа
3 цифра – 2 способа

Ответ: 8 различных чисел.

9. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры могут повторяться?

1 цифра – 3 способа
2 цифра – 4 способа

Ответ: 12 различных чисел.

10. Сколько существует трёхзначных чисел, у которых все цифры чётные?

1 цифра – 4 способа
2 цифра – 5 способов
3 цифра – 5 способов

Ответ: существует 100 чисел.

11. Сколько существует четных трёхзначных чисел?

1 цифра – 9 способов (1, 2, 3, 4, 5, 6, 7, 8, 9)
2 цифра – 10 способов (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
3 цифра – 5 способов (0, 2, 4, 6, 8)

Ответ: существует 450 чисел.

12.Сколько различных трёхзначных чисел можно составить из трёх различных цифр 4, 5, 6?

1 цифра – 3 способа
2 цифра – 2 способа
3 цифра – 1 способ

Ответ: 6 различных чисел.

13. Сколькими способами можно обозначить вершины треугольника, используя буквы А, В, С, D?

1 вершина – 4 способа
2 вершина – 3 способа
3 вершина – 2 способа

14. Сколько различных трёхзначных чисел можно составить из цифр 1, 2, 3, 4, 5,при условии, что ни одна цифра не повторяется?

1 цифра – 5 способов
2 цифра – 4 способа
3 цифра – 3 способа

Ответ: 60 различных чисел.

15. Сколько различных трёхзначных чисел, меньших 400, можно составить из цифр 1, 3, 5, 7, 9, если любая из этих цифр может быть использована только один раз?

1 цифра – 2 способа
2 цифра – 4 способа
3 цифра – 3 способа

Ответ: 24 различных числа.

16. Сколькими способами можно составить флаг, состоящий из трёх горизонтальных полос различных цветов, если имеется материал шести цветов?

1 полоса – 6 способов
2 полоса – 5 способов
3 полоса – 4 способа

17. Из класса выбирают 8 человек, имеющих лучшие результаты по бегу. Сколькими способами можно составить из них команду из трёх человек для участия в эстафете?

1 человек – 8 способов
2 человек – 7 способов
3 человек – 6 способов

18. В четверг в первом классе должно быть четыре урока: письмо, чтение, математика и физкультура. Сколько различных вариантов расписания можно составить на этот день?

1 урок – 4 способа
2 урок – 3 способа
3 урок – 2 способа
4 урок – 1 способ

19. В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки разные?

1 урок – 8 вариантов
2 урок – 7 вариантов
3 урок – 6 вариантов
4 урок – 5 вариантов
5 урок – 4 варианта

8 • 7 • 6 • 5 • 4 = 6720

20. Шифр для сейфа составляется из пяти различных цифр. Сколько различных вариантов составления шифра?

1 цифра – 5 способов
2 цифра – 4 способа
3 цифра – 3 способа
4 цифра – 2 способа
5 цифра – 1 способ

5 • 4 • 3 • 2 • 1 = 120

21. Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?

22. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с нуля и 9?

1 цифра – 8 способов
2 цифра – 10 способов
3 цифра – 10 способов
4 цифра – 10 способов
5 цифра – 10 способов
6 цифра – 10 способов
7 цифра – 10 способов

8 • 10 • 10 • 10 • 10 • 10 • 10 = 8.000.000

23. Телефонная станция обслуживает абонентов, у которых номера телефонов состоят из 7 цифр и начинаются с 394. На сколько абонентов рассчитана эта станция?

№ телефона 394 код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Смотреть фото код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Смотреть картинку код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Картинка про код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая. Фото код содержит четыре разные цифры вторая цифра четная и на 3 больше чем первая

10 • 10 • 10 • 10 = 10.000

24. Имеется 6 пар перчаток различных размеров. Сколькими способами можно выбрать из них одну перчатку на левую руку и одну перчатку на правую руку так, чтобы эти перчатки были различных размеров?

Левые перчатки – 6 способов
Правые перчатки – 5 способов (6 перчатка того же размера, что и левая)

5 цифра – 2 способа (две чётные цифры)
4 цифра – 4 способа
3 цифра – 3 способа
2 цифра – 2 способа
1 цифра – 1 способ

26. Сколько существует четырёхзначных чисел, составленных из нечётных цифр и делящихся на 5?

Нечётные цифр – 1, 3, 5, 7, 9.
Из них делятся на 5 – 5.

4 цифра – 1 способ (цифра 5)
3 цифра – 4 способа
2 цифра – 3 способа
1 цифра – 2 способа

27. Сколько существует пятизначных чисел, у которых третья цифра – 7, последняя цифра – чётная?

1 цифра – 9 способов (все, кроме 0)
2 цифра – 10 способов
3 цифра – 1 способ (цифра 7)
4 цифра – 10 способов
5 цифра – 5 способов (0, 2, 4, 6, 8)

9 • 10 • 1 • 10 • 5 = 4500

28. Сколько существует шестизначных чисел, у которых вторая цифра – 2, четвёртая – 4, шестая – 6, а все остальные – нечётные?

1 цифра – 5 вариантов (из 1, 3, 5, 7, 9)
2 цифра – 1 вариант (цифра 2)
3 цифра – 5 вариантов
4 цифра – 1 вариант (цифра 4)
5 цифра – 5 вариантов
6 цифра – 1 вариант (цифра 6)

5 • 1 • 5 • 1 • 5 • 1 = 125

29.Сколько различных чисел, меньших миллиона, можно записать с помощью цифр 8 и 9?

Однозначных – 2
Двузначных – 2 • 2 = 4
Трёхзначных – 2 • 2 • 2 = 8
Четырёхзначных – 2 • 2 • 2 • 2 =16
Пятизначных – 2 • 2 • 2 • 2 • 2 = 32
Шестизначных – 2 • 2 • 2 • 2 2 • 2 = 64

Всего: 2 + 4 + 8 + 16 + 32 + 64 = 126

30. В футбольной команде 11 человек. Нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Капитан – 11 способов
Заместитель – 10 способов

31.В классе учатся 30 человек. Сколькими способами из них можно выбрать старосту и ответственного за проездные билеты?

Староста – 30 способов
Ответ. за билеты – 29 способов

32. В походе участвуют 12 мальчиков, 10 девочек и 2 учителя. Сколько вариантов групп дежурных из трёх человек (1 мальчик, 1 девочка, 1 учитель) можно составить?

33. Сколько комбинаций из четырёх букв русского алфавита (в алфавите всего 33 буквы) можно составить при условии, что 2 соседние буквы будут разными?

1 буква – 33 способа
2 буква – 32 способа
3 буква – 32 способа
4 буква – 32 способа

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *