Алгебраическая сумма что это такое
Алгебраическая сумма
Когда пишут знак суммы (сигма, Σ) подразумевается именно алгебраическая сумма.
Алгебраической суммой множеств называют сумму Минковского этих множеств.
Алгебраическая сумма, при замене всех вычитаний сложениями, может быть представлена рациональными числами (положительными, отрицательными и равными нулю), а также числами, обозначенными буквами.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
В компле́ксном анализе вы́четом заданного объекта (функции, формы) называется объект (число, форма или когомологический класс формы), характеризующий локальные свойства заданного.
Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.
Смешанные частные производные одной и той же функции, отличающиеся лишь порядком (очерёдностью) дифференцирования, равны между собой при условии их непрерывности. Такое свойство называется равенством смешанных производных.
В вычислительной математике одной из наиболее важных задач является создание эффективных и устойчивых алгоритмов нахождения собственных значений матрицы. Эти алгоритмы вычисления собственных значений могут также находить собственные векторы.
Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.
Алгебраическая сумма что это такое
Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту
В этом уроке узнаем, что такое алгебраическая сумма, познакомимся с ее свойствами.
Каждое слагаемое алгебраической суммы представляет собой число вместе с тем знаком, который стоит (или подразумевается, что стоит) перед ним, а законы арифметических действий применяются именно к этим слагаемым. Другими словами, алгебраическая сумма – это выражение, которое можно представить в виде суммы положительных и отрицательных чисел.
Перейдем к свойствам алгебраических сумм. Рассмотрим выражения (+9) + (-5) и (-5) + (+9). Данные выражения отличаются друг от друга тем, что слагаемые в них стоят в обратном порядке. Найдем значения выражений любым способом, например,с помощью координатной прямой. Результаты данных выражений равны минус 1. Следовательно, при сложении чисел с любыми знаками перместительный закон справедлив: от перстановки слагаемых значение суммы не изменяется.
(+34)+(-25)+(-5). Удобнее найти значение данного выражения, если вначале сложить отрицательные числа, а потом положительное прибавить, можно выполнять действия и по порядку. Значение выражения при этом не изменится? В обоих случаях будет равно 4. Следовательно, для алгебраической суммы чисел справедлив и сочетательный закон: сумма не изменится, если какую-либо группу рядом стоящих слагаемых заменить их суммой.
Выполним практическое задание. Найдем значения выражения –(-56) + (-18) – 21.
Как легко понять знаки Σ и П с помощью программирования
Для тех, кто подзабыл матешу
Вот говорят, что если ты не закончил Физтех, ФПМ или Бауманку, тебе в программировании делать нечего. Почему так говорят? Потому что, дескать, ты не учил сложную математику, а в программировании без неё никуда.
Это всё чушь, конечно. Если вы плохо знаете математику, вы можете быть блестящим разработчиком. Вы вряд ли напишете драйверы для видеокарты, но вы запросто сделаете мобильное приложение или веб-сервис. А это — основные деньги в этой среде.
Но всё же, чтобы получить некоторое интеллектуальное превосходство, вот вам пара примеров из страшного мира математики. Пусть они покажут вам, что не все закорючки в математике — это ад и ужас. Вот две нестрашные закорючки.
Знак Σ — сумма
Когда математикам нужно сложить несколько чисел подряд, они иногда пишут так:
Σ (читается «сигма») — это знак алгебраической суммы, который означает, что нам нужно сложить все числа от нижнего до верхнего, а перед этим сделать с ними то, что написано после знака Σ.
На картинке выше написано следующее: «посчитать сумму всех чисел от 5 до 15, умноженных на два». То есть:
Давайте для закрепления ещё один пример. На картинке ниже будет сказано «Найди сумму квадратов чисел от 5 до 10». То есть «возьми все числа от 5 до 10, каждое из них возведи в квадрат, а результаты сложи».
Но мы с вами как программисты видим, что здесь есть повторяющиеся действия: мы много раз складываем числа, которые меняются по одному и тому же правилу. А раз мы знаем это правило и знаем, сколько раз надо его применить, то это легко превратить в цикл. Для наглядности мы показали, какие параметры в Σ за что отвечают в цикле:
Произведение П
С произведением в математике работает точно такое же правило, только мы не складываем все элементы, а перемножаем их друг на друга:
А если это перевести в цикл, то алгоритм получится почти такой же, что и в сложении:
Что дальше
Сумма и произведение — простые математические операции, пусть они и обозначаются страшными символами. Впереди нас ждут интегралы, дифференциалы, приращения и бесконечные ряды. С ними тоже всё не так сложно, как кажется на первый взгляд.