Антигипоксанты препараты что это

Современные цитопротекторы (антигипоксанты, антиоксиданты): в чем феномен популярности в кардиологии и неврологии?

Резюме. В статье рассмотрены возможности и перспективы применения современных цитопротекторов, в частности препарата Цитофлавин®, в составе комплексной терапии при гипоксических состояниях головного мозга различной этиологии, приведены результаты изучения его клинической эффективности. Основываясь на данных литературы об эффективности препарата в лечении пациентов с различными вариантами острой и хронической сердечно-сосудистой патологии, сделан вывод о целесообразности его применения как важного компонента патогенетической терапии при этих нарушениях.

Введение

В настоящее время цитопротекторы являются новым направлением в лечении пациентов с сердечно-сосудистыми заболеваниями и как относительно молодая группа препаратов, в отличие от классических средств, пока не располагают столь же внушительной доказательной базой. Однако имеющиеся в настоящее время результаты их клинической эффективности и фактическое отсутствие значимых нежелательных эффектов свидетельствуют о перспективности применения этих препаратов в составе комплексной терапии при сердечно-сосудистой патологии. Необходимо отметить, что в этом случае речь идет не о замене гемодинамического подхода метаболическим, а о взаимодополняющем сочетании двух эффектов, в основе которых лежат разные механизмы действия препаратов (Ливанов Г.А. и соавт., 2003; Афанасьев В.В., 2005; Афанасьев В.В., Лукьянова И.Ю., 2010; Виничук С.М. и соавт., 2010; Одинак М.М. и соавт., 2010).

Что такое цитопротекторы?

К цитопротекторам относят большую группу фармакологических средств с разными механизмами действия, которые защищают клетки от цитотоксических эффектов различной этиологии (Верещагин Н.В. и соавт., 2004; Афанасьев В.В., 2005; Афанасьев В.В., Лукьянова И.Ю., 2010). Например, клетка погибает в результате воздействия высокореакционно способных радикалов кислорода, разрушающих все виды макромолекул (ДНК, РНК, белки, липиды). Антиоксиданты, нейтрализующие радикалы кислорода, оказывают цитопротекторное действие (Ивницкий Ю.Ю. и соавт., 1998; Афанасьев В.В., 2005; Барабой В.А., 2006). Другой пример: некоторые токсины образуют в сарколемме ионные каналы, ответственные за исчезновение ионных градиентов через плазматическую мембрану. В результате развивается коллоидноосмотическое набухание клеток, наступает их гибель по механизму некроза. Агенты, блокирующие активность таких ионных каналов, также оказывают цитопротекторное действие, которое не связано с энергетическими процессами (Федин А.И. и соавт., 2004; Агафьина А.А. и соавт., 2006; Румянцева С.А. и соавт., 2007; Афанасьев В.В., Лукьянова И.Ю., 2010; Констанадов Э.А., Черемушкин Е.А., 2012).

История применения цитопротекторов в медицине

В 1970-х годах антигипоксантами считали препараты, снижающие уровень лактата в плазме крови. Первыми из них были лекарственные вещества, стимуляторы цикла Кори, обеспечивающего ресинтез глюкозы из молочной кислоты. Впоследствии антигипоксантами называли любые препараты, повышающие производительность энергии в ходе биохимических реакций (Нарциссов Р.П. и соавт., 1997; Лукьянова Л.Д., 2002; Афанасьев В.В., 2005; Скворцова В.И. и соавт., 2006).

Антигипоксант должен быть антиоксидантом (цитопротектором) и, если не блокировать, то, по крайней мере, связывать активные формы кислорода с собой или другими субстратами, являющимися компонентами антиоксидантных систем организма человека (Верещагин Н.В., 2004; Лукьянова Л.Д., Лукьянова А.Д., 2004; Афанасьев В.В., 2005; Афанасьев В.В., Лукьянова И.Ю., 2010; Силина Е.В. и соавт., 2011).

Классификация цитопротекторов

Единой классификации цитопротекторов не существует, поэтому, с нашей точки зрения, привлекает внимание классификация, предложенная В.П. Михиным (2011), построенная на основе локализации фармакологического эффекта препарата (Афанасьев В.В., 2005; Скворцова В.И. и соавт., 2006; Мойбенко А.А. и соавт. (ред.), 2008; Румянцева С.А. и соавт., 2014):

1. Внутримитохондриальные цитопротекторы.

1.1. Торможение окисления жирных кислот:

1.2. Прямая стимуляция окисления глюкозы (2-этил-6-метил-3-оксипиридина сукцинат).

1.3. Стимуляция цитохромной цепи (коэнзим Q10).

2. Транспорт энергетического субстрата в митохондрии (фосфокреатин, глюкозоинсулиновая смесь (малоэффективна), янтарная кислота (ЯК)).

3. Стимуляция анаэробного гликолиза (тиатриазолин) — недостаточно разработаны и малоэффективны.

4. Антиоксиданты и митохондриальные цитопротекторы, обладающие антиоксидантными свойствами.

Сферы применения цитопротекторов

Кардиология

Один из наиболее существенных механизмов миокардиальных повреждений, связанных с нарушением энергетики клетки при снижении парциального давления кислорода — это активация процессов перекисного окисления липидов (ПОЛ). В полном объеме энергозатратные и энергопродуцирующие процессы в клетке могут происходить только в условиях адекватного кислородного баланса организма. Ключевым является вопрос о достаточности кислорода в ткани миокарда при ишемии, так как перфузионная кардиоплегия, независимо от способа проведения и состава раствора, полностью не устраняет негативных последствий гипоксии и ишемии миокарда (Ferrari R. et al., 1987; Афанасьев В.В., 2005; Иванова Г.Е. и соавт., 2012; Лесиовская Е.Е., 2012; Румянцева С.А. и соавт., 2012). При реперфузии молекулярный кислород вновь входит в ишемизированный миокард, что приводит к образованию свободных радикалов. Существенным фактором, препятствующим адекватному увеличению сердечного выброса, становится нарушение транспорта кислорода. Результаты исследований показали возможность развития систолической дисфункции миокарда после кардиоплегии в период реперфузии, которая связана с угнетением кислородозависимых метаболических процессов в результате повреждающего действия гипоксии — реоксигенации. Предложено большое количество препаратов и методов для предотвращения повреждающего действия на организм гипоксии и окислительного стресса, в том числе экстракорпоральных. Для повышения антиоксидантной активности плазмы крови предложено использовать лазерное облучение, лейкоцитарные фильтры после искусственного кровообращения, а также препараты, относящиеся к цитопротекторам. В организме в процессе взаимодействия биологических объектов группы радикалов вырабатываются вещества, так называемые стабильные радикалы, обладающие антиоксидантным действием. Они тормозят развитие деструктивных процессов и замедляют гибель клеток (Павлова Т.К., 2006; Di Paolo G., De Camilli P., 2006; Oganov R.G., 2006; Афанасьев В.В., Лукьянова И.Ю., 2010; Jauch E.C. et al., 2013).

Неврология

Дефицит кислорода при гипоксии разной степени тяжести может приводить к ограниченному или полному подавлению аэроб­ного образования энергии в результате нарушения энергосинтезирующей функции дыхательной цепи митохондрии. Ишемические воздействия на головной мозг приводят к деструкции клеточных мембран нейронов и глиальных элементов, а также капиллярного русла за счет нарушения внутриклеточного ионного гомеостаза и метаболизма макроэргических соединений (Розенфельд А.Д., 1983; Kendell E. et al. (Eds.), 2000; Парфенов В.А., 2002; Kalkan S. et al., 2004). Другим фактором, имеющим важное значение в патогенезе ишемии головного мозга, является активация ПОЛ и мембраноповреждающее действие свободных радикалов. Жизнеспособность клеток, попавших в ишемическую зону, определяется множеством факторов, главным из которых является баланс целого ряда высокоэнергетических процессов — обеспечение функциональной активности клеток, сохранение (восстановление) мембранных структур и ядерного состава (Суслина З.А., 2004; Федин А.И. и соавт., 2004; Силина Е.В., Румянцева С.А., 2006). В связи с этим следует ожидать, что терапевтические усилия, позволяющие снизить энергозатраты нейронов, помогут им пережить неблагоприятный период и сохранить свою структуру. Очевидно, что основное место в лечении при острой ишемии в период реперфузии должна занимать метаболическая и нейропротекторная терапия (Дунаев В.В. и соавт., 1989; Бурчинский С.Г., 2004; Афанасьев В.В., 2005; Коваленко А.Л. и соавт., 2006).

Для инактивации негативного воздействия активных форм кислорода на клетки и ткани организма в последнем имеется система антиоксидантной защиты (АОЗ), состоящая из неферментных и ферментных систем. Компонентами неферментной АОЗ являются как низкомолекулярные соединения (аскорбиновая кислота, мочевая кислота, токоферол и др.), так и высокомолекулярные соединения (белки плазмы крови). Основным ферментом специфической АОЗ является супероксиддисмутаза. Наряду с последней активными компонентами ферментной системы являются церулоплазмин, селеносодержащий фермент глутатион­пероксидаза, каталаза, а также метионинсульфоксиредуктаза, восстанавливающая метиониновый остаток в активном центре ингибитора протеиназ. Интенсивная генерация активных форм кислорода может приводить к истощению АОЗ, несмотря на синергизм действия ее отдельных компонентов. Поэтому при глубоком оксидативном стрессе включается ферментативная АОЗ, активность которой в норме довольно низкая. С целью уменьшения выраженности ишемических и гипоксических повреждений в лекарственной терапии постгипоксической энцефалопатии и сосудистых поражений головного мозга применяют лекарственные препараты, обладающие антиоксидантными, то есть цитопротекторными свойствами (Маркова И.В. и соавт., 1999; Кольман Я.Р., 2000; Бульон В.В. и соавт., 2003; Афанасьев В.В., Лукьянова И.Ю., 2010).

Антигипоксанты препараты что это. Смотреть фото Антигипоксанты препараты что это. Смотреть картинку Антигипоксанты препараты что это. Картинка про Антигипоксанты препараты что это. Фото Антигипоксанты препараты что это

Цитофлавин ® — комплексный препарат с цитопротекторным действием, содержащий ЯК (10%), рибоксин (2%), никотинамид (1%) и рибофлавина мононуклеотид натрия (0,2%). Цито­флавин ® обладает антиоксидантным и антигипоксическим действием, оказывая положительный эффект на энергообразование в клетке, уменьшая продукцию свободных радикалов и восстанавливая активность ферментов АОЗ (Kendell E. et al. (Eds.), 2000; Ливанов Г.А., 2009). Цитофлавин ® активирует окислительно-­восстановительные ферменты дыхательной цепи митохондрий, ресинтез макроэргов, способствует утилизации глюкозы и жирных кислот. Препарат обладает антиишемическим действием, улучшает коронарный и мозговой кровоток, ограничивает зону некроза и улучшает метаболические процессы в центральной нервной системе (ЦНС), восстанавливает сознание, рефлекторные нарушения и расстройства чувствительности (Ливанов Г.А. и соавт., 2004; Афанасьев В.В., 2005; Ливанов Г.А., 2009; Афанасьев В.В., Лукьянова И.Ю., 2010).

В последние годы в клинической практике применяют биологически активные вещества с широким спектром фармакологического действия — соединения ЯК. Производные ЯК обладают антиоксидантными и цитопротекторными свойствами. Показано, что экзогенная ЯК корригирует метаболический ацидоз и интенсифицирует утилизацию кислорода тканями, что позволяет характеризовать действие производных ЯК при циркуляторной гипоксии как антигипоксическое (Афанасьев В.В., 2005; Румянцева С.А. и соавт., 2005).

ЯК является естественным эндогенным субстратом клетки. В условиях гипоксии ее действие реализуется в цикле трикарбоновых кислот и окислительном фосфорилировании. ЯК ускоряет оборот дикарбоновой части цикла трикарбоновых кислот (сукцинат — фумарат — малат) и снижает концентрацию лактата, что очень важно при ее сочетании с рибоксином. ЯК повышает кругооборот цикла трикарбоновых кислот, следовательно, увеличивает объем энергии, необходимой для синтеза АТФ и гамма-аминомасляной кислоты, что важно в сочетании ЯК и рибоксина. Увеличение количества субстрата (сукцината) позволяет осуществлять фосфорилирование белков вследствие активации субстратом тройного ему фермента. ЯК увеличивает потребление кислорода тканями и улучшает тканевое дыхание за счет усиления транспорта электронов в митохондриях, воссоздания протонного градиента на их мембранах и смещения кривой диссоциации оксигемоглобина вправо, то есть усиливает отдачу кислорода тканям. В условиях гипоксии экзогенно вводимый сукцинат (входящий в состав препарата Цитофлавин ® ) может поглощаться через альтернативный метаболический путь сукцинатоксидазной системы с последующим потреблением ЯК в дыхательной цепи митохондрий. В совокупности с рибоксином и никотинамидом ЯК расширяет возможности применения препарата Цитофлавин ® в качестве неконкурентного антагониста NMDА-рецепторов и создает основу для его применения в терапии не только при острых состояниях, но и при хронических дегенеративно-­дистрофических неврологических и сердечно-сосудистых заболеваниях, астеническом и абстинентном синдромах, в основе которых лежит эксайтотоксичность (Афанасьев В.В., 2005; Федин А.И. и соавт., 2006; Афанасьев В.В., Лукьянова И.Ю., 2010; Сайко О.В., Стаднік С.М., 2010).

У рибофлавина установлено прямое антигипоксическое действие, связанное с повышением активности флавинредуктаз и восстановлением уровня макроэргов — АТФ и креатинфосфата, а также антиоксидантные свойства, обусловленные восстановлением окисленного глутатиона. Рибофлавин стимулирует утилизацию сукцината, активируя систему митохондриального транспорта дикарбоновых кислот цикла Кребса через глицерофосфатный «челночный» механизм, а ЯК повышает трансмембранный потенциал, стимулируя транспорт рибофлавина через мембраны. Цитопротекторное действие рибоксина реализуется целым рядом взаимосвязанных метаболических путей:

Известно, что при гипоксии для восстановления дыхательной цепи митохондрий необходима активация всех звеньев как флавинат-, так и NAD-зависимых путей. Введение одного из фрагментов NAD — никотинамида — активирует NAD-зависимые ферменты клеток, в том числе антиоксидантные системы, защищающие мембраны клеток от разрушения радикальными частицами.

Никотинамид также является селективным ингибитором образующегося при ишемии фермента поли-АДФ-рибозилсинте­тазы, приводящего к дисфункции внутриклеточных белков и последующему апоптозу клеток (Федин А.И. и соавт., 2004; Афанасьев В.В., Лукьянова И.Ю., 2010).

Таким образом, можно сделать вывод, что Цитофлавин ® обладает механизмами лечебного действия, которые делают его перспективным препаратом в терапии при гипоксических состояниях головного мозга различной этиологии. Принципы биохимической коррекции тканевого компонента транспорта кислорода и последствий гипоксических нарушений, таких как активация ПОЛ, дезинтоксикационные свойства препарата Цитофлавин ® свидетельствуют о перспективности его применения.

Возможности применения препарата Цитофлавин ® в кардиологии

Эффективность применения препарата Цитофлавин ® оценивается прежде всего клинически, а также по показателям газообмена и свободнорадикальных процессов. В последнее время появились данные об успешном применении препарата при кардиохирургических операциях. В частности Цитофлавин применяли при операциях коронарного шунтирования на бьющемся сердце. В этих случаях препарат применяли с целью профилактики нежелательных изменений гемодинамики и возникновения аритмий при пережатии коронарной артерии в момент наложения анастомоза с аутовенной или внутренней грудной артерией. Принимая во внимание тот факт, что Цитофлавин ® обладает механизмом биохимической коррекции тканевого транспорта кислорода и последствий гипоксических нарушений, можно сделать предположение о перспективности его применения при операциях в условиях искусственного кровообращения с целью профилактики ишемического и реперфузионного повреждения миокарда (Афанасьев В.В., 2005; Надирадзе З.З. и соавт., 2006; Афанасьев В.В., Лукьянова И.Ю., 2010).

Цитофлавин ® при ишемическом повреждении мозга

В клинических условиях благодаря этим эффектам препарата происходит восстановление сознания и когнитивных способностей головного мозга, улучшение мозгового кровотока, купируются расстройства чувствительности и нарушения рефлекторной деятельности, стабилизируется метаболическая активность ЦНС. В ходе 5-летнего исследования, охватившего достаточно большую выборку пациентов с ОНМК различного характера (302 человека с ишемическим и 79 — с геморрагическим инсультом), установлено, что включение цитопротекторов в комплексную терапию способствует более быстрому восстановлению сознания, а также более быстрому и опережающему группу сравнения регрессу очагового неврологического дефицита. Сравнительный анализ эффективности различных препаратов, способных регулировать оксидативный стресс, выявил преимущества препарата Цитофлавин ® : в соответствующей подгруппе пациентов летальность составила 12,2%, в том числе 8,7% — у больных с ишемическим инсультом и 16,5% — у пациентов с внутримозговым кровоизлиянием, что достоверно меньше, чем в группе сравнения и в подгруппе пациентов, получавших другой препарат (рибоксин).

Оценка динамики изменений неврологического статуса в зависимости от сроков применения терапии препаратом Цитофлавин ® показала, что наиболее эффективным является введение препарата в первые 2–24 ч от появления начальных симптомов заболевания. Раннее начало коррекции препаратом Цитофлавин ® обеспечивает снижение летальности в среднем на 5–6%.

Аналогичные результаты получены и в других плацебо-­контролируемых исследованиях применения препарата в лечении пациентов с инфарктом головного мозга в острый и ранний восстановительный периоды. Применение препарата Цитофлавин ® обеспечивало положительную динамику неврологического статуса у 94% больных, в то время как в группе плацебо улучшение отмечено лишь у 40,7% пациентов. Клинический эффект антиоксидантного препарата проявлялся в повышении двигательной активности, восстановлении речи, улучшении концентрации внимания, памяти, способности к запоминанию, увеличении скорости сенсомоторных реакций, что обеспечивало оптимальную социальную адаптацию.

В общей структуре ишемических инсультов 10–14% составляет поражение вертебробазилярного бассейна, занимающее 2-е место после инфаркта в зоне кровоснабжения средней мозговой артерии. Изучение эффективности препарата Цитофлавин ® как нейрометаболического средства установило целесообразность его применения в острый период вертебробазилярного инсульта для поддержания жизненно важных функций стволового отдела мозга. Применение препарата повышало уровень восстановления нарушенных процессов уже на 10-е сутки применения (Шевченко Л.А., Евдокимов В.А., 2007).

Подчеркнем, что все исследователи, изучавшие влияние препарата Цитофлавин ® на состояние больных с ОНМК, отмечают необходимость его применения в максимально ранние сроки (в первые 12 ч) от начала развития инсульта. Препарат вводят только внутривенно капельно медленно (60 капель в 1 мин) в дозе 10 мл в разведении 200 мл физиологического раствора или 200 мл 5% раствора глюкозы 2 раза в сутки в течение 10 дней. Пациентам в тяжелом состоянии разовая доза может быть повышена до 20 мл. Учитывая «омоложение» цереброваскулярной патологии, очень важной особенностью препарата Цитофлавин ® является отсутствие возрастных ограничений к применению (Дунаев В.В. и соавт., 1989; Афанасьев В.В., 2005; Федин А.И. и соавт., 2005а; 2005б; Шевченко Л.А., Евдокимов В.А., 2007).

Заключение

Основываясь на данных литературы об эффективности препарата Цитофлавин ® в лечении пациентов с различными вариантами острой и хронической сердечно-сосудистой патологии, можно сделать вывод о целесообразности его применения как важного компонента патогенетической терапии при этих нарушениях.

Список использованной литературы

Сучасні цитопротектори(антигіпоксанти, антиоксиданти): у чому феномен популярності в кардіології та неврології?

М.С. Єгорова, Ю.Ю. Гармаш

Резюме. У статті розглянуто можливості та перспективи застосування сучасних цитопротекторів, зокрема препарату Цитофлавін®, у складі комплексної терапії при гіпоксичних станах головного мозку різної етіології, наведено результати досліджень його клінічної ефективності. Ґрунтуючись на даних літератури про ефективність препарату в лікуванні пацієнтів із різними варіантами гострої та хронічної серцево-судинної патології, зроблено висновок про доцільність його застосування як важливого компонента патогенетичної терапії цих порушень.

Ключові слова: цитопротектори, серцево-судинна патологія, Цитофлавін®.

Адрес для переписки:
Егорова Мария Сергеевна
04114, Киев, ул. Вышгородская, 67
Государственное учреждение «Институт геронтологии имени Д.Ф. Чеботарева НАМН Украины»,
отдел сосудистой патологии головного мозга,
отделение реабилитации неврологических больных

Источник

Антигипоксанты и антиоксиданты в кардиологической практике

Профессор А.М. Шилов

ММА имени И.М. Сеченова

Ключевая роль тромбоза артерий сердца в формировании острого коронарного синдрома, вплоть до развития острого инфаркта миокарда (ОИМ), в настоящее время постулирована. На смену традиционно сложившейся консервативной терапии коронарной патологии, направленной на предотвращение осложнений: опасных нарушений ритма, острой сердечной недостаточности (ОСН), ограничение зоны повреждения миокарда (путем усиления коллатерального кровотока), в клиническую практику внедрены радикальные методы лечения – реканализация ветвей коронарных артерий путем как фармакологического воздействия (тромболитические средства), так и инвазивного вмешательства – чрескожная транслюминальная балонная или лазерная ангиопластика с установкой стента(ов) или без нее.

Накопленный клинический и экспериментальный опыт указывают, что восстановление коронарного кровотока – «обоюдоострый меч», т.е. в 30% и более развивается «синдром реперфузии», манифестирующий дополнительным повреждением миокарда, вследствие неспособности энергетической системы кардиомиоцита утилизировать «нахлынувшее» поступление кислорода. В результате этого увеличивается образование свободно–радикальных, активных форм кислорода (АК), способствующих повреждению липидов мембран – перекисное окисление липидов (ПОЛ), дополнительному повреждению функционально важных белков, в частности, цитохромной дыхательной цепи и миоглобина, нуклеиновых кислот и других структур кардиомиоцитов [1,7,11]. Такова упрощенная модель постперфузионного метаболического круга развития и прогрессирования ишемического повреждения миокарда. В связи с этим в настоящее время разработаны и активно внедряются в клиническую практику фармакологические препараты противоишемической (антигипоксанты) и антиоксидной (антиоксиданты) защиты миокарда [4,8,10,12,13].

Антигипоксанты – препараты, способствующие улучшению утилизации организмом кислорода и снижению потребности в нем органов и тканей, суммарно повышающие устойчивость к гипоксии. В настоящее время наиболее изучена антигипоксическая и антиоксидантная роль Актовегина (Nycomed) в клинической практике лечения различных ургентных состояний ССС.

Актовегин – высокоочищенный гемодиализат, получаемый методом ультрафильтрации из крови телят, содержащий аминокислоты, олигопептиды, нуклеозиды, промежуточные продукты углеводного и жирового обмена (олигосахариды, гликолипиды), электролиты (Mg, Na, Ca, P, K), микроэлементы (Si, Cu).

Основой фармакологического действия Актовегина является улучшение транспорта, утилизации глюкозы и поглощения кислорода:

– повышается обмен высокоэнергетических фосфатов (АТФ);

– активируются ферменты окислительного фосфорилирования (пируват– и сукцинатдегидрогеназы, цитохром С–оксидаза);

– повышается активность щелочной фосфатазы, ускоряется синтез углеводов и белков;

– увеличивается приток ионов К+ в клетку, что сопровождается активацией калий–зависимых ферментов (каталаз, сахараз, глюкозидаз);

– ускоряется распад продуктов анаэробного гликолиза (лактата, b-гидроксибутирата).

Активные компоненты, входящие в состав Актовегина, оказывают инсулиноподобное действие. Олигосахариды Актовегина активируют транспорт глюкозы внутрь клетки, минуя рецепторы инсулина. Одновременно Актовегин модулирует активность внутриклеточных носителей глюкозы, что сопровождается интенсификацией липолиза. Что чрезвычайно важно – действие Актовегина инсулинонезависимое и сохраняется у пациентов с инсулинозависимым сахарным диабетом, способствует замедлению прогрессирования диабетической ангиопатии и восстановлению капиллярной сети за счет новообразования сосудов [2,9].

Улучшение микроциркуляции, которое наблюдается под действием Актовегина, видимо, связано с улучшением аэробного обмена сосудистого эндотелия, способствующего высвобождению простациклина и оксида азота (биологических вазодилататоров). Вазодилатация и снижение периферического сосудистого сопротивления являются вторичными по отношению к активации кислородного метаболизма сосудистой стенки.

Таким образом, антигипоксическое действие Актовегина суммируется через улучшение утилизации глюкозы, усвоение кислорода и снижение потребления миокардом кислорода в результате уменьшения периферического сопротивления.

Антиоксидантное действие Актовегина обусловлено наличием в этом препарате высокой супероксиддисмутазной активности, подтвержденной атомно–эмиссионной спектрометрией, наличием препаратов магния и микроэлементов, входящих в простетическую группу супероксиддисмутазы. Магний – обязательный участник синтеза клеточных пептидов, он входит в состав 13 металлопротеинов, более 300 ферментов, в том числе в состав глутатионсинтетазы, осуществляющей превращение глутамата в глутамин [9].

Накопленный клинический опыт отделений интенсивной терапии позволяет рекомендовать введение высоких доз Актовегина: от 800–1200 мг до 2–4 г. Внутривенное введение Актовегина целесообразно:

– для профилактики синдрома реперфузии у больных ОИМ, после проведения тромболитической терапии или балонной ангиопластики;

– больным при лечении различных видов шока;

– больным, переносящим остановку кровообращения и асфиксию;

– больным с тяжелой сердечной недостаточностью;

– больным с метаболическим синдромом Х.

Антиоксиданты – блокируют активацию свободнорадикальных процессов (образование АК) и перекисного окисления липидов (ПОЛ) клеточных мембран, имеющих место при развитии ОИМ, ишемического и геморрагического инсультов, острых нарушений регионального и общего кровообращения. Их действие реализуется через восстановление свободных радикалов в стабильную молекулярную форму, не способную участвовать в цепи аутоокисления. Антиоксиданты либо непосредственно связывают свободные радикалы (прямые антиоксиданты), либо стимулируют антиоксидантную систему тканей (непрямые антиоксиданты).

Энергостим – комбинированный препарат содержащий никотинамидадениндинуклеотид (НАД), цитохром С и инозин в соотношении: 0,5, 10 и 80 мг соответственно.

При ОИМ нарушения в системе энергетического обеспечения происходят в результате потери кардиомиоцитом НАД – кофермента дегидрогеназы гликолиза и цикла Кребса, цитохрома С – фермента цепи переноса электронов, с которым в митохондриях (Мх) сопряжен синтез АТФ через окислительное фосфорилирование. В свою очередь, выход цитохрома С из Мх ведет не только к развитию энергодефицита, но и способствует образованию свободных радикалов и прогрессированию оксидативного стресса, заканчивающихся гибелью клеток по механизму апоптоза. После внутривенного введения экзогенный НАД, проникая через сарколемму и мембраны Мх, ликвидирует дефицит цитозольного НАД, восстанавливает активность НАД–зависимых дегидрогеназ, участвующих в синтезе АТФ гликолитическим путем, способствует интенсификации транспорта цитозольного протона и электронов в дыхательной цепи Мх. В свою очередь, экзогенный цитохром С в Мх нормализует перенос электронов и протонов к цитохромоксидазе, что суммарно стимулирует АТФ–синтезирующую функцию окислительного фосфорилирования Мх. Однако ликвидация дефицита НАД и цитохрома С не нормализует полностью «конвейер» синтеза АТФ кардиомиоцита, так как не оказывает существенного влияния на содержание отдельных компонентов адениловых нуклеотидов, участвующих в дыхательной цепи клеток. Восстановление общего содержания адениловых нуклеотидов имеет место при введении инозина – метаболита, стимулирующего синтез адениловых нуклеотидов. Одновременно инозин усиливает коронарный кровоток, способствует доставке и утилизации кислорода в области микроциркуляции.

Таким образом, целесообразно комбинированное введение НАД, цитохрома С и инозина для эффективного воздействия на метаболические процессы в кардиомиоцитах, подвергнутых ишемическому стрессу.

Энергостим по механизму фармакологического воздействия на клеточный метаболизм имеет комбинированное влияние на органы и ткани: антоксидантное и антигипоксическое. За счет композитного состава Энергостим, по данным различных авторов, по эффективности лечения ИМ в составе традиционного лечения во много раз превосходит действие других признанных в мире антигипоксантов: в 2–2,5 раза оксибутират лития, рибоксин (инозин) и амитазол, в 3–4 раза – карнитин (милдронат), пирацетам, олифен и солкосерил, в 5–6 раз – цитохром С, асписол, убихинон и триметазидин [1,11]. Рекомендуемые дозы Энергостима в комплексной терапии ИМ: 110 мг (1 флакон) в 100 мл 5% глюкозы 2–3 раза в день в течение 4–5 дней. Все изложенное выше позволяет считать Энергостим препаратом выбора в комплексной терапии ИМ, для профилактики осложнений, являющихся следствием метаболических нарушений в кардиомиоцитах [1,3].

Коэнзим Q10 – витаминоподобное вещество, впервые было выделено в 1957 г. из митохондрий бычьего сердца американским ученым Ф. Крейном. К. Фолкерс в 1958 г. определил его структуру. Вторым официальным названием коэнзима Q10 является убихинон (вездесущий хинон), так как он содержится в различных концентрациях практически во всех тканях животного происхождения. В 60–х годах была показана роль Q10, как электронного переносчика в дыхательной цепи Мх. В 1978 г. П. Митчел предложил схему, объясняющую участие коэнзима Q10 как в электронном транспорте в митохондриях, так и в сопряжении процессов электронного транспорта и окислительного фосфорилирования, за что получил Нобелевскую премию [8].

Коэнзим Q10 эффективно защищает липиды биологических мембран и липопротеидные частицы крови (фосфолипиды – «мембранный клей») от разрушительных процессов перекисного окисления, предохраняет ДНК и белки организма от окислительной модификации в результате накопления активных форм кислорода (АК). Коэнзим Q10 синтезируется в организме из аминокислоты – тирозин при участии витаминов группы В и С, фолиевой и пантотеновой кислот, ряда микроэлементов. С возрастом биосинтез коэнзима Q10 прогрессивно снижается, а его расход при физических, эмоциональных нагрузках, в патогенезе различных заболеваний и окислительном стрессе возрастает [5].

Более чем 20–летний опыт клинических исследований применения коэнзима Q10 у тысяч больных убедительно доказывают роль его дефицита в патологии ССС, что не удивительно, так как именно в клетках сердечной мышцы наиболее велики энергетические потребности. Защитная роль коэнзима Q10 обусловлена его участием в процессах энергетического метаболизма кардиомиоцита и антиоксидантными свойствами. Уникальность обсуждаемого препарата – в его регенеративной способности под действием ферментных систем организма. Это отличает коэнзим Q10 от других антиоксидантов, которые, выполняя свою функцию, необратимо окисляются сами, требуя дополнительного введения [6].

Первый положительный клинический опыт в кардиологии по применению коэнзима Q10 был получен при лечении больных с дилатационной кардиомиопатией и пролапсом митрального клапана: были получены убедительные данные в улучшении диастолической функции миокарда. Диастолическая функция кардиомиоцита – энергоемкий процесс и при различных патологических состояниях ССС потребляет до 50% и более всей энергии, содержащейся в АТФ, синтезируемого в клетке, что определяет ее сильную зависимость от уровня коэнзима Q10.

Клинические исследования последних десятилетий показали терапевтическую эффективность коэнзима Q10 в комплексном лечении ИБС, артериальной гипертонии, атеросклероза и синдрома хронической усталости. Накопленный клинический опыт позволяет рекомендовать применение Q10 не только в качестве эффективного препарата в комплексной терапии СС заболеваний, но и как средство их профилактики.

Профилактическая доза Q10 для взрослых – 15 мг/сутки, лечебные дозы 30–150 мг/сутки, а в случаях интенсивной терапии – до 300–500 мг/сутки. Следует принять во внимание, что высокие лечебные дозы при оральном приеме коэнзима Q10 связаны с трудностью усвоения жирорастворимых веществ, поэтому в настоящее время для улучшения биодоступности создана водорастворимая форма убихинона.

Экспериментальные исследования показали профилактический и лечебный эффект коэнзима Q10 при реперфузионном синдроме, документируемые сохранением субклеточных структур кардиомиоцитов, подвергнутых ишемическому стрессу, и функции окислительного фосфорилирования Мх [5,6].

Клинический опыт применения коэнзима Q10 пока ограничен лечением детей с хроническими тахиаритмиями, синдромом удлиненного интервала QT, кардиомиопатиями, синдромом слабости синусового узла [14].

Таким образом, четкое представление о патофизиологических механизмах повреждения клеток тканей и органов, подвергнутых ишемическому стрессу, в основе которых лежат метаболические нарушения – перекисное окисление липидов, имеющих место при различных СС заболеваниях, диктуют необходимость включения антиоксидантов и антигипоксантов в комплексную терапию ургентных состояний.

1. Андриадзе Н.А., Сукоян Г.В., Отаришвили Н.О и др. Антигипоксант прямого действия энергостим в лечении ОИМ. Росс. Мед. Вести,2001,№2, 31–42.

2. Бояринов А.П., Пенкнович А.А., Мухина Н.В. Метаболические эффекты нейротропного действия актовегина в условиях гипоксии. Актовегин. Новые аспекты клинического применения. М., 2002, 10–14.

3. Джанашия П.Х., Проценко Е.А., Сороколетов С.М. Энергостим в лечении хронических форм ИБС. Росс. Кард. Ж., 1988,№5, 14–19.

4. Закирова А.Н. Корреляционные связи перикисного окисления липидов, антиоксидантной защиты и микрореологических нарушений в развитии ИБС. Тер.архив, 1966,№3, 37–40.

5. Капелько В.И., Рууге Э.К. Исследование действия коэнзима Q10 (убихинона) при ишемии и реперфузии сердца. Применение антиоксидантного препарата кудесан (коэнзим Q 10 с витамином Е) в кардиологии. М., 2002. 8–14.

6. Капелько В.И., Рууге Э.К. Исследования действия Кудесана при повреждении сердечной мышцы, вызванной стрессом. Применение антиоксидантного препарата кудесан (коэнзим Q10 c витамином Е) в кардиологии. М., 2002, 15–22.

7. Коган А.Х., Кудрин А.Н., Кактурский Л.В. и др. Свободнорадикальные перикисные механизмы патогенеза ишемии и ИМ и их фармакологическая регуляция. Патофизиология, 1992, №2, 5–15.

8. Коровина Н.А., Рууге Э.К. Использование коэнзима Q10 в профилактике и лечении. Применение антиоксидантного препарата кудесан (коэнзим Q10 с витамином Е) в кардиологии. М.,2002, 3–7.

9. Нордвик Б. Механизм действия и клиническое применение препарата актовегина. Актовегин. Новые аспекты клинического применения. М., 2002, 18–24.

11. Слепнева Л.В. Алексеева Н.И., Кривцова И.М. Острая ишемия органов и ранние постишемические расстройства. М., 1978, 468–469.

12. Смирнов А.В., Криворучка Б.И. Антигипоксанты в неотложной медицине. Анест. И реаниматол., 1998, №2, 50–57.

13. Шабалин А.В., Никитин Ю.П. Защита кардиомиоцита. Современное состояние и перспективы. Кардиология, 1999, №3, 4–10.

14. Школьникова М.А. Отчет Ассоциации детских кардиологов России по применению Кудесана. Применение антиоксидантного препарата кудесан (коэнзим Q10 с витамином Е) в кардиологии. М., 2002, 23.

Опубликовано с разрешения администрации Русского Медицинского Журнала.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *