Π§ΡΠΎ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π½Π° ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π΅
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΎΠ΄Π½Π° ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΏΡΠΈ ΠΈΡ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π² ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8 + 4 = 12. ΠΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, ΡΠΎ Π΅ΡΡΡ 12 = 12.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8 + x = 12, Ρ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΡΠ°ΠΊΠΈΠΌ, ΡΡΠΎΠ±Ρ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π±ΡΠ» ΠΎΠΏΡΠ°Π²Π΄Π°Π½, ΠΈ Π»Π΅Π²Π°Ρ ΡΠ°ΡΡΡ ΡΠ°Π²Π½ΡΠ»Π°ΡΡ ΠΏΡΠ°Π²ΠΎΠΉ.
Π‘ΡΠ΅ΠΏΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠΎΠΈΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅. ΠΡΠ»ΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΡΠΎΠΈΡ Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π·Π½Π°ΡΠΈΡ, ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ax 2 + bx + c = 0, Π³Π΄Π΅ a β ΠΏΠ΅ΡΠ²ΡΠΉ ΠΈΠ»ΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, Π½Π΅ ΡΠ°Π²Π½ΡΠΉ Π½ΡΠ»Ρ, b β Π²ΡΠΎΡΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, c β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
ΠΠΎΠ½ΡΡΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π² ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅ Ρ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π±ΡΠΊΠ²ΠΎΠΉ D.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ β ΠΎΡΠ»ΠΈΡΠ½ΡΠΉ ΠΏΠΎΠΌΠΎΡΠ½ΠΈΠΊ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
Π ΡΡΠΎΠΌ ΠΊΠ»ΡΡΠ΅ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΡΠ° ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π°ΠΆΠ΅ Π΄Π»Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΠΎ Π΅ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ β Π²ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΠΈΠ΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π§ΡΠΎΠ±Ρ Π² Π½ΠΈΡ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ, ΡΠΎΡ ΡΠ°Π½ΡΠΉΡΠ΅ ΡΠ°Π±Π»ΠΈΡΠΊΡ ΠΈΠ»ΠΈ ΡΠ°ΡΠΏΠ΅ΡΠ°ΡΠ°ΠΉΡΠ΅ Π΅Π΅ ΠΈ Ρ ΡΠ°Π½ΠΈΡΠ΅ Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ΅.
ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
Π 8 ΠΊΠ»Π°ΡΡΠ΅ Π½Π° Π°Π»Π³Π΅Π±ΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠ΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΡ ΠΏΠΎ ΠΏΠΎΠΈΡΠΊΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π²Π°ΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΡΠΌΡΠ» Π½Π°ΠΉΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΡΠ±Π΅Π΄ΠΈΡΡΡΡ, ΡΡΠΎ ΠΎΠ½ Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ. Π’ΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, Π·Π½Π°ΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ax 2 + bx + c = 0:
Π Π²ΠΎΡ ΠΈ Π΅ΡΠ΅ ΠΎΠ΄Π½Π° ΡΠ°Π±Π»ΠΈΡΠΊΠ°: Π² Π½Π΅ΠΉ Π²Ρ Π½Π°ΠΉΠ΄Π΅ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Ρ Π»Π΅Π³ΠΊΠΎΡΡΡΡ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ, Π²Π°ΠΆΠ½ΠΎ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠ²Π°ΡΡΡΡ. ΠΠΏΠ΅ΡΠ΅Π΄!
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΡΠ²Π΅Ρ: ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ 3.
Π Π°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ Ρ ΠΊΠ»Π°ΡΡΠ½ΡΠΌ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Π΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² Skysmart.
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ
8 ΠΊΠ»Π°ΡΡ, 9 ΠΊΠ»Π°ΡΡ, ΠΠΠ/ΠΠΠ
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Β«yΒ» ΠΎΡ Β«xΒ», ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Β«xΒ» ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Β«yΒ» β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠ³Π΄Π° Π²ΠΌΠ΅ΡΡΠΎ Β«xΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π² ΡΡΠ½ΠΊΡΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΡΠ΅ Π±ΡΡΡΡΠ΅Π΅ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΡΠ΅ΠΌΠ΅ ΠΈ Π½Π°ΡΡΠΈΡΡΡΡ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠΊΠΎΠ»Π΅ Skysmart.
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π·Π°Π΄Π°Π΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ y = ax 2 + bx + c, Π³Π΄Π΅ x ΠΈ y β ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅, a, b, c β Π·Π°Π΄Π°Π½Π½ΡΠ΅ ΡΠΈΡΠ»Π°, ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ β a β 0. Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅:
ΠΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ β ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΠΈΠ΄ Π΄Π»Ρ y = x 2 :
ΠΡΠ»ΠΈ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ ΡΡ ΠΆΠ΅ ΡΠΎΡΠΌΡ, ΠΊΠ°ΠΊ y = x 2 ΠΏΡΠΈ Π»ΡΠ±ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ².
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = βx 2 Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠ½ΡΡΠ°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°:
ΠΠ°ΡΠΈΠΊΡΠΈΡΡΠ΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π±Π°Π·ΠΎΠ²ΡΡ ΡΠΎΡΠ΅ΠΊ Π² ΡΠ°Π±Π»ΠΈΡΠ΅:
ΠΠΎΡΠΌΠΎΡΡΠ΅Π² Π½Π° ΠΎΠ±Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ ΠΈΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΠ₯. ΠΡΠΌΠ΅ΡΠΈΠΌ Π²Π°ΠΆΠ½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΈ ΡΠ»ΡΡΠ°Ρ:
ΠΡΠ»ΠΈ a > 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΠΊΠ°ΠΊ-ΡΠΎ ΡΠ°ΠΊ:
0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>
ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ Π²ΡΡΠ΅ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ½ΠΎ, ΡΡΠΎ Π·Π½Π°Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²Π΅ΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΈ Π·Π½Π°ΠΊ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, Ρ Π½Π°Ρ Π΅ΡΡΡ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΠΊΠ°ΠΊ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΡΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ:
ΠΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ β ΠΏΡΡΠΌΠ°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ OY.
Π§ΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ, Π½Π°ΠΌ Π½ΡΠΆΠ½Π° ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΡ OY. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π°Π±ΡΡΠΈΡΡΠ° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΎΡΠΈ OY ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ y = ax 2 + bx + c Ρ ΠΎΡΡΡ OY, Π½ΡΠΆΠ½ΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΌΠ΅ΡΡΠΎ Ρ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π½ΠΎΠ»Ρ: y(0) = c. Π’ΠΎ Π΅ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ Π±ΡΠ΄ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ: (0; c).
ΠΠ° ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ±ΡΠ°ΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ Π·Π°Π΄Π°Π½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ y = ax 2 + bx + c.
ΠΠ°ΠΊ ΡΡΡΠΎΠΈΠΌ:
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ ΠΠ₯. Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ, ΡΠ΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΠ°ΠΊ ΡΡΡΠΎΠΈΠΌ:
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ y = (x + a) Γ (x + b)
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΏΡΠΈΠΌΠ΅Ρ: y = (x β 2) Γ (x + 1).
ΠΠ°ΠΊ ΡΡΡΠΎΠΈΠΌ:
ΠΠ°Π½Π½ΡΠΉ Π²ΠΈΠ΄ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π±ΡΡΡΡΠΎ Π½Π°ΠΉΡΠΈ Π½ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ:
(x β 2) Γ (x + 1) = 0, ΠΎΡΡΡΠ΄Π° Ρ β = 2, Ρ β = β1.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ:
ΠΠ°ΠΉΡΠΈ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ OY:
Ρ = ab = (β2) Γ (1) = β2 ΠΈ Π΅ΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½Π°Ρ.
ΠΡΠΌΠ΅ΡΠΈΠΌ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΏΠ»Π°Π²Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π½Π°Π·ΡΠ²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \(b^<2>-4ac\), Π³Π΄Π΅ \(a, b\) ΠΈ \(c\) β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π°.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° \(3x^2+2x-7\), Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ \(2^2-4\cdot3\cdot(-7)=4+84=88\). Π Π΄Π»Ρ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° \(x^2-5x+11\), ΠΎΠ½ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ \((-5)^2-4\cdot1\cdot11=25-44=-19\).
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
— Π΅ΡΠ»ΠΈ \(D\) ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π΅Π½ β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ;
— Π΅ΡΠ»ΠΈ \(D\) ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ β ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ;
— Π΅ΡΠ»ΠΈ \(D\) ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½ β ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π΅Π½
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Π½Π΅Π³ΠΎ β ΡΡΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, Π° Π·Π½Π°ΡΠΈΡ \(x_<1>\) ΠΈ \(x_<2>\) Π±ΡΠ΄ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½Ρ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π²Π΅Π΄Ρ Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅ \(\sqrt
ΠΡΠΈΠΌΠ΅Ρ: ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(x^2+2x-3=0\)
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ \(D=b^2-4ac\)
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ ΠΈΠ·-Π·Π° ΡΠ°Π·Π½ΡΡ
Π·Π½Π°ΠΊΠΎΠ² ΠΏΠ΅ΡΠ΅Π΄ \(\sqrt
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ
Π ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ, Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ? ΠΠ°Π²Π°ΠΉΡΠ΅ ΡΠ°ΡΡΡΠΆΠ΄Π°ΡΡ.
Π’ΠΎ Π΅ΡΡΡ, Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π±ΡΠ΄ΡΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π½ΡΠ»Ρ Π½ΠΈΡΠ΅Π³ΠΎ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ: ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(x^2-4x+4=0\)
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ \(D=b^2-4ac\)
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ Π΄Π²Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΠΊΠΎΡΠ½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Π½Π΅Ρ ΡΠΌΡΡΠ»Π° ΠΏΠΈΡΠ°ΡΡ ΠΈΡ ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΡΡΠΈ β Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½.
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈΠ·Π²Π»Π΅ΡΡ Π½Π΅Π»ΡΠ·Ρ (Ρ.ΠΊ. ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° β Π½Π΅Π²ΡΡΠΈΡΠ»ΠΈΠΌ), Π° Π·Π½Π°ΡΠΈΡ ΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΡ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ.
ΠΡΠΈΠΌΠ΅Ρ: ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(x^2+x+3=0\)
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ \(D=b^2-4ac\)
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ±Π° ΠΊΠΎΡΠ½Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ Π½Π΅Π²ΡΡΠΈΡΠ»ΠΈΠΌΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \(\sqrt<-11>\), Π·Π½Π°ΡΠΈΡ, ΠΈ ΡΠ°ΠΌΠΈ Π½Π΅ Π²ΡΡΠΈΡΠ»ΠΈΠΌΡ
Π’ΠΎ Π΅ΡΡΡ, ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΊΠΎΡΠ½Π΅ΠΉ Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ β Π½Π΅ ΡΡΡ-ΡΠΎ ΡΠ»ΡΡΠ°ΠΉΠ½Π°Ρ ΠΏΡΠΈΠ΄ΡΠΌΠΊΠ°. ΠΡΠΎ Π½Π΅ ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Β«Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ΅ ΡΠ°ΠΊ Π½Π°ΠΏΠΈΡΠ°Π½ΠΎΒ», Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠ°Π²Π΄Π°: Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΡΠΎΠ± ΠΏΡΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π΅Π³ΠΎ Π²ΠΌΠ΅ΡΡΠΎ ΠΈΠΊΡΠ° Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \(x^2+x+3\) ΠΏΠΎΠ»ΡΡΠΈΠ»ΡΡ Π½ΠΎΠ»Ρ.
ΠΠ°ΡΡ Π°ΠΊ: Π·Π°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π²Ρ ΡΠ΅ΡΠ°Π΅ΡΠ΅ ΠΎΠ±ΡΡΠ½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΠ΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΡΠΎΠΈΡ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΅ΡΠ΅ ΡΠ°Π·, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΎ Π½Π΅ ΡΠ°ΡΡΠ°Ρ ΡΠΈΡΡΠ°ΡΠΈΡ Π² ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΌ ΠΊΡΡΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ.
ΠΡ, Π° Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ°Ρ Π²ΡΠ΅ ΠΏΡΠΎΡΡΠΎ: Π½Π΅Ρ ΠΊΠΎΡΠ½Π΅ΠΉ β Π½Π΅Ρ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ ΠΈΠΊΡ!
ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΈ Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ
Π ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΌΡ ΠΏΠΎΠ³ΠΎΠ²ΠΎΡΠΈΠΌ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, Π½Π°ΡΡΠΈΠΌΡΡ ΡΡΡΠΎΠΈΡΡ Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Π²ΠΈΠ΄ Π³ΡΠ°ΡΠΈΠΊΠ° Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π·Π½Π°ΠΊΠ° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈ Π·Π½Π°ΠΊΠ° ΡΡΠ°ΡΡΠ΅Π³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°.
ΠΡΠ°ΠΊ.
Π€ΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π° , Π³Π΄Π΅
0″ title=»a<>0″/>
Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ.
Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°, ΠΊΠΎΡΠΎΡΠ°Ρ Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅! ΠΡΠ»ΠΈ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ , ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΠ²Π½ΠΎ ΡΠ°ΠΊΡΡ ΠΆΠ΅ ΡΠΎΡΠΌΡ, ΠΊΠ°ΠΊ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΏΡΠΈ Π»ΡΠ±ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ
ΠΎΡΡΠ°Π»ΡΠ½ΡΡ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ².
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π±Π°Π·ΠΎΠ²ΡΡ ΡΠΎΡΠ΅ΠΊ ΡΠΎΡΡΠ°Π²ΠΈΠΌ ΡΠ°Π±Π»ΠΈΡΡ:
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΠΠ₯.
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° (Ρ) Π»ΡΠ±ΠΎΠΉ ΡΠΎΡΠΊΠΈ, Π»Π΅ΠΆΠ°ΡΠ΅ΠΉ Π½Π° ΠΎΡΠΈ ΠΠ₯ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΎΡΡΡ ΠΠ₯, Π½ΡΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅
.
Π ΡΠ»ΡΡΠ°Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½ΡΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅
.
Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ: , ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΡΠΈΡΠ»ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
Π Π·Π΄Π΅ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ ΡΡΠΈ ΡΠ»ΡΡΠ°Ρ:
1. ΠΡΠ»ΠΈ ,ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅
Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°
Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ ΠΠ₯. ΠΡΠ»ΠΈ
0″ title=»a>0″/>
,ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΠΊΠ°ΠΊ-ΡΠΎ ΡΠ°ΠΊ:
2. ΠΡΠ»ΠΈ ,ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅
ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄Π½ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅, ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π°
ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄Π½Ρ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ ΠΠ₯. ΠΡΠ»ΠΈ
0″ title=»a>0″/>
,ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°ΠΊ:
,
ΠΡΠ»ΠΈ 0″ title=»a>0″/>
,ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°ΠΊ:
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π·Π½Π°Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²Π΅ΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΈ Π·Π½Π°ΠΊ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, ΠΌΡ ΡΠΆΠ΅ ΠΌΠΎΠΆΠ΅ΠΌ Π² ΠΎΠ±ΡΠΈΡ ΡΠ΅ΡΡΠ°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΠΊΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π°ΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΡΠΌΠ°Ρ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ OY ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π°Π±ΡΡΠΈΡΡΠ° Π»ΡΠ±ΠΎΠΉ ΡΠΎΡΠΊΠΈ, Π»Π΅ΠΆΠ°ΡΠ΅ΠΉ Π½Π° ΠΎΡΠΈ OY ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΡ OY, Π½ΡΠΆΠ½ΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π²ΠΌΠ΅ΡΡΠΎ Ρ
ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π½ΠΎΠ»Ρ:
.
Π’ΠΎ Π΅ΡΡΡ ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΡ OY ΠΈΠΌΠ΅Π΅Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ (0;c).
ΠΡΠ°ΠΊ, ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ. Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π·Π°Π΄Π°Π½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ±ΡΠ°ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΡΠΉ.
1. Π€ΡΠ½ΠΊΡΠΈΡ Π·Π°Π΄Π°Π½Π° ΡΠΎΡΠΌΡΠ»ΠΎΠΉ .
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΠ±ΡΠΈΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
1. ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²Π΅ΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
Π’Π°ΠΊ ΠΊΠ°ΠΊ 0″ title=»a=2>0″/>
,Π²Π΅ΡΠ²ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ
.
2. ΠΠ°ΠΉΠ΄Π΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ
ΡΠ»Π΅Π½Π°
0″ title=»D=b^2-4ac=9-4*2*(-5)=49>0″/>
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ ΠΠ₯.
ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΈΡ
ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ, ΡΠ΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
,
3. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ:
4. Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΡ OY: (0;-5),ΠΈ Π΅ΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½Π°Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
ΠΠ°Π½Π΅ΡΠ΅ΠΌ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ, ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈΡ ΠΏΠ»Π°Π²Π½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ:
ΠΡΠΎΡ ΡΠΏΠΎΡΠΎΠ± ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ.
1. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
2. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ, ΡΡΠΎΡΡΠΈΡ ΡΠΏΡΠ°Π²Π° ΠΈ ΡΠ»Π΅Π²Π° ΠΎΡ Π²Π΅ΡΡΠΈΠ½Ρ.
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ
ΠΠ»ΠΈΠΆΠ°ΠΉΡΠΈΠ΅ ΠΊ Π²Π΅ΡΡΠΈΠ½Π΅ ΡΠΎΡΠΊΠΈ, ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΠ΅ ΡΠΏΡΠ°Π²Π° ΠΈΠΌΠ΅ΡΡ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ 0;1;2
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ ΠΈ Π·Π°Π½Π΅ΡΠ΅ΠΌ ΠΈΡ Π² ΡΠ°Π±Π»ΠΈΡΡ:
ΠΠ°Π½Π΅ΡΠ΅ΠΌ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΏΠ»Π°Π²Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ:
ΠΠΎΡΡΡΠΎΠΈΠΌ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ .
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ. Π§ΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ , Π½ΡΠΆΠ½ΠΎ
ΠΡΠ΄Π΅Π»ΠΈΠΌ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»Π½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°Ρ:
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ: . Π‘ΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ 1, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠΎΡΡΡΠΎΠΈΠΌ ΠΏΠΎ ΡΠ°Π±Π»ΠΎΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ Π²Π΅ΡΡΠΈΠ½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅ (-2;1):
ΠΠΎΡΡΡΠΎΠΈΠΌ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y=(x-2)(x+1)
(Ρ
-2)(Ρ
+1)=0, ΠΎΡΡΡΠ΄Π°
2. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ:
3. Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ OY: Ρ=ab=(-2)(1)=-2 ΠΈ Π΅ΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½Π°Ρ.
ΠΠ°Π½Π΅ΡΠ΅ΠΌ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ ΠΈ ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ:
ΠΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ΅ΡΠ΅Π΄ Π²Π°ΠΌΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° .
ΠΠ»ΠΈΠΊΠ½ΠΈΡΠ΅ ΠΏΠΎ ΡΠ΅ΡΡΠ΅ΠΆΡ.
ΠΠΎΠ΄Π²ΠΈΠ³Π°ΠΉΡΠ΅ Π΄Π²ΠΈΠΆΠΊΠΈ.
ΠΡΡΠ»Π΅Π΄ΡΠΉΡΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ
— ΡΠΈΡΠΈΠ½Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°
,
— ΡΠ΄Π²ΠΈΠ³Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ
ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ
,
— ΡΠ΄Π²ΠΈΠ³Π° Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ
ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ
— Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²Π΅ΡΠ²Π΅ΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΎΡ Π·Π½Π°ΠΊΠ° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°
— ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π²Π΅ΡΡΠΈΠ½Ρ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ
ΠΈ
:
Π.Π. Π€Π΅Π»ΡΠ΄ΠΌΠ°Π½, ΡΠ΅ΠΏΠ΅ΡΠΈΡΠΎΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅.