Что показывает доверительный интервал математического ожидания
Что показывает доверительный интервал математического ожидания
I 331. Игральная кость подбрасывается 300 раз. Какова вероятность того, что относительная частота появления шести очков на верхней грани кости отклонится от вероятности появления события в одном испытании по абсолютной величине не более чем на 0,05?
332. Сколько раз надо подбросить монету, чтобы с вероятностью 0,95 можно было ожидать, что относительная частота появления «герба» отклонится от вероятности этого события по абсолютной величине не более чем на 0,1?
334. Исследовалось время безотказной работы 50 лазерных принтеров. Из априорных наблюдений известно, что среднее квадратическое отклонение времени безотказной работы ч. По результатам исследований получено среднее время безотказной работы ч. Постройте 90%-й доверительный интервал для среднего времени безотказной работы.
336. Произведено 16 измерений одним прибором некоторой физической величины, причем исправленное среднее квадратическое отклонение случайных ошибок измерений оказалось равным 0,7. Найдите интервал ошибок прибора с надежностью 0,99. Предполагается, что ошибки измерений распределены нормально.
II 337. Время (в минутах) обслуживания клиентов в железнодорожной кассе представлено выборкой: 2,0; 1,5; 1,0; 1,0; 1,25; 3,5; 3,0; 3,0; 3.75; 3,7; 4,0; 6,0; 7,0; 1,5; 8,0; 3,5; 5,0; 3,5; 14,0; 12,0; 15,1; 18,0; 18,5; 17,0. Определите процент клиентов, время обслуживания которых более 12 минут и менее 5 минут.
338. Из генеральной совокупности извлечена выборка объема :
-0,4 | -0,2 | -0,1 | 0 | 0,2 | 0,5 | 0,7 | 1 | 1,2 | 1,6 |
1 | 3 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 |
Оцените с надежностью 0,9 математическое ожидание нормально распределенного признака генеральной совокупности с помощью доверительного интервала.
III 339. Результаты исследования длительности оборота оборотных средств торговых фирм города (в днях) представлены в группированном виде:
24-33 | 33-42 | 42-51 | 51-60 | 60-69 | 69-78 | 78-87 |
1 | 4 | 9 | 18 | 10 | 6 | 2 |
Постройте доверительный интервал с надежностью 0,95 для средней длительности оборотных средств торговых фирм города при условии, что среднее квадратическое отклонение неизвестно (известно и равно 10 дням).
340. Найти методом наибольшего правдоподобия оценку параметра распределения Пуассона
Доверительный интервал для математического ожидания
Точечная и интервальная оценки среднего значения
,
.
Формулу доверительного интервала можно использовать для оценки среднего генеральной совокупности, если
Среднее значение выборки является несмещённой оценкой среднего генеральной совокупности
. В свою очередь, дисперсия выборки
не является несмещённой оценкой дисперсии генеральной совокупности
. Для получения несмещённой оценки дисперсии генеральной совокупности в формуле дисперсии выборки объём выборки n следует заменить на n-1.
Пример 1. Собрана информация из 100 случайно выбранных кафе в некотором городе о том, что среднее число работников в них составляет 10,5 со стандартным отклонением 4,6. Определить доверительный интервал 95% числа работников кафе.
,
Таким образом, доверительный интервал 95% среднего числа работников кафе составил от 9,6 до 11,4.
Пример 2. Для случайной выборки из генеральной совокупности из 64 наблюдений вычислены следующие суммарные величины:
сумма значений в наблюдениях ,
сумма квадратов отклонения значений от среднего .
Вычислить доверительный интервал 95 % для математического ожидания.
вычислим стандартное отклонение:
,
вычислим среднее значение:
.
Подставляем значения в выражение для доверительного интервала:
.
.
Таким образом, доверительный интервал 95% для математического ожидания данной выборки составил от 7,484 до 11,266.
Пример 3. Для случайной выборки из генеральной совокупности из 100 наблюдений вычислено среднее значение 15,2 и стандартное отклонение 3,2. Вычислить доверительный интервал 95 % для математического ожидания, затем доверительный интервал 99 %. Если мощность выборки и её вариация остаются неизменными, а увеличивается доверительный коэффициент, то доверительный интервал сузится или расширится?
Подставляем данные значения в выражение для доверительного интервала:
.
.
Таким образом, доверительный интервал 95% для среднего данной выборки составил от 14,57 до 15,82.
Вновь подставляем данные значения в выражение для доверительного интервала:
.
.
Таким образом, доверительный интервал 99% для среднего данной выборки составил от 14,37 до 16,02.
Как видим, при увеличении доверительного коэффициента увеличивается также критическое значение стандартного нормального распределения, а, следовательно, начальная и конечная точки интервала расположены дальше от среднего, и, таким образом, доверительный интервал для математического ожидания увеличивается.
Точечная и интервальная оценки удельного веса
.
Таким образом, доверительный интервал 95% удельного веса горожан, поддерживающих кандидата A, составил от 0,391 до 0,529.
1 | 0 | 0 | 1 | 2 |
0 | 1 | 0 | 2 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 |
0 | 2 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 |
2 | 2 | 0 | 0 | 1 |
1 | 0 | 2 | 0 | 0 |
0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 1 |
Найти доверительный интервал 95 % удельного веса покупателей, которым новый квас не понравился.
Таким образом, доверительный интервал 95% удельного веса покупателей, которым новый квас не понравился, составил от 0,45 до 0,71.
Доверительные интервалы
Определение
Доверительные интервалы (англ. Confidence Intervals) одним из типов интервальных оценок используемых в статистике, которые рассчитываются для заданного уровня значимости. Они позволяют сделать утверждение, что истинное значение неизвестного статистического параметра генеральной совокупности находится в полученном диапазоне значений с вероятностью, которая задана выбранным уровнем статистической значимости.
Нормальное распределение
Когда известна вариация (σ 2 ) генеральной совокупности данных, для расчета доверительных пределов (граничных точек доверительного интервала) может быть использована z-оценка. По сравнению с применением t-распределения, использование z-оценки позволит построить не только более узкий доверительный интервал, но и получить более надежные оценки математического ожидания и среднеквадратического (стандартного) отклонения (σ), поскольку Z-оценка основывается на нормальном распределении.
Формула
Для определения граничных точек доверительного интервала, при условии что известно среднеквадратическое отклонение генеральной совокупности данных, используется следующая формула
где X – математическое ожидание выборки, α – уровень статистической значимости, Zα/2 – Z-оценка для уровня статистической значимости α/2, σ – среднеквадратическое отклонение генеральной совокупности, n – количество наблюдений в выборке. При этом, σ/√ n является стандартной ошибкой.
Таким образом, доверительный интервал для уровня статистической значимости α можно записать в виде
Пример
Предположим, что размер выборки насчитывает 25 наблюдений, математическое ожидание выборки равняется 15, а среднеквадратическое отклонение генеральной совокупности составляет 8. Для уровня значимости α=5% Z-оценка равна Zα/2=1,96. В этом случае нижняя и верхняя граница доверительного интервала составят
А сам доверительный интервал может быть записан в виде
Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности попадет в диапазон от 11,864 до 18,136.
Методы сужения доверительного интервала
Допустим, что диапазон [11,864; 18,136] является слишком широким для целей нашего исследования. Уменьшить диапазон доверительного интервала можно двумя способами.
Снизив уровень статистической значимости до α=10%, мы получим Z-оценку равную Zα/2=1,64. В этом случае нижняя и верхняя граница интервала составят
А сам доверительный интервал может быть записан в виде
В этом случае, мы можем сделать предположение, что с вероятностью 90% математическое ожидание генеральной совокупности попадет в диапазон [12,376; 17,624].
Если мы хотим не снижать уровень статистической значимости α, то единственной альтернативой остается увеличение объема выборки. Увеличив ее до 144 наблюдений, получим следующие значения доверительных пределов
Сам доверительный интервал станет иметь следующий вид
Таким образом, сужение доверительного интервала без снижения уровня статистической значимости возможно только лишь за счет увеличения объема выборки. Если увеличение объема выборки не представляется возможным, то сужение доверительного интервала может достигаться исключительно за счет снижения уровня статистической значимости.
Построение доверительного интервала при распределении отличном от нормального
В случае если среднеквадратичное отклонение генеральной совокупности не известно или распределение отлично от нормального, для построения доверительного интервала используется t-распределение. Это методика является более консервативной, что выражается в более широких доверительных интервалах, по сравнению с методикой, базирующейся на Z-оценке.
Формула
Для расчета нижнего и верхнего предела доверительного интервала на основании t-распределения применяются следующие формулы
где X – математическое ожидание выборки, α – уровень статистической значимости, tα – t-критерий Стьюдента для уровня статистической значимости α и количества степеней свободы (n-1), σ – среднеквадратическое отклонение выборки, n – количество наблюдений в выборке.
Сам доверительный интервал может быть записан в следующем виде
Распределение Стьюдента или t-распределение зависит только от одного параметра – количества степеней свободы, которое равно количеству индивидуальных значений признака (количество наблюдений в выборке). Значение t-критерия Стьюдента для заданного количества степеней свободы (n) и уровня статистической значимости α можно узнать из справочных таблиц.
Пример
Предположим, что размер выборки составляет 25 индивидуальных значений, математическое ожидание выборки равно 50, а среднеквадратическое отклонение выборки равно 28. Необходимо построить доверительный интервал для уровня статистической значимости α=5%.
В нашем случае количество степеней свободы равно 24 (25-1), следовательно соответствующее табличное значение t-критерия Стьюдента для уровня статистической значимости α=5% составляет 2,064. Следовательно, нижняя и верхняя граница доверительного интервала составят
А сам интервал может быть записан в виде
Таким образом, мы можем утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне [38,442; 61,558].
Использование t-распределения позволяет сузить доверительный интервал либо за счет снижения статистической значимости, либо за счет увеличения размера выборки.
Снизив статистическую значимость с 95% до 90% в условиях нашего примера мы получим соответствующее табличное значение t-критерия Стьюдента 1,711.
В этом случае мы можем утверждать, что с вероятностью 90% математическое ожидание генеральной совокупности окажется в диапазоне [40,418; 59,582].
Если мы не хотим снижать статистическую значимость, то единственной альтернативой будет увеличение объема выборки. Допустим, что он составляет 64 индивидуальных наблюдения, а не 25 как в первоначальном условии примера. Табличное значение t-критерия Стьюдента для 63 степеней свободы (64-1) и уровня статистической значимости α=5% составляет 1,998.
Это дает нам возможность утверждать, что с вероятностью 95% математическое ожидание генеральной совокупности окажется в диапазоне [43,007; 56,993].
Выборки большого объема
К выборкам большого объема относятся выборки из генеральной совокупности данных, количество индивидуальных наблюдений в которых превышает 100. Статистические исследования показали, что выборки большего объема имеют тенденцию быть нормально распределенными, даже если распределение генеральной совокупности отличается от нормального. Кроме того, для таких выборок применение z-оценки и t-распределения дают примерно одинаковые результаты при построении доверительных интервалов. Таким образом, для выборок большого объема допускается применение z-оценки для нормального распределения вместо t-распределения.
Подведем итоги
В таблице собраны рекомендации по выбору методики построения доверительных интервалов для различных ситуаций.
Доверительный интервал для вероятности события:
Пусть вероятность
По заданному уровню надежности из таблицы функции Лапласа (см. прил., табл. П2) можно найти такое
что
Правая часть равенства (3.2.1) будет равна
, если
откуда При подстановке такого
в (3.2.1) получается равенство
К сожалению, в формуле (3.2.2) доверительные границы для вероятности выражаются через саму эту неизвестную вероятность. Это затруднение можно обойти, заметив, что
Тогда формулу (3.2.2) можно записать в виде
Оценка величиной 1/4 приемлема, если есть уверенность, что неизвестная вероятность
близка к 1/2. Но при значениях p близких к 0 или 1 такая оценка слишком груба. Например, при
получаем всего лишь
вместо 0,25. Можно точный доверительный интервал заменить приближенным, если учесть, что при большом числе опытов
Тогда из (3.2.2) следует, что
Пример:
Для обследования большой партии изделий (несколько тысяч штук) наугад выбрано 160 изделий. Среди них оказалось 56 изделий низкого сорта. Оценить долю изделий низкого сорта в этой партии с надежностью 0,95.
Решение. Так как партия изделий крупная, то для упрощения можно считать, что по мере выбора изделий состав партии заметно не изменяется и вероятность выбрать наугад изделие низкого сорта равна доле низкосортных изделий в этой партии. Тогда задача сводится к построению доверительного интервала для вероятности выбрать из этой партии изделие низкого сорта. Частота изделий низкого сорта в выборке равна Из таблицы функции Лапласа (см. прил., табл. П2) следует, что
Поэтому
или Итак, по данной выборке можно с вероятностью 0,95 утверждать, что во всей партии содержится от 27% до 42% изделий низкого сорта.
Пример:
Было проведено 400 испытаний механизма катапультирования. В этих испытания не зарегистрировано ни одного отказа. С надежностью 0,95 оценить вероятность отказа механизма катапультирования.
Решение. В данной серии испытаний частота появления отказа Поэтому непосредственно использовать формулу (3.2.4) нельзя. Заметим, что
так как
Функция Лапласа
строго возрастает. Поэтому меньшему значению аргумента соответствует меньшее значение функции. В расчете на худший вариант можно воспользоваться формулой (3.2.3). По таблице функции Лапласа (см. прил., табл. П2) находим, что
Поэтому
и
Еще раз подчеркнем, что доверительный интервал (3.2.3) построен в расчете на худший вариант, когда вероятность события близка к Но большое число опытов
и нулевая частота события в них позволяют с уверенностью утверждать, что вероятность события близка к нулю. Если несколько ухудшить статистику испытаний и посчитать что один отказ все-таки наблюдался, то
Тогда по формуле (3.2.4) получаем приближенный доверительный интервал
или Это приближенный доверительный интервал, но он определенно более точен, чем грубая оценка по формуле (3.2.3).
Ответ.
Пример:
При штамповке 70% деталей выходит первым сортом, 20% – вторым и 10% – третьим. Определить, сколько нужно взять деталей, чтобы с вероятностью равной 0,997 можно было утверждать, что доля первосортных среди них будет отличаться от вероятности изготовления первосортной детали не более чем на 0,05 в ту или другую сторону? Ответить на тот же вопрос, если процент первосортных деталей неизвестен.
Решение. Изготовление каждой детали можно считать независимым испытанием с вероятностью «успеха» Нужно выбрать такое число испытаний
чтобы по формуле (3.2.1):
По таблице функции Лапласа (см. прил., табл. П2) находим, что Тогда
откуда
Если процент первосортных деталей неизвестен, то
Учитывая, что и замену
на 1/4 придется компенсировать некоторым увеличением
получим
или
Доверительные вероятности, доверительные интервалы
В материалах сегодняшней лекции мы рассмотрим доверительные вероятности и доверительные интервалы.
При статистической обработке результатов наблюдений необходимо знать не только точечную оценку параметра
, но и уметь оценить точность этой оценки. Для этого введём понятие доверительного интервала.
Доверительным интервалом для параметра называется интервал содержащий значение
с заданной вероятностью
.
Число называется доверительной вероятностью.
Пусть -заданное число (оно обычно равно 0,8, 0,9,
0,95. ).
Так как ТО
интервал содержит (накрывает) значение
(рис. 1).
Интервал — это доверительный интервал для параметра
.
Покажем, как найти доверительный интервал для математического ожидания с заданной доверительной вероятностью
Пусть точечная оценка математического ожидания.
Используя центральную предельную теорему, можно считать, что случайная величина для больших п распределена по нормальному закону, а значит вероятности можно считать, используя функцию Лапласа Ф(х).
Тогда
Отсюда
Здесь находится по таблице Лапласа в обратном порядке: по
значению функции Ф(х) находится аргумент
Таким образом, доверительный интервал для математического ожидании имеет вид
Заключение по лекции:
В лекции мы рассмотрели доверительные вероятности и доверительные интервалы.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.