Что показывает интенсивный показатель
Что показывает интенсивный показатель
В процессе эпидемиологического анализа приходится постоянно оперировать также такими статистическими понятиями, как интенсивные и экстенсивные показатели, средние величины и т.д.
Экстенсивный показатель — это доля определенного варианта того признака, который в той или другой разновидности встречается во всех изучаемых случаях. Обычно он выражается в процентах. Экстенсивные показатели взаимозависимы: если в изучаемой группе психически больных (то, что все составляющие группу лица, психически больные — это признак) случаи шизофрении (диагноз — вариант этого признака) составляют 60 %, то на прочие заболевания придется 40 %.
Интенсивный показатель — это мера частоты определенного признака среди тех случаев, в которых этот признак может быть, а может и не быть. Если мы говорим, что распространенность шизофрении среди населения составляет 1 на 1000, то это интенсивный показатель. Он не зависит от других интенсивных показателей: среди населения может быть сколько угодно больных с другими заболеваниями и здоровых, а показатель распространенности шизофрении при этом не изменится.
Использование экстенсивных и интенсивных показателей зависит от задачи исследования. Если нужно решить, как распределить имеющийся коечный фонд для лечения пациентов разного возраста, то нужны экстенсивные показатели, характеризующие возраст больных: сколько процентов среди них составляют дети, лица среднего и лица пожилого возраста. Если же нас интересует, у кого чаще отмечаются психические расстройства — у детей, людей старшего возраста или у стариков, то экстенсивные показатели ничего не дадут: может случиться, что процент пожилых среди пациентов будет очень высоким, потому что в городе значительную часть населения составляют пожилые люди. Для решения этой задачи необходимы интенсивные показатели: сколько приходится больных на 1000 детского населения, на 1000 пожилого населения и на 1000 населения среднего возраста. Тогда сравнение будет адекватным.
Средняя величина (точнее среднее арифметическое) — одно из самых частых понятий, используемых в эпидемиологических исследованиях. Говорят о средней длительности пребывания больного на койке, среднем числе посещений диспансера в день, средней длительности ремиссий и о множестве других средних величин. Не останавливаясь на вычислении среднего арифметического, рассмотрим вопрос о содержательном значении средней величины.
Если утверждается, что, например, средний рост мужчины составляет 175 см, то смысл этого утверждения очень глубок. Существует фундаментальная причина, определяющая именно эту величину: рост — генетически обусловленный признак (именно поэтому мужчины в среднем выше женщин).
Врач сталкивается с множеством подобных явлений. Это размеры и масса живых существ, длительность пребывания больного на койке, количество препарата, нужное для лечения определенного расстройства, и во всех этих случаях средняя величина имеет совершенно четкий смысл: она указывает, что причина явления определяет именно эту характеризующую его величину, а все отклонения от нее определяются влиянием случайностей.
Статистическое распределение количественных характеристик отдельных случаев, относящихся к подобному явлению, всегда бывает так называемым гауссовским, или нормальным (рис. 25). Если желательно использовать для характеристики каких-то данных их среднюю величину, следует проверить, соответствует ли распределение этих данных нормальному; если да, то применение средней величины оправдано, она имеет смысл: именно средняя величина определяется основной причиной изучаемого явления. Однако часто при такой проверке обнаруживается, что данные распределяются иначе. В частности, длительность многих психопатологических состояний имеет экспоненциальное (а не нормальное) распределение, которое свидетельствует о том, что количественная характеристика каждого отдельного наблюдения случайна. Средняя величина в таких случаях не имеет содержания. Именно поэтому в ядерной физике не употребляют понятие «среднее время распада ядер» радиоактивного вещества, а говорят о «периоде полураспада», т.е. о времени, за которое распадается половина всех имеющихся ядер. Подобно этому не следует характеризовать средними величинами и длительность психопатологических синдромов.
При эпидемиологических исследованиях часто сравнивают две выборки (или более). При этом может возникнуть проблема их несопоставимости (например, выборки очень различаются по возрастной структуре, что мешает решить поставленную задачу). В таких случаях помогает метод стандартизации данных, описанный, например, Н.А.Вигдорчиком (1945). Смысл этого метода заключается в том, что искусственно устраняется различие между выборками по всем факторам, кроме изучаемого.
С проблемой проверки достоверности статистических различий эпидемиолог сталкивается всякий раз, когда сравнивает два показателя. Если в каждой из срав ниваемых групп не меньше 20 наблюдений, то на этот вопрос отвечает критерий Стьюдента (Т), вычисляемый по известной формуле:
где p 1 и р2 — сравниваемые показатели, n 1и n2 — численность подвыборок.
Достоверным считается то различие, при котором разность между показателями в определенное число раз больше, чем сумма их ошибок. Это число (Т) определяется тем уровнем надежности, который принят в данном исследовании. При таком условии число Т (критерий Стьюдента) должно быть больше 2. Если это так, то различие считается достоверным: можно быть уверенным, что по крайней мере в 95 из 100 любых аналогичных выборок различие окажется примерно таким же (плюс-минус ошибка).
Если сравниваемые группы маленькие (содержат менее 20 наблюдений), то для проверки достоверности различий между ними метод Стьюдента непригоден. Поэтому обычно стараются избегать слишком маленьких групп. Однако это не всегда возможно, и тогда приходится применять так называемый точный метод Фишера. С его помощью вычисляется не условный коэффициент (как при методе Стьюдента), а величина вероятности, что полученный результат случаен. Если эта вероятность меньше 0,025, то различие признается достоверным.
Различия, которые при проверке оказываются статистически недостоверными, могут тем не менее иметь большое значение. Особенно часто это случается, когда сравнивается ряд показателей, характеризующих, например, динамику какого-либо процесса. Важным может оказаться не определение достоверности различий соседних показателей, а закономерность их изменений. Закономерные изменения всегда говорят о чем-то важном, независимо от того, достоверны ли различия между составляющими ее показателями.
Анализируя изменения показателей, постоянно приходится думать, не закономерны ли эти изменения. С распространением компьютерных технологий обработки полученных данных эта задача стала простой. Например, программный пакет » Microsoft Excel » решает ее автоматически, подбирая к экспериментальным данным линию тренда (определяя тенденцию их изменений) и указывая, насколько точно она их описывает.
Одной из главных методологических проблем при организации эпидемиологических исследований в психиатрии является идентификация больных. Последняя при эпидемиологическом обследовании отличается от обычной клинической диагностики. Массовость материала заставляет эпидемиолога опираться на стандартные диагностические критерии. Это требование вступает в очевидное противоречие со стремлением иметь как можно более добротный в клиническом отношении материал. При компромиссном решении, которое приходится принимать, неизбежно в жертву приносится либо стандартность диагностики, либо степень ее клинической фундированности. Зарубежные авторы, как правило, жертвуют последним, отдавая безусловный приоритет обеспечению сопоставимости материала разных исследователей. Поэтому они уже много лет используют формальные диагностические инструменты (опросники, шкалы, структурированные интервью и т.п.).
Клинико-эпидемиологический метод, описанный ранее и на протяжении многих лет используемый в отделе эпидемиологии Научного центра психического здоровья РАМП, характеризуется тем, что исследователи, применяя его, отдают предпочтение клинической добротности материала, а это затрудняет сравнение полученных результатов с данными зарубежных авторов. Изложенные трудности идентификации больных могут быть, по-видимому, отчасти преодолены использованием МКБ-10, поскольку эта международная диагностическая система снабжена подробной методикой постановки диагноза, обеспечивающей полную стандартность диагностики, без изменения клинического содержания диагноза.
Показатели экстенсивные и интенсивные
Показатели экстенсивные (или распределения)
Характеризуют распределение целого на его составные части, т. е. определяют состав этого целого или удельный вес отдельных частей в нем. Экстенсивные показатели выражаются обычно в процентах к итогу.
Например, в стационар Челябинской областной клинической больницы в 1962 г. было госпитализировано 15 962 человека. Из них сельских жителей — 7621, или 47,7%; жителей городов и рабочих поселков — 5313, или 33,3%, и жителей Челябинска — 3028, или 19%.
Такие же процентные отношения вычисляют, если нужно определить соотношение возрастных, половых, социальных групп в составе населения или соотношения между отдельными болезнями в структуре заболеваемости того или иного коллектива и др.
Экстенсивные показатели нельзя применять для установления динамики изучаемого явления во времени или для сравнения степени его распространения в двух или нескольких группах населения.
Показатели интенсивные (распространения частоты)
Характеризуют частоту распространения данного явления. Вычисление этих коэффициентов производится при помощи пропорций, приводящих абсолютные числа к одному основанию, — 1000, 10 000, 100 000 жителей, отношений которого вычисляется коэффициент.
Так, например, интенсивный показатель рождаемости вычисляется отношением числа родившихся на 1000 жителей; так же определяется интенсивный показатель общей смертности.
Интенсивный показатель заболеваемости или смертности определяется по формуле:
Пример
В городе А с числом жителей 65 300 умерло за год 700 человек, в городе Б с числом жителей 93 100 умерло 905 человек. Какова смертность в этих двух городах? Если судить по абсолютным данным, то умерло больше в городе Б. Однако в городе Б и численность населения больше, чем в городе А.
Поэтому для того чтобы решить вопрос в каком городе смертность выше, необходимо в том и другом городе вычислить интенсивный показатель смертности, т. е. показатель смертности на 1000 жителей.
Отсюда видно, что в городе А из каждой 1000 в год умирает 10,7, а в городе Б — 9,7. Эти величины ясно показывают, что смертность в городе А выше, чем в городе Б.
«Справочник помощника санитарного врача
и помощника эпидемиолога»,
под ред. члена-корреспондента АМН СССР
проф. Н.Н.Литвинова
Что показывает интенсивный показатель
Абсолютные величины несут важную информацию о размере того или иного явления и могут быть использованы в анализе, в том числе в сравнительном. Однако они часто не отвечают на все поставленные вопросы, так, например, врачу интересны сведения о здоровье обслуживаемого населения (показатели заболеваемости и др.), а у него есть информация только в абсолютных числах, которые термин «заболеваемость» не характеризуют.
Для более углубленного анализа общественного здоровья и деятельности учреждений здравоохранения, а также деятельности медицинского работника используются обобщающие показатели, называемые относительными величинами. Они применяются для изучения совокупности, которая характеризуется, главным образом, альтернативным распределением качественных признаков.
Различают четыре вида относительных величин: экстенсивные, интенсивные, соотношения и наглядности.
Это показатель удельного веса, доли части в целой совокупности, показатель распределения совокупности на составляющие ее части, т.е. показатель структуры.
Для его расчета необходимо иметь данные о численности всей совокупности и составляющих ее частях (или отдельной части этой совокупности). Рассчитывается обычно в процентах, где совокупность в целом принимается за 100%, а отдельные части — за «X».
Способ получения экстенсивной величины выглядит следующим образом:
Таким образом, для получения экстенсивного показателя нужна совокупность и ее составные части или отдельная часть. Экстенсивный показатель отвечает на вопрос, сколько процентов приходится на каждую конкретную часть совокупности.
Это показатель статики, т.е. с его помощью можно анализировать конкретную совокупность в конкретный момент. По экстенсивным показателям нельзя сравнивать различные совокупности — это приводит к неправильным, ошибочным выводам (см. Ошибки использования относительных величин).
Пример расчета экстенсивного показателя
В районе А в текущем году было зарегистрировано 500 случаев инфекционных заболеваний, из них: эпидемического паротита — 60 случаев; кори — 100 случаев; прочих инфекционных заболеваний — 340 случаев.
Задание: определить структуру инфекционных заболеваний, проанализировать и представить графически.
Решение: Вся совокупность — 500 случаев инфекционных заболеваний принимается за 100 %, составные части определяются как искомые. Удельный вес случаев эпидемического паротита составит: 60 x 100% / 500 = 12%.
Аналогично рассчитывается удельный вес других заболеваний.
Вывод. В структуре инфекционных заболеваний доля эпидемического паротита составила 12%, кори — 20%, прочих инфекционных заболеваний — 68%.
Способы графического изображения экстенсивного показателя
Поскольку экстенсивный показатель — показатель статики, то графически он изображается только в виде внутристолбиковой или секторной (круговой) диаграммы, которые являются разновидностями плоскостных диаграмм, которые представляют цифровые данные в виде геометрических фигур в двух измерениях.
Правила построения этих диаграмм можно представить, использовав при этом полученные данные удельного веса заболеваний в приведенном выше примере.
Пример построения внутристолбиковой диаграммы (диаграмма 1, Б):
Вышеизложенные данные можно представить также в виде внутристолбиковой диаграммы, принцип построения которой заключается в следующем: высота прямоугольника (масштаб выбирается произвольно) составляет всю совокупность и принимается за 100%. Удельный вес отдельных частей следует показать внутри прямоугольника, расположив части снизу вверх в порядке убывания процентов, при этом группа «прочие заболевания», так же как и в секторной диаграмме, откладывается последней. Все части выделяются различной штриховкой или расцветкой.
Каждый график должен иметь номер, четкое название, раскрывающее его сущность, масштаб с указанием единиц измерения и экспликацию, отражающую смысл принятых условных изображений.
Показатель частоты, уровня, распространенности процессов, явлений, совершающихся в определенной среде. Он показывает, как часто встречается изучаемое явление в среде, которая его продуцирует (заболеваемость, смертность, рождаемость и т.д.).
Интенсивные показатели используются как для сравнения, сопоставления динамики частоты изучаемого явления во времени, так и для сравнения, сопоставления частоты этого же явления в один и тот же промежуток времени, но в различных учреждениях, на различных территориях и т.д.
Для расчета интенсивного показателя необходимо иметь данные об абсолютном размере явления и среды, его продуцирующей. Абсолютное число, характеризующее размер явления, делится на абсолютное число, показывающее размер среды, внутри которой произошло данное явление, и умножается на 100, 1000 и т.д.
Таким образом, способ получения интенсивного показателя выглядит следующим образом:
Таким образом, для расчета интенсивного показателя всегда нужны две статистические совокупности (совокупность № 1 — явление, совокупность № 2 — среда), причем изменение размера среды может повлечь за собой изменение размера явления.
Множитель (основание) зависит от распространенности явления в среде — чем реже оно встречается, тем больше множитель. В практике для вычисления некоторых интенсивных показателей множители (основания) являются общепринятыми (так, например, показатели заболеваемости с временной утратой трудоспособности рассчитываются на 100 работающих или учащихся, показатели летальности, частоты осложнений и рецидивов заболеваний — на 100 больных, демографические показатели и многие показатели заболеваемости — на 1000, 100 000 населения).
Пример расчета интенсивного показателя.
В городе проживает 120 000 человек (среда). В предыдущем году родилось 108 детей (явление).
Определить показатель рождаемости (рассчитывается на 1000 населения).
Таким образом, рождаемость в городе составила 9%.
Способы графического изображения интенсивного показателя
Пример. Представить информацию о распространенности наркомании (табл. 1) в виде линейной диаграммы.
Таблица 1. Распространенность наркомании в РФ в динамике с 1980 по 2006 г. (на 100 000 населения)
Наименование показателя | Годы | ||||
1980 | 1990 | 2000 | 2003 | 2006 | |
Число наркоманов в перцентилях | 10,1 | 16,9 | 20,4 | 32,3 | 109,6 |
В нашем примере необходимо нанести на координатное поле 2 ряда цифр — частота наркомании и годы. В соответствии с установленными требованиями к построению графиков необходимо соблюдать соотношение между масштабом по оси абсцисс и ординат как равное 3:4 или 5:8. В данном случае график будет более наглядным.
В примере на оси абсцисс (горизонтальная линия) в соответствии с выбранным исследователем масштабом отмечаются анализируемые годы, на оси ординат (вертикальная линия) в соответствии с вышеуказанным правилом — частота наркомании. В соответствии с построенными осями на координатное поле наносятся величины частоты наркомании соответствующего года. При последовательном соединении точек на графике получится непрерывная линия, наглядно представляющая динамику распространенности наркомании.
Вывод. Анализ диаграммы позволяет наглядно представить постоянный рост частоты наркомании в РФ за 1980-2006 гг.
Пример. Представить информацию (табл. 2) о сезонных изменениях заболеваемости дизентерией в виде радиальной диаграммы.
Таблица 2. Сезонные изменения числа заболеваний дизентерией за изучаемый год в городе Н.
Наименование | Месяцы года | |||||||||||
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | |
Число заболеваний дизентерией | 2 | 7 | 5 | 9 | 15 | 26 | 15 | 35 | 22 | 14 | 3 | 1 |
Длина отрезка соответствующего месяца может выходить за пределы окружности или находиться внутри окружности в зависимости от величины соответствующего месячного показателя числа случаев заболеваний дизентерией (в нашем примере число случаев дизентерии за IV месяц — 15, VII — 15, X — 22 выше среднемесячного показателя, а в остальные месяцы — меньше). Конечные точки отрезков соединяются линиями.
Вывод. Анализ диаграммы позволяет увидеть значительные увеличения числа случаев заболевания дизентерией в летне-осенний период (с апреля по октябрь).
Интенсивные показатели графически изображаются также в виде плоскостных диаграмм. К ним относятся — столбиковые и ленточные диаграммы.
В виде столбиков целесообразно изображать интенсивные показатели для одного периода, но для разных заболеваний, территорий, коллективов или, наоборот, в разные периоды времени, но для одного заболевания, территории, коллектива.
При построении столбиковых диаграмм основание располагают на оси абсцисс. На оси ординат отмечают величину изучаемого признака в принятом масштабе. Ширина столбиков должна быть одинаковой. Столбики могут располагаться как на расстоянии друг от друга, так и рядом друг с другом.
Пример построения столбиковой диаграммы. Представить информацию (табл. 3) об инфекционной заболеваемости в виде столбиковой диаграммы.
Таблица 3. Заболеваемость населения РФ скарлатиной и коклюшем в предыдущем и изучаемом годах (на 100 000 населения) | ||
Вид заболевания | Годы | |
предыдущий год | изучаемый год | |
Скарлатина | 83,6 | 44,4 |
Коклюш | 16,9 | 19,1 |
Для построения диаграммы необходимо на оси ординат поместить шкалу с нанесенными на ней делениями в соответствии с принятым масштабом, отражающими показатели заболеваемости.
Вывод. Диаграмма наглядно иллюстрирует значительное снижение заболеваемости населения РФ в изучаемом году скарлатиной и коклюшем.
Пример построения ленточной диаграммы. Представить информацию о заболеваемости с ВУТ в виде ленточной диаграммы (табл. 4).
Таблица 4. Число случаев заболеваний с временной утратой трудоспособности (ЗВУТ) на 100 работающих различного возраста на предприятии Н. в изучаемом году | ||||||||
Возраст | До 19 лет | 20-35 | 36-49 | 50 и старше | ||||
Пол | М | Ж | М | Ж | М | Ж | М | Ж |
Случаи ЗВУТ | 83,0 | 63,9 | 106,2 | 79,2 | 117,7 | 108,9 | 100,0 | 92,0 |
Для графического изображения в виде ленточной диаграммы изображения случаев заболеваемости с временной утратой трудоспособности выбираем основной признак, по которому будем строить диаграмму. В данном случае был выбран возраст.
На оси абсцисс в центре отмечаем отрезок длиной 1,5-2 см. Из крайних точек этого отрезка справа и слева восстанавливаем перпендикуляры, на которых откладываем одинаковые отрезки: они являются основаниями лент или горизонтальных «столбиков». Расстояние между лентами и их ширина должны быть одинаковыми, а число «лент» как справа (для женщин), так и слева (для мужчин) должно соответствовать количеству градаций основного признака. В данном примере их четыре — по числу возрастных группировок: до 19 лет, 20-35 лет, 36-49 лет, 50 лет и старше. Эти цифры вписываем между основаниями намеченных горизонтальных столбиков. Длина «лент» должна соответствовать размеру изображаемого явления в соответствии с выбранным масштабом. В нашем примере масштаб: 10 случаев утраты трудоспособности — 1 см.
Вывод. На диаграмме наглядно представлено наибольшее число случаев с временной утратой трудоспособности как у мужчин, так и у женщин в возрасте 36-49 лет, а наименьшее — у женщин в возрасте до 19 лет. Однако у мужчин практически во всех возрастных группировках число случаев утраты трудоспособности выше, чем у женщин, кроме возраста 50 лет и старше.
Характеризует соотношение между двумя не связанными между собой совокупностями (обеспеченность населения койками, врачами, дошкольными учреждениями, соотношение родов и абортов, соотношение врачей и медицинских сестер и др.).
Для получения этого показателя нужны две совокупности (совокупность № 1 и № 2). Абсолютная величина, характеризующая одну совокупность (совокупность № 1) делится на абсолютную величину, характеризующую другую, с ней не связанную совокупность (совокупность № 2) и умножается на множитель* (100, 1000, 10 000 и т.д.):
Показатель соотношения = совокупность №1 / совокупность №2 х 10 000
* При расчете показателя соотношения можно не учитывать множитель, например, определяя соотношение родов и абортов
Пример: В городе 120 000 населения, общее число терапевтических коек — 300. Число коек — совокупность № 1, численность населения — совокупность № 2. Требуется рассчитать обеспеченность населения терапевтическими койками.
Показатель соотношения = 300 / 120 000 х 10 000
Вывод. На 10 000 населения в городе приходится 25 терапевтических коек, или обеспеченность населения города терапевтическими койками равна 25 коек на 10 000 населения.
Графически показатель соотношения может быть представлен такими же диаграммами, как и интенсивный показатель.
Применяется для анализа однородных чисел и используется когда необходимо «уйти» от показа истинных величин (абсолютных чисел, относительных и средних величин). Как правило, эти величины представлены в динамике.
Для вычисления показателей наглядности одна из сравниваемых величин принимается за 100% (обычно, это исходная величина), а остальные рассчитываются в процентном отношении к ней.
Особенно их целесообразно использовать, когда исследователь проводит сравнительный анализ одних и тех же показателей, но в разное время или на разных территориях.
Пример 1. Рассчитать показатели наглядности для уровней госпитализации в больничные учреждения городов Н. и К. в динамике за 5 лет наблюдения и представить графически.
Таблица 5. Уровень госпитализации в больничные учреждения в городах Н. и К. за 5 лет (на 100 человек населения)
Показатели | Годы | |||||||||||
1 | 2 | 3 | 4 | 5 | ||||||||
Уровень госпитализации в городе Н. | 24,4 | 22,8 | 21,2 | 20,5 | 20,7 | |||||||
Показатель наглядности, % | 100 | 93,44 | 86,9 | 84,0 | 84,7 | |||||||
Уровень госпитализации в городе К. | 30,0 | 32,0 | 34,0 | 38,0 | 40,0 | |||||||
Показатель наглядности, % | 100 | 106,75 | 113,3 | 126,7 | 133,3 |
Решение.
Снижение количества больных, поступивших в стационары будет нагляднее, если приравнять показатель исходного уровня госпитализации в городе Н. (1 год — 24,4) за 100%, а остальные показатели пересчитать в процентах по отношению к нему.
Аналогично рассчитываются показатели наглядности, характеризующие уровень госпитализации в больничные учреждения города К.
Вывод. В динамике за 5 лет наблюдения уровень госпитализации больных в городе Н. снижается, а в городе К. повышается.
Графически полученные данные можно представить на оси координат или в виде столбиковой диаграммы.
Пример 2. Сравнить число коек в больницах А, Б и В и представить графически (табл. 6).
Таблица 6. Число коек в больницах А, Б и В города Н. | ||
Больница | Число коек | Показатели наглядности, % |
А | 300 | 100 |
Б | 450 | 150 |
В | 600 | 200 |
Принимаем число коек в больнице А (300 коек) за 100%, тогда для » больницы Б показатель наглядности составит:
Аналогично рассчитывается показатель наглядности для больницы В. Он составил 200%.
Вывод. Число коек в больнице Б на 50 %, а в больнице В на 100% больше, чем в больнице А.
Применение методов статистического анализа для изучения общественного здоровья и здравоохранения. Под ред. чл.-корр. РАМН, проф. В.З.Кучеренко. М., «Гэотар-Медиа», 2007, учебное пособие для вузов