Что показывает коэффициент асимметрии и эксцесса
7. Асимметрия и эксцесс эмпирического распределения
В предыдущих статьях мы познакомились с показателями центральной тенденции и вариации, и сейчас рассмотрим ещё пару характеристик статистической совокупности. Для тех, кто зашёл с поисковика и хочет изучить тему с азов, сразу ссылка на организационный урок: Математическая статистика для «чайников», там же, в конце, список всех статей курса. И до статьи 7-й – как рукой подать, после чего будет небольшой и очень приятый экзамен.
Итак, что такое асимметрия и эксцесс? Говоря простым языком, это показатели, характеризующие геометрическую форму распределения. Асимметрия характеризует меру скошенности графика влево / вправо, а эксцесс – меру его высоты.
Данные показатели рассчитываются как для эмпирических, так и для теоретических распределений, которые мы изучили в курсе теории вероятностей, и за «эталон» симметрии принято нормальное распределение: 
Очевидно, что любое нормальное распределение строго симметрично относительно своего центра, следовательно, его асимметрия равна нулю. Данный график кажется пологим, но стандартное отклонение 
Почему именно нормальное распределение? Потому что философское – обязательно прочитайте эту интереснейшую статью по ссылке, если ещё не успели этого сделать!
В теории вероятностей существуют строгие формулы для вычисления коэффициентов асимметрии 

Начнём с асимметрии. Асимметрия характеризует меру скошенности полигона или гистограммы влево / вправо относительно самого высокого участка, и во многих случаях для «прикидки» асимметрии достаточно взглянуть на соответствующие чертежи. Так, например, посмотрим на полигон частот из Примера 8: 
И, в принципе, тут всё видно – пациент скорее симметричен, чем асимметричен 🙂
Простейшим критерием симметрии является равенство средней, моды и медианы: но в жизни такого идеального совпадения, конечно, не бывает (даже тело человека немного асимметрично), и поэтому у «почти симметричных» распределений эти показатели должны располагаться очень близко друг к другу. И в самом деле, как мы вычислили в Примере 8: 
Обратите внимание, что рассматриваемые распределения имеют единственную модальную вершину, и далее речь пойдёт только о таких распределениях.
Правосторонняя асимметрия характеризуется удлинённым правым «хвостом», смотрим на гистограмму Примера 10: 
Простейшим признаком правосторонней асимметрии является тот факт, что 



Левостороння асимметрия, наоборот, характеризуются удлинённым левый «хвостом» и неравенством 

Из формулы 



Недостаток формулы Пирсона состоит в том, что она описывает лишь центральную часть распределения и практически не учитывает «периферию». И, чтобы вас томить, сразу продвинутая формула, которая охватывает все варианты, для определённости запишу её для выборочной совокупности объёма 





а для сформированного вариационного ряда – так: 


Смысл знаков тот же самый: если 



И чем МЕНЬШЕ по модулю 

Справочно формулы теории вероятностей: асимметрия случайной величины рассчитывается по «родственной» формуле 




Теперь об эксцессе замолвим слово. Он характеризует высоту и очень коварный. В том смысле, что глаза будут часто обманывать. Так, например, посмотрим на чертёж Примера 7 из статьи об интервальном вариационном ряде: 
Ну видно же – гистограмма и полигон серьёзно вытянуты вверх. Но это только кажется. Дело в том, что стандартное отклонение 

Поэтому аналитика и ещё раз аналитика. Коэффициент эксцесса эмпирического распределения рассчитывается по формуле:




Для случайных величин из тервера формула схожа: 


Если 



В примере выше, как ни странно, 
Итак, сто пачек чая из Примера 7 ( 
и нам требуется вычислить коэффициенты асимметрии и эксцесса
Решение: поскольку в формулах асимметрии и эксцесса фигурирует стандартное отклонение, то сначала нужно рассчитать выборочную среднюю и дисперсию.
Вычислим произведения 




Ловкость рук и никаких трудностей, вы удивитесь, как всё быстро:
Собственно, финальные расчёты: 
здесь правильнее, конечно, отклонение поправить, но обычно этим пренебрегают.
Центральные моменты 3-го и 4-го порядков:
И, наконец, коэффициенты. Вычислим коэффициент асимметрии: 
Вычислим коэффициент эксцесса:

Ответ:
Вот такой вот у нас получился эксекас 🙂
Помимо геометрических форм, эти коэффициенты позволяют «прикинуть», насколько близка к нормальному распределению не только выборочная, но и вся генеральная совокупность. Это одна из важнейших задач статистики, которую мы разберём в разделе Статистические гипотезы.
Ну а сейчас я предлагаю вам небольшое экзаменационное задание по первым семи урокам. Оно типично для студенческой практики – дана статистическая совокупность, и требуется выполнить много-много чего. Внимательно проверьте, всё ли вы усвоили, всё ли умеете:
В результате эксперимента получены данные, записанные в виде статистического ряда: 
…это ещё ерунда 🙂
И сразу обратите внимание, что в условии речь идёт о результатах эксперимента, а значит, перед нами выборочная совокупность, т.к. теоретически опыты можно повторять бесконечное количество раз.
1) Составить интервальный вариационный ряд, состоящий из 9 равных интервалов. Видео в помощь.
3) Найти моду и медиану.
5) Вычислить коэффициенты асимметрии и эксцесса, сделать выводы.
Не тушуйтесь – я с вами! Краткое решение для сверки внизу страницы.
И на этом, как вы правильно догадались, дело не заканчивается, поэтому сохраните файл с решением! Типовая задача содержит больше пунктов, и после изучения гипотезы о законе распределения генеральной совокупности, выполняем следующие задания:
6) По найденным характеристикам сделать вывод о форме эмпирического ряда распределения.
7) Построить нормальную кривую по опытным данным на графике гистограммы.
8) Произвести оценку степени близости теоретического распределения эмпирическому ряду с помощью критерия согласия Пирсона на уровне значимости 0,05.
Пример 20. Решение:
1) По статистическим данным находим: 

Вычислим размах вариации: 
По условию, выборку следует разделить на 

Разметим интервалы и подсчитаем частоты 



2) Построим гистограмму относительных частот: 
и эмпирическую функцию распределения:
3) Моду вычислим по формуле 





Таким образом:

Медиану вычислим по формуле 

половину вариант содержит интервал 




Таким образом:

4) Найдём середины 



Выборочная дисперсия: 
выборочное среднее квадратическое отклонение:

коэффициент вариации:
5) Вычислим центральные эмпирические моменты 3-го и 4-го порядков: 
коэффициент асимметрии: 
и коэффициент эксцесса:
Таким образом, выборочная совокупность практически симметрична, но несколько ниже, чем нормальное распределение с параметрами 
Автор: Емелин Александр
(Переход на главную страницу)

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5









