Что показывает корреляционная матрица
Что показывает корреляционная матрица
Если две величины связаны между собой, то между ними есть корреляция. Виды корреляционной связи показаны в таблице 3.9.
Для выяснения вопроса о наличии связи между двумя величинами X и Y необходимо определить, существует ли соответствие между большими и малыми значениями X и соответствующими значениями Y или такой связи не обнаруживается. Значение каждого элемента Xi и Yi определяется величиной и знаком отклонения от среднего арифметического 11 :
Если большие значения Xi соответствуют большим значениям Yi, то это произведение будет большим и положительным, так как
и
То же самое будет наблюдаться и, когда малые значения Xi будут соответствовать малым Yi, поскольку произведение отрицательных чисел будет положительным.
Если же большие значения Xi соответствуют малым значениям Yi, то это произведение будет большим и отрицательным, что будет свидетельствовать об обратной зависимости между этими величинами.
В тех случаях, когда нет систематического соответствия больших значений Xi большим или малым Yi, то знак произведения будет положительным или отрицательным для разных пар Xi и Yi. Тогда сумма
Для того, чтобы эта сумма не зависела от количества значений X и Y, ее следует поделить ее на N-1. Полученная величина sXY называется ковариацией X и Y и является мерой их связи:
Для исключения влияния стандартных отклонений на величину связи, следует поделить ковариацию sXY на стандартные отклонения sX и sY:
Полученная мера связи между X и Y называется коэффициентом корреляции Пирсона. Обозначение r происходит от слова регрессия. Подставив соответствующие выражения, получим формулу для коэффициента корреляции Пирсона rXY 11
Для вычислений более удобна следующая формула
Следует отметить, что в случае нелинейной связи между X и Y коэффициент корреляции может оказаться близким к нулю, даже если связь очень сильная.
Таблица 3.7.1. Типы корреляционной связи
(Гласс Дж., Стэнли Дж., 1976).
Для решения вопроса о наличии связи между заданиями теста, надо, используя данные по столбцам из бинарной матрицы, рассчитать коэффициенты корреляции Пирсона для каждой пары заданий. Для расчетов используются различные статистические программы (SPSS, STATISTICA и др.). В простейшем случае можно использовать табличный процессор Excel с вызовом функции «ПИРСОН».
pm – доля верных ответов для задания с номером m;
qm – доля неверных ответов для задания с номером m;
pk – доля верных ответов для задания k;
qk – доля неверных ответов для задания с номером k;
pmk – доля верных ответов для задания с номером m и k.
Коэффициент корреляции Пирсона, для дихотомических данных называется коэффициентом «фи». Коэффициент φmk, описывающий связь между заданиями с номерами m и k записывается следующим образом 11
Отметим, что коэффициент «фи» и коэффициент корреляции Пирсона дают в результате одно и то же значение, поскольку обе формулы эквивалентны. Рассмотрим пример вычисления коэффициента корреляции между 2-м и 5-м заданиями. Из таблицы 3.2.5 имеем: p2=0.7, q2=0.3, p5=0.5, q5=0.5. Для определения p25 надо подсчитать количество верных ответов на оба задания одновременно. Видно, что испытуемые с номерами 1-5 успешно справились с обоими заданиями (5 верных ответов). Испытуемые 6 и 7 правильно ответили на 2-е задание, но неправильно на 5-е (нет одновременно верных ответов). Испытуемые 8 и 9 не справились и со 2-м и с 5-м заданиями. Таким образом, p25 =5/10 = 0,5.
Результаты расчетов для всех заданий приведены в корреляционной матрице (таблица 3.7.2). Корреляционная матрица представляет собой квадратную матрицу размерности MxM, где M – количество заданий, симметричную относительно главной диагонали. В нашем примере матрица имеет 8 строк и столько же столбцов. Коэффициент корреляции Пирсона, скажем, между 2-м и 5-м заданиями находится на пересечении 2-й строки и 5-го столбца (0,655).
В самом последнем столбце располагается коэффициент корреляции каждого задания с тестовым баллом испытуемого (индивидуальным баллом) – rpb – точечный бисериальный коэффициент корреляции.
ТАБЛИЦА 3.7.2. Корреляционная матрица тестовых заданий.
Корреляционный анализ или Почему существуют странные корреляции
На данный опус меня навела публикация «Деньги, товар и немного статистики. Часть вторая», в которой автор исследовал зависимости между ценами на различные товары. Несколько смутило то, что несмотря на мастерское обращение с MatLab’ом, автор ни разу не упомянул об уровне значимости полученных корреляций. Ведь, связь между двумя величинами может и существовать, но если она статистически не значима, говорить о ней мы можем лишь в контексте рассуждений и домыслов.
Пощупать данные «руками» долго не получалось, но вот выдался свободный час, и я, вооружившись R, двинулся в путь.
Немаловажный момент — распределение нормированных цен на все товары отличалось от нормального (р-значение для критерия Шапиро-Уилка значительно меньше 0.001), что неумолимо приводит нас к тому, что использование относительно «доброго» для поиска взаимосвязей коэффициента корреляции Пирсона не представляется возможным. К счастью, существует его непараметрический аналог — тест Спирмена.
Итак, корреляционная матрица получена. Взглянем на нее:
Окей, корреляции имеют место быть, хотя значения rho уже поменьше. Найдем наиболее высокие уровни и проверим их значимость:
Для экономии места скажу, что для всех обнаруженных корреляционных взаимосвязей р-значение было меньше 0.0001, что говорит о статистически значимом явлении. Корреляционная матрица представлена ниже:
1 gold oil 0.2451402
2 iron gold 0.2503873
3 logs iron 0.2446200
4 maize logs 0.2547667
5 beef maize 0.2398418
6 chicken beef 0.2385301
7 gas chicken 0.2481030
8 liquid_gas gas 0.2544752
9 tea liquid_gas 0.2367907
10 tobacco tea 0.2416664
11 wheat tobacco 0.2553935
12 sugar wheat 0.2505641
13 soy sugar 0.2440920
14 silver soy 0.2589974
15 rice silver 0.2403048
16 platinum rice 0.2418105
17 cotton platinum 0.2343923
18 copper cotton 0.2498545
19 coffee copper 0.2321891
20 coal coffee 0.2482226
21 aluminum coal 0.2423581
Как видим, полученные rho не превышают 0.3, что указывает на слабую силу связи (согласно шкале Чеддока). Фактически, оперировать такими данными можно, но всегда нужно понимать, что колебания цен одного товара будет не боле чем на 10% сказываться на цене своего «партнера» по корреляции.
Хотелось бы отметить, что похожая линия рассуждений должна использоваться при анализе других странных корреляций. Цифры могут играть с нами злые шутки.
Спасибо jatx за то, что дал повод поиграть с цифрами!
Метод корреляционного анализа: пример. Корреляционный анализ — это…
Понятие о корреляционном анализе
Существует множество определений термина. Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.
Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки статистических данных, заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.
Задачи корреляционного анализа
Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.
Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:
Условия использования метода
Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.
Оценка тесноты связи
Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.
Правила отбора факторов корреляционного анализа
При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи. В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.
Отображение результатов
Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.
При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.
Трехмерное представление диаграммы разброса (рассеивания)
Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.
Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов. Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj. Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.
Ссылки
Пример применения метода корреляционного анализа
В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.
Исходные данные для корреляционного анализа
Профессиональная группа | курение | смертность |
Фермеры, лесники и рыбаки | 77 | 84 |
Шахтеры и работники карьеров | 137 | 116 |
Производители газа, кокса и химических веществ | 117 | 123 |
Изготовители стекла и керамики | 94 | 128 |
Работники печей, кузнечных, литейных и прокатных станов | 116 | 155 |
Работники электротехники и электроники | 102 | 101 |
Инженерные и смежные профессии | 111 | 118 |
Деревообрабатывающие производства | 93 | 113 |
Кожевенники | 88 | 104 |
Текстильные рабочие | 102 | 88 |
Изготовители рабочей одежды | 91 | 104 |
Работники пищевой, питьевой и табачной промышленности | 104 | 129 |
Производители бумаги и печати | 107 | 86 |
Производители других продуктов | 112 | 96 |
Строители | 113 | 144 |
Художники и декораторы | 110 | 139 |
Водители стационарных двигателей, кранов и т. д. | 125 | 113 |
Рабочие, не включенные в другие места | 133 | 146 |
Работники транспорта и связи | 115 | 128 |
Складские рабочие, кладовщики, упаковщики и работники разливочных машин | 105 | 115 |
Канцелярские работники | 87 | 79 |
Продавцы | 91 | 85 |
Работники службы спорта и отдыха | 100 | 120 |
Администраторы и менеджеры | 76 | 60 |
Профессионалы, технические работники и художники | 66 | 51 |
Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).
Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.
С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.
Литература
Использование ПО при проведении корреляционного анализа
Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный анализ в Excel предполагает вычисление следующих параметров с использованием функций:
1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ [CORREL](массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.
Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию ПИРСОН (PEARSON) с теми же массивами.
Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».
После указания исходных данных получаем график.
2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).
3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.
Как рассчитать коэффициент корреляции
Коэффициенты Пирсона и Спирмена можно рассчитать вручную. Это может понадобиться при углубленном изучении статистических методов.
Однако в большинстве случаев при решении прикладных задач, в том числе и в психологии, можно проводить расчеты с помощью специальных программ.
Расчет с помощью электронных таблиц Microsoft Excel
Вернемся опять к примеру со студентами и рассмотрим данные об уровне их интеллекта и длине прыжка с места. Занесем эти данные (два столбца) в таблицу Excel.
Переместив курсор в пустую ячейку, нажмем опцию «Вставить функцию» и выберем «КОРРЕЛ» из раздела «Статистические».
Формат этой функции предполагает выделение двух массивов данных: КОРРЕЛ (массив 1; массив»). Выделяем соответственно столбик с IQ и длиной прыжков.
В таблицах Excel реализована формула расчета только коэффициента Пирсона.
Расчет с помощью программы STATISTICA
Заносим данные по интеллекту и длине прыжка в поле исходных данных. Далее выбираем опцию «Непараметрические критерии», «Спирмена». Выделяем параметры для расчета и получаем следующий результат.
Как видно, расчет дал результат 0,024, что отличается от результата по Пирсону – 0,038, полученной выше с помощью Excel. Однако различия незначительны.
Корреляционная матрица
Корреляционная матрица показывает зависимость величин друг от друга. Элементами корреляционной матрицы являются коэффициенты корреляции величин.
Для данной задачи корреляционная матрица имеет следующий вид:
Проанализировав корреляционную матрицу, выявляем, что все предикторы являются хорошими и положительная зависимость существует со всеми предикторами, кроме Х2 (ожидаемая продолжительность жизни).
Для нас не представляет интереса брать предикторы Х2 и Х4, так как они сильно коррелированны с другими предикторами. По данной корреляционной матрице мы выбираем предикторы Х1 (детская смертность), Х3 (плодовитость женщин), Х5 (рост сельского населения), так как они в лучшей степени объясняют У (уровень рождаемости).
Всего можно построить 9 моделей с двумя предикторами, но т.к. мы не рассматриваем предикторы Х2 и Х4, то приведем модели с оставшимися предикторами и установим какая модель описывает Уровень рождаемости в большей степени.
1. Модель с предиктором Х1 (детская смертность):
Уровень рождаемости = 5,85 + 0,712 Детская смертность
Предиктор Х1 описывает Уровень рождаемости на 90,6 %.
2. Модель с предиктором Х3 (плодовитость женщин):
Предиктор Х3 описывает Уровень рождаемости всего лишь на 20%.
3. Модель с предиктором Х5 (рост сельского населения):
Уровень рождаемости = 9,35 + 2,00 Рост сельского хозяйства
Предиктор Х5 описывает Уровень рождаемости на 46,6%.
4. Модель предикторами Х1, Х3, Х5:
Уровень рождаемости = 1,58 + 0,510 Детская смертность
+ 3,86 Плодовитость женщин
+ 0,987 Рост сельского населения
Предикторы Х1, Х3, Х5 описывают Уровень рождаемости на 97,6%.
5. Модель с предикторами Х1 и Х3:
Уровень рождаемости = 4,01 + 0,687 Детская смертность
+ 1,46 Плодовитость женщин
Предикторы Х1 и Х3 описывают Уровень рождаемости на 91,1%.
6. Модель с предикторами Х1 и Х5:
Уровень рождаемости = 6,27 + 0,616 Детская смертность
+ 0,686 Рост сельского населения
Предикторы Х1 и Х5 описывают Уровень рождаемости на 94,4 %.
7. Модель с предикторами Х3 и Х5:
+ 2,19 Рост сельского населения
Предикторы Х3 и Х5 описывают Уровень рождаемости на 74,9%.
8. Модель со всеми предикторами:
— 0,413 Ожидаемая продолжительность жизни при рождении + 5,15 Плодовитость женщин
+ 0,69 Женское население
+ 0,546 Рост сельского населения
Проанализировав все наилучшие модели, приходим к выводу, что лучшей моделью является модель с тремя предикторами Х1 (детская смертность), Х3 (плодовитость женщин) и Х5 (рост сельского населении), зависимость данных предикторов с Уровнем рождаемости составляет 0,95179, 0,44751, 0,68268 соответственно. Коэффициент детерминации R 2 равен 97,6%, это значит, что эти предикторы описывают Уровень рождаемости (Y) на 97,6 %.
Хотя модель со всеми предикторами имеет самый высокий коэффициент детерминации, равный 98,3%, данная модель не может исследоваться в качестве наилучшей, так как между некоторыми предикторами существует высокая коллинеарность.
Проводя дальнейшие исследования будет использована модель с тремя предикторами (Х1, Х3 и Х5).
Проверка F теста с заданным уровнем доверия.
F-тест проверяет значимость уравнения регрессии в целом, существует ли зависимость между постоянной и переменными.
При нулевой гипотезе подтверждается, что между переменными и постоянной не существует зависимость.
Если же подтверждается первая гипотеза, то устанавливается, что между постоянной и переменными существует зависимость.
Для проверки теста понадобятся значения Fstat и Ftab.
Fstat находим по следующей формуле:
Source DF SS MS F P
Regression 3 22,4816 7,4939 244,05 0,000
Residual Error 18 0,5527 0,0307
Найдем Ftab с уровнем доверия α= 0,05
Сравнив значения Ftab и Fstat приходим в выводу, что Ftab 2 = 97,6%, т.е. Уровень рождаемости на 97,6 % объясняется Детской смертностью, Плодовитостью женщин и Ростом сельского населения.
Стандартная ошибка оценивания— это величина изменчивости, наблюдаемых значений Y, вокруг линии регрессии:
Это значит, что значения Y (Уровень рождаемости) будут отклоняться от линии регрессии на 0,175.