Что показывает превышение геодезия
Уклон линии. Превышение.
Уклономназывается превышение, которое приходится на единицу горизонтального расстояния.
Вычисляется по формуле i= ∆h/L. Уклон может выражаться в метрах, в процентах %, в промилях ‰ или в градусах.
Для нахождения уклона в %, надо тангенс уклона в метрах умножить на 100.
Для нахождения уклона в ‰, надо тангенс уклона в метрах умножить на 1000.
Чтобы выразить уклон в градусах, надо тангенс в метрах найти по таблице Брадиса в градусах и минутах.
На топографической карте уклон в градусах можно измерить по графику заложений внизу карты.
Превышение –разница высот между двумя точками.
Превышение можно найти несколькими методами.
1). Геометрическим нивелированием с помощью горизонтального луча нивелира и нивелирной рейки.
2). Тригонометрическим нивелированием по измеренному теодолитом вертикальному углу наклона между точками и расстоянию между ними по формуле ∆h = L* tg γ * (b-J). Где: b – высота теодолита, J – высота рейки или вешки на точке, L – расстояние между точками в метрах, tg γ – вертикальный угол.
3). Физическим нивелированием при помощи барометра (измеряя атмосферное давление), при помощи радиолокатора. Физические методы менее точны.
Вопрос № 15.
Ориентирование направлений. Начальные направления.
Ориентированием линии называется определение направления на местности относительно принятого начального направления.
За начальноенаправление в геодезии принимается северное направление меридиана. Начальным меридианом может быть астрономический, магнитный или осевой меридиан. Для ориентирования линий на местности служат азимуты, дирекционные углы и румбы.
Азимут, это угол, который отсчитывается от северного направления меридиана.
Если угол отсчитывается от астрономического меридиана, то он называется истинным азимутом.
Если угол отсчитывается от магнитного меридиана, то он называется магнитным азимутом.
Если угол отсчитывается от осевого меридиана, то он называется дирекционным углом. Азимуты и дирекционные углы могут изменяться от 0º до 360º.
Румбслужит для большего удобства при ориентировании. Он может изменяться от 0º до 90º. За начальное направление для него принимается либо северное направление меридиана, либо южное (в зависимости от четверти). В 1 и 4 четвертях румб отсчитывается от северного направления меридиана, а во 2 и в 3 четвертях румб отсчитывается от южного направления меридиана.
Топографическое превышение
Превышение (топографическое превышение) — понятие в классификации относительных высот гор, являющееся одним из главных критериев позволяющих считать вершины независимыми горами. Превышение вершины — это высота этой вершины относительно самой низкой точки на кривой, проведенной по наиболее высокому водоразделу от этой вершины к первой более высокой вершине на этом водоразделе, называемой родительской горой.
Топографическое превышение вершины можно получить, если вычесть из её высоты над уровнем моря величину, на которую необходимо спуститься, чтобы подняться на более высокую вершину. Если представить, что уровень моря поднимется так, что рассматриваемая вершина станет наивысшей точкой острова, то тогда её высота над уровнем моря и есть превышение.
Более высокий пик через основу седловины часто непосредственно прилегает к более низкому пику, однако это не всегда верно в случае достаточно глубоких седловин. Подобные случаи могут быть выявлены лишь с помощью тщательного анализа географической информации. Например:
Если основа седловины горы расположена достаточно близко к пику этой же горы, вычисление превышения не представляет особых сложностей и может быть выполнено вручную с использованием топографической карты.
В более сложных случаях, таких, например, как описаны выше, обычно используют компьютер. Американская геологическая служба USGS использует специальную программу WinProm, написанную Эдвардом Эрлом (Edward Earl).
Сколько составляет допустимая погрешность при межевании земельного участка и как повысить точность определения координат?
Большинство проводимых работ по межеванию земель заключаются в определении или уточнении местоположения границ наделов земли относительно опорных точек межевания.
Зафиксированные на бумаге координаты границ могут расходиться с измеренными кадастровым работником из-за погрешности измерений, и величины таких погрешностей должны не превышать установленные нормы.
Рассмотрим допустимые нормы и расскажем о формулах и порядке расчета по действующему законодательству.
Дорогие читатели! Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер.
Что такое точность определения координат?
Границы всех земельных наделов проводятся между угловыми (характерными) точками, а положение угловых точек определяется относительно опорных межевых пунктов, разбросанных по 2-4 пункта на один кв. километр и имеющих координаты в системе GPS.
Погрешностью измерений называют разность между истинными координатами угловой точки и координатами, измеренными кадастровым инженером. Погрешность неизбежно возникает при измерениях и складывается из следующих факторов:
Одной из основных величин, применяемых для расчёта погрешности, является пункт съемочного обоснования. Это точка на местности, где кадастровый инженер устанавливает измерительное оборудование, и неровности рельефа могут привести к смещению точки установки и возрастанию общей погрешности.
Любой измерительный прибор незначительно искажает измеренную им величину из-за особенностей его конструкции, а при снятии показаний с нецифровых приборов, такие показания могут расходиться у разных работников.
Для уменьшения погрешности измерения положения одной и той же граничной точки проводят несколько раз.
Точностью определения границ называют максимальное отклонение измеренной величины от среднего значения всех измеренных величин для одного и того же поворотного пункта. Увеличение числа проведённых измерений повышает точность итоговых расчётов.
Но не знаете, с чего начинать и какие нюансы есть у такой процедуры?
Прочитайте эту публикацию! В ней есть необходимые ответы.
Законодательство
Согласно части 13 ст. 22 закона № 218, допустимые погрешности при измерениях координат угловых точек, а также методы проводимых измерений и формулы расчёта погрешностей отображены в приказе Минэкономразвития №90.
Определены следующие методы определения координат угловых пунктов:
Началом координатной системы при определении положения угловых (характерных) пунктов является специальная опорная сеть межевания, (п. 4 прил. № 1 приказа № 90).
Допустимые нормы расхождения
При проведении межевых работ по уточнению границ земельного надела или при определении места границ вновь образуемых наделов при выделе или разделе участков могут возникнуть расхождения значений площадей между отображённой в кадастровом паспорте и вновь рассчитанной.
Минимальные размеры устанавливаются региональными и муниципальными нормативными актами с небольшими различиями в зависимости от субъекта федерации. Для большинства субъектов нормы расхождения площади в сторону увеличения после уточнения границ определены следующим образом (в зависимости от целевого назначения земель):
Величина допустимых норм расхождения может быть уменьшена до 2-х раз местным законодательством, в зависимости от ситуации в регионе.
От чего зависит величина отклонения?
После проведения измерений на местности кадастровый инженер производит расчёты погрешности. Значения погрешности зависят от следующих факторов:
К внешним условиям относят погоду, погрешность приборов, квалификацию кадастрового инженера и т.д. Чем большее число измерений проведено, тем точнее можно рассчитать погрешность при межевании, приближаясь к истинному значению координат границ.
Что же касается конкретно точек поворота, то гражданам полезно будет все же знать, что, к примеру, при определении по сигналу GPS, данная система спутниковой навигации допускает погрешность от 3-5 до 50 м, так как это в первую очередь военная спутниковая система США, что дает свои ограничения для гражданских пользователей. Вносит коррективы и место проведения замеров: сигнал ухудшается ближе к приполярным зонам. На величину погрешности также влияет используемые приемные приборы — следует обращаться к наиболее профессионально укомплектованным геодезистам.
По этой причине объективно не лишним будет использование проверки с помощью российской системы ГЛОНАСС: применение сразу двух систем спутниковой навигации позволит максимально точно определить точки углов поворота.
Как правильно рассчитать: используемые формулы
Величина S рассчитывается путём измерения расстояния между двумя самыми отдалёнными друг от друга поворотными точками участка, а для расчёта D измеряется расстояние от опорного пункта межевых сетей до самой близкой к данному пункту поворотной точки.
К основным методам определения погрешностей, применяемых при межевании, относят следующие:
Среднеквадратичный расчет
Метод расчёта величины среднеквадратичной погрешности Mt описан в приказе Минэкономразвития №90.
Среднеквадратичная величина Mt является основной единицей сравнения в методах допустимой площади и диагональном методе.
Метод допустимой площади
При расчёте погрешности по методу допустимой площади необходимо вычислить значение площади участка после проведения межевых работ П(выч) и значение площади, указное в кадастровом документе П(кад), после чего сравнить разность вычисленных площадей с допустимой площадью П(доп).
Диагональный
В диагональном методе необходимо измерить точность расстояния и определения координат между двумя характерными угловыми точками границ, установленными в результате кадастровых работ. Важно учесть, что точки, взятые для измерения, должны быть не смежными, а отстоять одна от другой как можно дальше, образуя «диагональ» участка.
Диагональный метод в качестве дополнительного уточнения применяется при межевых работах, когда требуется высокая точность измерений, например, в землях городских поселений при определении границ земель, относящихся к многоквартирным домам.
Согласно п. 6 приказа № 90, для разных категорий земли допускается разное среднеквадратичное отклонение Mt. Максимальные допустимые значения Mt приведены в таблице.
№ п/п | Категория земель и вид их разрешённого пользования | Максимальное отклонение Mt,в метрах |
1 | Поселения и населённые пункты | 0,1 |
2 | Земельные наделы сельскохозяйственного назначения, предназначенные для ЛПХ, дачного и индивидуального жилищного строительства, а также для занятий садоводством и огородничеством | 0,2 |
3 | Прочие сельскохозяйственные территории | 2,5 |
4 | Земли промышленности и энергетики | 0,5 |
5 | Земли транспорта, связи и информатики | 0,5 |
6 | Земли обороны и специального назначения | 0,5 |
7 | Особо охраняемые наделы | 2,5 |
8 | Территории лесного и водного фондов | 5,0 |
9 | Земли запаса | 5,0 |
10 | Прочие территории | 2,5 |
Примеры вычисления
ПРИМЕР 1. После проведения межевых работ картографическим способом при определении границ водоёма были измерены значения среднеквадратичной погрешности положения места геодезического измерения относительно опорного пункта m0 = 5,6 метров.
Среднеквадратичная погрешность положения угловой точки относительно места измерения m1 при картографическом способе принимается равной 0,0005 метров, (п. 13 приложения №1 к приказу № 90).
В первую очередь необходимо вычислить среднеквадратичное отклонение Mt.
Значение Mt = 5,6 больше, чем допустимое для земель водного фонда отклонение, равное 5, следовательно, при указании в межевом плане данной граничной точки кадастровому инженеру придётся обосновывать её координаты пояснительной запиской.
ПРИМЕР 2. При уточнении границ на прямоугольном дачном участке были определены новые координаты граничных точек, для которых были рассчитаны значения m0 и m1 следующим образом:
Сначала вычисляются значения Mt для каждой из четырёх точек:
Ни одно из рассчитанных значений Mt не превысило 0,2 метра, следовательно, допущенные погрешности находятся в пределах допустимой нормы.
Не желаете вступать в дальнейшем в споры с соседями?
Тогда эта информация поможет разобраться в нюансах согласования территории!
Показатели для муниципальных и государственных земель
Определение точности измерении при геодезических работах по уточнению границ муниципальных земель, допустимое среднеквадратичное отклонение Mt равно 0,1 метра для участков – частей генерального плана застройки, расположенных внутри красных линий границ муниципалитета, и 0,2 метра для участков под внутригородские личные подсобные хозяйства, не отнесённые к сельскохозяйственным территориям.
Государственные земли разграничиваются по решению федеральных властей и могут иметь в своём составе любые категории земель, и максимальное расхождение документально подтверждённых границ таких земель с рассчитанными при кадастровых работах определяется согласно таблице выше.
При расчёте погрешностей государственных земель любой категории, относящихся к особо ценным землям, а также землям заповедников (кроме водного фонда), максимальное среднеквадратичное отклонение составляет 2,5 метра.
Итак, при определении границ земельных наделов в рамках межевых работ неизбежно возникают погрешности, обусловленные неточностью проводимых измерений. Величины таких погрешностей не должны превышать установленные правительством значения для каждой категории земли. Для определения погрешности используются разные методы, в зависимости от требуемой точности измерений.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
8 (800) 350-29-87 (Москва)
8 (800) 350-29-87 (Санкт-Петербург)
7. Определение превышений и отметок точек
Время чтения: 8 минут
7.1. Задачи и виды нивелирования
Нивелированием называется совокупность геодезических измерений для определения превышений между точками, а также их высот.
Нивелирование производят для изучения рельефа, определения высот точек при проектировании, строительстве и эксплуатации различных инженерных сооружений. Результаты нивелирования имеют большое значение для решения научных задач как самой геодезии, так и для других наук о Земле.
В зависимости от применяемых приборов и измеряемых величин нивелирование делится на несколько видов.
1. Геометрическое нивелирование – определение превышения одной точки над другой посредством горизонтального визирного луча. Осуществляют его обычно с помощью нивелиров, но можно использовать и другие приборы, позволяющие получать горизонтальный луч.
2. Тригонометрическое нивелирование – определение превышений с помощью наклонного визирного луча. Превышение при этом определяют как функцию измеренного расстояния и угла наклона, для измерения которых используют соответствующие геодезические приборы (тахеометр, кипрегель).
3. Барометрическое нивелирование – в его основу положена зависимость между атмосферным давлением и высотой точек на местности.
4. Гидростатическое нивелирование – определение превышений основывается на свойстве жидкости в сообщающихся сосудах всегда находиться на одном уровне, независимо от высоты точек, на которых установлены сосуды.
7. Стереофотограмметрическое нивелирование основано на определении превышения по паре фотоснимков одной и той же местности, полученных из двух точек базиса фотографирования.
8. Определение превышений по результатам спутниковых измерений. Использование спутниковой системы ГЛОНАСС – Глобальная Навигационная Спутниковая Система позволяет определять пространственные координаты точек.
7.2. Способы геометрического нивелирования
Геометрическое нивелирование – это наиболее распространенный способ определения превышений. Его выполняют с помощью нивелира, задающего горизонтальную линию визирования.
Устройство нивелира достаточно простое. Он имеет две основные части: зрительную трубу и устройство, позволяющее привести визирный луч в горизонтальное положение.
Геометрическое нивелирование можно выполнять по следующей схеме:
Рис. 61. Способы нивелирования
При нивелировании из середины нивелир располагают между двумя точками примерно на одинаковых расстояниях (рис.61, а). В точках устанавливают отвесно рейки с сантиметровыми делениями. Их ставят на колышек, вбитый вровень с землей, или на специальный костыль, так как рейка под собственной тяжестью будет давить на землю и отсчет по ней будет меняться. Визирный луч зрительной трубы нивелира последовательно наводят на рейки и берут отсчеты З и П, которые записывают в миллиметрах в журнал нивелирования. Отсчет по рейке производят по средней нити нивелира, т.е. по месту, где проекция средней нити пересекает рейку. Превышение между точками определяют по формуле
где З – отсчет назад на заднюю точку А; П – отсчет вперед на переднюю точку B.
При нивелировании вперед прибор устанавливают над точкой А (рис. 61, б), измеряют его высоту V и берут отсчет П по рейке в точке В. Превышение определяют вычитанием из высоты прибора V отсчета П.
Высоту передней точки В вычисляется по формуле:
Высоту визирного луча на уровенной поверхностью называют горизонтом инструмента HГИ (рис. 61) и вычисляют
Место установки нивелира называется станцией. Если для определения превышения между точками А и В достаточно установить прибор один раз, то такой случай называется простым нивелированием.
Если же превышение между точками определяют только после нескольких установок нивелира, такое нивелирование называют сложным или последовательным (рис. 62).
Рис. 62. Последовательное нивелирование.
В этом случае точки С и D называют связующими. Превышение между ними определяют как при простом нивелировании:
;
;
Такую схему нивелирования называют нивелирным ходом.
7.3. Классификация нивелиров
Согласно действующему ГОСТу 10528-90 [9] нивелиры изготавливают трёх типов: высокоточные Н-05, точные Н-3 (Н-3К, Н-3КЛ) и технические Н-5 (Н-5К и Н-5КЛ).
В названии Н – нивелир; 05, 3 и 5 – средняя квадратическая ошибка измерения превышения в миллиметрах на 1 км двойного нивелирного хода; К – компенсатор; Л – лимб.
В зависимости от того, каким способом визирный луч устанавливается в горизонтальное положение, нивелиры изготавливают в двух исполнениях:
— с цилиндрическим уровнем при зрительной трубе, с помощью у которого осуществляется горизонтирование визирного луча (рис. 63);
— с компенсатором – свободно подвешенная оптико-механическая система, которая приводит визирный луч в горизонтальное положение. В названии нивелира буква К обозначает компенсатор (Н-3К, Н-3КЛ)(рис. 64).
Рис. 63. Точный нивелир Н-3 с цилиндрическим уровнем при зрительной трубе: 1 – подъемные винты; 2 – круглый уровень; 3 – элевационный винт; 4 – окуляр зрительной трубы с диоптрийным кольцом; 5 – визир; 6 – кремальера; 7 – объектив зрительной трубы; 8 – закрепительный винт; 9 – наводящий винт; 10 – контактный цилиндрический уровень; 11 – юстировочные винты цилиндрического уровня
Схема горизонтирования визирного луча в нивелире с компенсатором
ЗН-3КЛ
Рис. 65. Точный нивелир ЗН-3КЛ с компенсатором и лимбом: 1 – лимб; 2 – наводящий винт; 3 – кремальера; 4 – визир.
Точные нивелиры Н-3 и 3Н-3КЛ предназначены для нивелирования III и IV классов.
3Н-5КЛ
Рис. 65. Технический нивелир 3Н-5КЛ
Техническими нивелирами выполняют техническое нивелирование для определения высот точек высотного съемочного обоснования и при решении различных инженерно-технических задач при изыскании, строительстве и эксплуатации линейных сооружений и промышленно-гражданском строительстве.
Нивелиры иностранного производства
SOKKIA
SETL
Электронные нивелиры
Trimble
Лазерный нивелир
7.4. Нивелирные рейки
Нивелирные рейки для нивелирования III – IV класса и технического изготавливают из деревянных брусьев двутаврового сечения шириной 8 – 10 и толщиной 2 – 3 см.
Рейка РН-3 (рис. 66) имеет длину 3 м. Деления нанесены через 1 см. Нижняя часть рейки заключена в металлическую оковку и называется пяткой.
Основная шкала имеет деления черного и белого цвета, ноль совмещен с пяткой рейки. Дополнительная шкала на другой стороне рейки имеет чередующиеся красные и белые деления. С пяткой рейки совмещен отсчет больше 4000 мм. Часто встречаются комплекты реек, у которых с пятками красных сторон совпадают отсчеты 4687 и 4787 мм. Поэтому превышения, измеренные по красным сторонам реек, будут больше или меньше на 100 мм измеренных по черным сторонам реек.
Рис. 66. Нивелирная рейка (а) и поле зрения зрительной трубы нивелира с цилиндрическим уровнем (б)
7.5. Влияние кривизны Земли и рефракции на результаты нивелирования
При выводе формул для способов нивелирования из середины и вперед принято, что уровенная поверхность является плоскостью, визирный луч прямолинеен и горизонтален, рейки, установленные в точках, параллельны между собой.
На самом деле уровенная поверхность не является плоскостью и рейки, установленные в точках А и В перпендикулярно поверхности, непараллельны между собой (рис. 67), следовательно отсчеты З и П преувеличены на величину поправок за кривизну Земли СМ = К1 и DN = К2.
Рис. 67. Влияние кривизны Земли и рефракции на результаты геометрического нивелирования
Поправки за кривизну Земли равны:
,
Кроме того известно, что луч света распространяется прямолинейно лишь в однородной среде. В реальной атмосфере, плотность которой увеличивается по мере приближения к поверхности Земли, луч света идет по некоторой кривой, которая называется рефракционной кривой. Вследствие этого визирный луч имеет форму рефракционной кривой радиуса R1 и пересекает рейки в точках C’ и D’. Поэтому отчеты по рейкам уменьшаются на величину поправок за рефракцию: СC’ = r1 и DD’= r2, которые определяются по формуле
Радиус рефракционной кривой зависит от температуры, плотности, влажности воздуха и др. Отношение радиуса Земли R к радиусу рефракционной кривой R1называют коэффициентом земной рефракции, среднее значение которого принимают
,
где f1 и f2 – поправки за кривизну Земли и рефракцию равны
Следовательно превышение между точками А и В с учётом поправок за кривизну Земли и рефракцию равно
Необходимость учета поправки зависит от требуемой точности измерений.
Из формулы следует, что при равенстве расстояний от нивелира до реек и примерно одинаковых условиях можно считать, что f1 = f2 и h = З – П. Таким образом, при нивелировании из середины с соблюдением равенства плеч влияние кривизны Земли и рефракции практически устраняется.
7.6. Вопросы для самоконтроля
1. Что называется нивелированием?
2. Назовите виды нивелирования?
3. Назовите способы геометрического нивелирования?
4. В чем заключается способ нивелирования из середины и вперед?
5. В чем сущность последовательного нивелирования?
6. В чем сущность тригонометрического, барометрического и гидростатического нивелирования?
7. Как нивелиры классифицируются по точности?
8. Чем отличается уровенный нивелир от нивелира с компенсатором?
9. Когда можно не учитывать поправки за кривизну Земли и рефракцию при геометрическом нивелировании?