Что показывает температура в физике 8 класс
Молекулярная физика. Температура и ее измерение.
Температура — физическая величина, характеризующая тепловое состояние тел.
В окружающем нас мире происходят различные явления, связанные с нагреванием и охлаждением тел. Их называют тепловыми явлениями. Так, при нагревании холодная вода сначала становится теплой, а затем горячей; вынутая из пламени металлическая деталь постепенно охлаждается и т. д. Степень нагретости тела, или его тепловое состояние, мы обозначаем словами «теплый», «холодный», «горячий», Для количественной оценки этого состояния и служит температура.
Температура — один из макроскопических параметров системы. В физике, тела, состоящие из очень большого числа атомов или молекул, называют макроскопическими. Размеры макроскопических тел во много раз превышают размеры атомов. Все окружающие тела — от стола или газа в воздушном шарике до песчинки — макроскопические тела.
Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называют макроскопическими параметрами. К ним относятся объем, давление, температура, концентрация частиц, масса, плотность, намагниченность и т. д. Температура — один из важнейших макроскопических параметров системы (газа, в частности).
Температура — характеристика теплового равновесия системы.
Известно, что для определения температуры среды следует поместить в эту среду термометр и подождать до тех нор, пока температура термометра не перестанет изменяться, приняв значение, равное температуре окружающей среды. Другими словами, необходимо некоторое время для установления между средой и термометром теплового равновесия.
Тепловым, или термодинамическим, равновесием называют такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными. Это означает, что не меняются объем и давление в системе, не происходят фазовые превращения, не меняется температура.
Однако микроскопические процессы при тепловом равновесии не прекращаются: скорости молекул меняются, они перемещаются, сталкиваются.
Любое макроскопическое тело или группа макроскопических тел — термодинамическая система — может находиться в различных состояниях теплового равновесия. В каждом из этих состояний температура имеет свое вполне определенное значение. Другие величины могут иметь разные (но постоянные) значения. Например, давление сжатого газа в баллоне будет отличаться от давления в помещении и при температурном равновесии всей системы тел в этом помещении.
Температура характеризует состояние теплового равновесия макроскопической системы: во всех частях системы, находящихся в состоянии теплового равновесия, температура имеет одно и то же значение (это единственный макроскопический параметр, обладающий таким свойством).
Если два тела имеют одинаковую температуру, между ними не происходит теплообмен, если разную — теплообмен происходит, причем тепло передается от более нагретого тела к менее нагретому до полного выравнивания температур.
Измерение температуры основано на зависимости какой-либо физической величины (например, объема) от температуры. Эта зависимость и используется в температурной шкале термометра — прибора, служащего для измерения температуры.
Действие термометра основано на тепловом расширении вещества. При нагревании столбик используемого в термометре вещества (например, ртути или спирта) увеличивается, при охлаждении — уменьшается. Использующиеся в быту термометры позволяют выразить температуру вещества в градусах Цельсия (°С).
А. Цельсий (1701-1744) — шведский ученый, предложивший использовать стоградусную шкалу температур. В температурной шкале Цельсия за нуль (с середины XVIII в.) принимается температура тающего льда, а за 100 градусом — температура кипения воды при нормальном атмосферном давлении.
Поскольку различные жидкости расширяются с повышением температуры по-разному, то температурные шкалы в термометрах с разными жидкостями различны.
Поэтому в физике используют идеальную газовую шкалу температур, основанную на зависимости объема (при постоянном давлении) или давления (при постоянном объеме) газа от температуры.
Класс: 8
Презентация к уроку
При изучении механики нас интересовало движение тел. Теперь мы рассмотрим явления, связанные с изменением свойств покоящихся тел. Мы будем изучать нагревание и охлаждение воздуха, таяние льда, плавление металлов, кипение воды и т. д. Подобные явления называют тепловыми явлениями.
Мы знаем, что при нагревании холодная вода сначала становится теплой, а затем горячей. Вынутая из пламени металлическая деталь постепенно охлаждается. Воздух, окружающий батареи с горячей водой, нагревается и т. д.
Словами «холодный», «теплый», «горячий» мы обозначаем тепловое состояние тел. Величиной, характеризующей тепловое состояние тел, является температура.
Всем известно, что температура горячей воды выше температуры холодной. Зимой температура воздуха на улице ниже, чем летом.
Все молекулы любого вещества непрерывно и беспорядочно (хаотически) движутся.
Беспорядочное хаотическое движение молекул называется тепловым движением.
— Скажите, в чём отличие теплового движения от механического?
В нём участвуют много частиц с разными траекториями. Движение никогда не прекращается. (Пример: броуновское движение)
Демонстрация модели броуновского движения
Вопрос о том, что такое температура, оказался очень сложным. Чем, например, горячая вода отличается от холодной? В течение долгого времени на этот вопрос не было ясного ответа. Сегодня мы знаем, что при любой температуре вода состоит из одних и тех же молекул. Тогда что именно изменяется в воде при увеличении ее температуры? Из опыта мы увидели, что в горячей воде сахар растворится значительно быстрее. Растворение происходит из-за диффузии. Таким образом, диффузия при более высокой температуре происходит быстрее, чем при низкой.
Но причиной диффузии является движение молекул. Значит, между скоростью движения молекул и температурой тела есть связь: в теле с большей температурой молекулы движутся быстрее.
Но температура зависит не только от средней скорости молекул. Так, например, кислород, средняя скорость движения молекул которого составляет 440 м/с, имеет температуру 20 °С, а азот при той же средней скорости молекул имеет температуру 16 °С. Меньшая температура азота обусловлена тем, что молекулы азота легче молекул кислорода. Таким образом, температура вещества определяется не только средней скоростью движения его молекул, но и их массой. Это же мы видим и в опыте №2.
Итак, при нагревании тел средняя кинетическая энергия молекул увеличивается, и они начинают двигаться быстрее; при охлаждении энергия молекул уменьшается, и они начинают двигаться медленнее.
Температура- величина, которая характеризует тепловое состояние тела. Мера “нагретости” тела. Чем выше температура тела, тем большую в среднем энергию имеют его атомы и молекулы.
Рука, которая была в горячей воде теперь ощущает холод, а рука, которая была в холодной воде теперь ощущает тепло, хотя обе руки находятся в одном сосуде
Мы доказали, что наши ощущения субъективны. Необходимы приборы, подтверждающие их.
Приборы, служащие для измерения температуры, называются термометрами. Действие такого термометра основано на тепловом расширении вещества. При нагревании столбик используемого в термометре вещества (например, ртути или спирта) увеличивается, при охлаждении уменьшается. Первый жидкостный термометр был изобретен в 1631 г. французским физиком Ж.Реем.
Температура тела будет изменяться, пока не придёт в тепловое равновесие со средой.
Закон теплового равновесия: у любой группы изолированных тел через какое-то время температуры становятся одинаковыми, т.е. наступает состояние теплового равновесия.
Следует помнить, что любой термометр всегда показывает свою собственную температуру. Для определения температуры среды термометр следует поместить в эту среду и подождать до тех пор, пока температура прибора не перестанет изменяться, приняв значение, равное температуре окружающей среды. При изменении температуры среды будет изменяться и температура термометра.
Несколько иначе действует медицинский термометр, предназначенный для измерения температуры тела человека. Он относится к так называемым максимальным термометрам, фиксирующим наибольшую температуру, до которой они были нагреты. Измерив свою собственную температуру, вы можете заметить, что, оказавшись в более холодной (по сравнению с человеческим телом) среде, медицинский термометр продолжает показывать прежнее значение. Чтобы вернуть столбик ртути в исходное состояние, этот термометр необходимо встряхнуть.
С лабораторным термометром, используемым для измерения температуры среды, этого делать не нужно.
Использующиеся в быту термометры позволяют выразить температуру вещества в градусах Цельсия (°С).
— Об истории развития термометров послушаем сообщение (Презентация Сидоровой Е.)
Мы попробовали сделать жидкостный термометр в домашних условиях. Посмотрим, что из этого получилось. (Видеосюжет Брыкиной В. Приложение 1)
Мы узнали, что существуют различные шкалы температур. Помимо шкалы Цельсия широко распространена шкала Кельвина. Понятие абсолютной температуры было введено У. Томсоном (Кельвином). Шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой.
Единица абсолютной температуры — кельвин (К).
Абсолютный ноль — наиболее низкая возможная температура, при которой ничего не может быть холоднее и теоретически невозможно извлечь из вещества тепловую энергию, температура, при которой прекращается тепловое движение молекул
Абсолютный ноль определен как 0 K, что приблизительно равно 273.15 °C
Один Кельвин равен одному градусу T=t+273
Вопросы из ЕГЭ
Какой из приведенных ниже вариантов измерения температуры горячей воды с помощью термометра дает более правильный результат?
1) Термометр опускают в воду и, вынув из воды через несколько минут, снимают показания
2) Термометр опускают в воду и ждут до тех пор, пока температура перестанет изменяться. После этого, не вынимая термометра из воды, снимают его показания
3) Термометр опускают в воду и, не вынимая его из воды, сразу же снимают показания
4) Термометр опускают в воду, затем быстро вынимают из воды и снимают показания
На рисунке показана часть шкалы термометра, висящего за окном. Температура воздуха на улице равна
Решите задачи № 915, 916 (“Сборник задач по физике 7-9” В.И.Лукашик, Е.В. Иванова)
Тепловое движение. Температура
Содержание
В жизни мы постоянно сталкиваемся с тепловыми явлениями. Например, перемена времен года, ежедневная смена погоды. Чтобы заварить утром чай, мы кипятим чайник – здесь тоже присутствует тепловое явление.
В промышленности и технике с тепловыми явлениями связаны создание новых материалов, сгорание топлива, плавление металлов и др. В данном уроке мы рассмотрим как физика описывает такие явления, дадим определения новым понятиям, установим зависимости и закономерности одних величин от других.
Температура и тепловые явления
Мы постоянно используем такие слова как “теплый”, “горячий”, “прохладный”, “холодный”. Так мы говорим о температуре физических тел.
Температура – это физическая величина, определяющая степень нагретости газа, жидкости или твердого тела.
Используя это определение, мы можем заявлять, что температура холодной воды ниже температуры горячей. Или говорить о том, что температуры воздуха этой зимой ниже, чем предыдущей.
Единица измерения температуры – градус Цельсия ($\degree C$). Измеряют температуру с помощью термометра.
Вы уже знаете, что процесс диффузии напрямую зависит от температуры. При более высокой температуре диффузия происходит быстрее. Значит, температура и скорость движения молекул связаны между собой:
Температура тела зависит от скорости движения молекул.
Теперь мы можем дать определение тепловым явлениям:
Тепловые явления – это явления, связанные с изменением температуры (нагреванием или охлаждением тел).
Тепловое движение
Тела состоят из вещества, а вещество – из молекул и атомов, которые находятся в непрерывном и беспорядочном движении. Скорость их движения связана с температурой, поэтому такое движение называют тепловым.
Тепловое движение – это процесс беспорядочного движения частиц, образующих вещество.
Если мы возьмем отдельную молекулу какого-либо вещества, то ее движение будет являться механическим. Мы можем сказать про выбранную молекулу, что у нее есть определенная скорость движения, направление и пройденный путь.
Это делает наблюдение со стороны механики сложным, а зачастую – просто невозможным. Поэтому мы используем понятие теплового движения молекул.
Вещество может находиться в разных агрегатных состояниях:
В этом состоянии молекулы и атомы колеблются около около некоторых определенных позиций (рисунок 1, 3) – своих положениях в узлах кристаллической решетки (рисунок 2).
Молекулы могут колебаться, вращаться и перемещаться относительно друг друга (рисунок 1, 2).
Молекулы двигаются хаотично, имеют очень сложные траектории (рисунок 1, 1) вследствие больших скоростей и постоянных столкновений с другими молекулами или стенками сосуда.
Все эти движения молекул в разных состояниях вещества являются тепловым движением. Характер этого движения изменяется при изменении температуры – вещество переходит из одного агрегатного состояния в другое.
Например, если понижать температуру воды, то она превратится в лед (из жидкого состояния переходит в твердое) (рисунок 3). Если же мы будем повышать температуру, то вода станет водяным паром (превратится из жидкости в газ).
Так как молекулы движутся, они обладают кинетической энергией. А скорость их движения связана с температурой. Поэтому температура тела тесно связана со средней кинетической энергией молекул. При повышении температуры, увеличивается средняя кинетическая энергия, а при понижении – средняя кинетическая энергия уменьшается.
Тепловое движение. Температура
Урок 1. Физика 8 класс (ФГОС)
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Тепловое движение. Температура»
Из химии и физики 7 класса вы знаете, что все вещества имеют дискретное строение. Иными словами, они состоят из мельчайших частиц — атомов и молекул, между которыми существуют промежутки.
Размеры атомов и молекул настолько малы, что увидеть их без сильных электронных микроскопов не удаётся. Но большое количество разнообразных наблюдаемых явлений подтверждают дискретность веществ. Среди них и хорошо знакомое вам явление диффузии — самопроизвольное проникновение одного вещества в другое.
Диффузия в жидкости
Однако самым убедительным доказательством дискретного строения вещества является броуновское движение. Давайте посмотрим, в чем его суть.
Броуновское движение — это беспорядочное движение малых частиц вещества, взвешенных в жидкости или газе.
Взвешенными называются частицы, плотность вещества которых сравнима с плотностью среды, в которой они находятся. При этом размеры этих частиц в тысячу с лишним раз превышают размеры молекул.
Впервые такое движение наблюдал английский ботаник Р. Броун в 1827 г. Он рассматривал движение частиц цветочной пыльцы в воде под микроскопом. Каждая частица пыльцы совершала причудливое зигзагообразное движение.
Постепенно становилось понятным, что мельчайшие частички вещества испытывают со всех сторон удары ещё более мелких частиц, которые в микроскоп уже не видны.
Открытое Р. Броуном движение неоспоримо доказало факт того, что все вещества состоят из атомов и молекул. И самое главное, что эти мельчайшие частицы вещества находятся в непрерывном беспорядочном движении, интенсивность которого зависит от температуры вещества. Чем выше температура, тем быстрее двигаются молекулы вещества, и наоборот. Именно поэтому броуновское движение ещё называют тепловым движением.
А что такое температура?
Многие из вас наверняка приведут примеры того, что температура горячей воды больше чем холодной. А кто-то скажет, что температура на улице зимой ниже, чем летом.
Стакан с холодной и горячей водой
Температура — это физическая величина, которая характеризует тепловое состояние тела (степень его «нагретости»).
Однако наши с вами ощущения неоднозначны и зависят от состояния человека и окружающей среды. Так, например, в одной и той же комнате металлические предметы всегда кажутся более холодными, чем деревянные или пластмассовые.
Или вот ещё один пример — опыт, который вы можете провести в домашних условиях. Погрузим на некоторое время одну руку в горячую воду, а другую — в холодную. Теперь, если мы обе руки поместим в воду при комнатной температуре и попытаемся на основании своих ощущений установить, какая в сосуде вода — холодная или горячая, то, на удивление, у нас ничего не получится, поскольку наши ощущения будут разными: рука, которая находилась в горячей воде, будет чувствовать холод, а рука, находившаяся в холодной воде, будет ощущать тепло.
Поэтому, для того, чтобы сделать те или иные выводы о температуре тела, её необходимо измерить. Для измерения температуры используется специальный измерительный прибор — термометр. Его действие основано на зависимости свойств тела от температуры (расширение тел при нагревании и их сжатие при охлаждении).
Единицей измерения температуры является градус Цельсия.
Эта единица была названа в честь шведского учёного А. Цельсия, предложившего использовать стоградусную шкалу температур. За 0 о С в ней принимается температура тающего льда, а за 100 о С — температура кипения воды при нормальных условиях.
Помимо шкалы Цельсия, существуют и другие температурные шкалы. Например, термометры со шкалой Фаренгейта до сих пор применяют в Англии и Америке. За 0 о в этой шкале была принята температура самой холодной зимы в Голландии в 1709 г., а вторая точка соответствовала нормальной температуре человеческого тела — 98 о F.
Во Франции долгое время использовалась шкала Реомюра, которая в настоящее время вышла из употребления.
В физике, в частности в термодинамике, используется шкала Кельвина. В ней температура отсчитывается от абсолютного нуля — то есть от минимальной теоретически возможной температуры тела. В нашей привычной шкале — шкале Цельсия, эта температура равняется −273,15 о С.
Вы конечно знаете, что при любой температуре вещество, например, вода, состоит из одних и тех же молекул. Иными словами, молекулы холодной воды ничем не отличаются от молекул воды горячей. Но что же тогда меняется в воде при изменении её температуры?
Изменяется скорость движения молекул. Чем быстрее двигаются молекулы в веществе, тем более высокой является температура вещества, и наоборот. Т. е., температура зависит от скорости движения молекул.
Но только ли от скорости молекул зависит температура тела? Например, при средней скорости движения молекул в 440 м/с кислород имеет температуру 20 о С, а азот — 16 о С. Это обусловлено тем, что молекулы азота легче молекул кислорода. Следовательно, температура зависит и от массы молекул.
В 7 классе вы познакомились с величиной, которая также зависела от скорости и массы — это кинетическая энергия.
Поэтому можно утверждать, что температура является мерой средней кинетической энергии молекул тела.
Теперь выясним каковы особенности броуновского движения в различных агрегатных состояниях вещества.
Вы уже знаете, что расстояние между молекулами у газов достаточно большое, и намного больше чем у жидкостей и твёрдых тел. Но силы взаимодействия между молекулами газа ничтожно малы. Поэтому молекула в газе двигается свободно до момента столкновения с другой молекулой. При столкновении молекула меняет направление своего движения и вновь движется свободно до следующего столкновения. Именно поэтому газы не сохраняют своей формы и занимают весь предоставленный им объём.
Расположение молекул в газе
Тепловое движение молекул жидкости другое. Расстояния между молекулами жидкости намного меньше, чем в газах, а сами молекулы связаны друг с другом силами притяжения и отталкивания. Поэтому они совершают беспорядочные колебания и вращения в одном положении, а также могут перемещаться относительно друг друга.
Расположение молекул в газе
Наличие сил притяжения между молекулами обеспечивает жидкости сохранение объёма, а перемещения — текучесть. Поэтому жидкость и сохраняет свой объем, но не сохраняет форму, а принимает форму того сосуда, в котором она находится.
В твёрдых телах частицы связаны между собой сильнее, чем в жидкостях. Поэтому их тепловое движение главным образом сводится к хаотичному колебанию около своего положения равновесия.
Расположение молекул в газе
Сильное взаимодействие в твёрдом веществе частиц друг с другом, и отсутствие у них подвижности, приводит к тому, что твёрдые тела сохраняют свою форму и объём.
§ 1. Тепловое движение. Температура
В окружающем нас мире происходят различные физические явления, которые связаны с нагреванием и охлаждением тел. Мы знаем, что при нагревании холодная вода вначале становится тёплой, а затем горячей.
Такими словами, как «холодный», «тёплый» и «горячий», мы указываем на различную степень нагретости тел, или, как говорят в физике, на различную температуру тел. Температура горячей воды выше температуры холодной. Температура воздуха летом выше, чем зимой.
Температуру тел измеряют с помощью термометра и выражают в градусах Цельсия (°С).
Вам уже известно, что диффузия при более высокой температуре происходит быстрее. Это означает, что скорость движения молекул и температура связаны между собой. При повышении температуры скорость движения молекул увеличивается, при понижении — уменьшается.
Следовательно, температура тела зависит от скорости движения молекул.
Тёплая вода состоит из таких же молекул, как и холодная. Разница между ними заключается лишь в скорости движения молекул.
Явления, связанные с нагреванием или охлаждением тел, с изменением температуры, называются тепловыми. К таким явлениям относятся, например, нагревание и охлаждение воздуха, таяние льда, плавление металлов и др.
Молекулы или атомы, из которых состоят тела, находятся в непрерывном беспорядочном движении. Их количество в окружающих нас телах очень велико. Так, в объёме, равном 1 см 3 воды, содержится около 3,34 • 10 22 молекул. Каждая молекула движется по очень сложной траектории. Это связано с тем, что, например, частицы газа, движущиеся с большими скоростями в разных направлениях, сталкиваются друг с другом и со стенками сосуда. В результате этого они изменяют свою скорость и снова продолжают движение. На рисунке 1 изображены траектории движения микроскопических частиц краски, растворённой в воде.
Поскольку со скоростью движения молекул тела связана его температура, беспорядочное движение частиц называют тепловым движением.
В жидкостях молекулы могут колебаться, вращаться и перемещаться относительно друг друга. В твёрдых телах молекулы и атомы колеблются около некоторых средних положений.
В тепловом движении участвуют все молекулы тела, поэтому с изменением характера теплового движения изменяется и состояние тела, его свойства. Так, при повышении температуры лёд начинает таять, превращаясь в жидкость. Если понижать температуру, например, ртути, то она из жидкости превращается в твёрдое тело.
Температура тела находится в тесной связи со средней кинетической энергией молекул. Чем выше температура тела, тем больше средняя кинетическая энергия его молекул. При понижении температуры тела средняя кинетическая энергия его молекул уменьшается.
Вопросы
1. Какие тепловые явления вы знаете?
2. Что характеризует температура?
3. Как связана температура тела со скоростью движения его молекул?
4. Чем отличается движение молекул в газах, жидкостях и твёрдых телах?