Что показывает трубка пито
Трубка Пито: подробно простым языком
Трубка Пито — это полая трубка, изогнутая под углом в 90°, которая используется в качестве устройства создающего перепад давления. В трубопровод устанавливается таким образом, чтобы открытый конец ее был направлен навстречу потоку.
Схема трубки Пито
При наличии двух камер давления, разделенных диафрагмой, даже самый незначительный перепад давления в потоке жидкости можно измерить с точностью. Отдельные точки отбора давления расположены по всему поперечному сечению трубы для обеспечения репрезентативных показателей.
Принцип работы трубки Пито
В процессе эксплуатации трубка Пито заполняется жидкостью или газом, и таким образом, играет роль некоего предмета на пути движущегося потока. Входящий поток ударяется о стенки трубки Пито, создавая таким образом давление, которое измеряется прибором, расположенным на другом конце трубки.
Конец трубки, который открыт для входящего потока, всегда направлен вверх по потоку относительно места монтажа трубки, а другой конец трубки подсоединяется к контрольно-измерительному прибору. Отбор низкого давления вмонтирован в трубопровод под прямым углом относительно направления движения потока, с его помощью измеряется давление, оказываемое потоком на стенки трубопровода. Для того, чтобы определить величину расхода, измеряется разность этих двух манометрических величин.
Скорость полета самолета и трубка Пито.
Здравствуйте, друзья!
Но а как же быть с самолетом? Нет ведь в воздухе дорог, по которым можно было бы ехать :-). Единственная среда, с которой летательный аппарат контактирует непосредственно — это воздух. Вот от него-то он большую часть информации о своем движении и получает. Что касается конкретно скорости полета, то вполне понятно, что чем быстрее самолет летит, тем сильнее на него давит встречный воздушный поток (скоростной или динамический напор). Отсюда логично было бы определять скорость полета в зависимости от величины этого давления. Так же как, кстати, и с атмосферным давлением и высотой. Ведь чем выше летит самолет, тем атмосферное давление ниже. О высоте, однако, поговорим в одной из следующих статей, а пока на повестке дня скорость полета.
Схема классической трубки Пито
Трубка Пито представляет собой L — образную трубку, один конец которой помещен в скоростной (воздушный :-)) поток. Этот поток в трубке тормозится, создавая в ней избыточное давление, по величине которого и можно судить о скорости потока, то есть по сути дела скорости полета, если эта трубка установлена на летательном аппарате. Вобщем-то принцип достаточно простой :-).
Однако здесь надо не забывать еще об одной важной вещи. Все, что находится внутри земной атмосферы, существует в ней под постоянным атмосферным (статическим) давлением. Мы его практически не ощущаем (если, конечно, все в порядке со здоровьем :-)), но оно есть и так или иначе оказывает влияние практически на все физические процессы, происходящие вокруг нас, то есть на всю нашу жизнь. Прямо как в фильме «ДМБ» :-):
— Видишь суслика?
— Нет…
— И я не вижу… А он — есть!
Полное давление = динамическое давление (скоростной напор) + статическое давление.
Скоростной напор выражается такой формулой Р1 = ρV²/2.
В итоге мы имеем такое уравнение: Р = Р0 + Р1 = Р0 + ρV²/2
Из него очень просто получить искомую скорость полета: V = √((2(Р — Р0))/ρ)
Указатель скорости УС-350.
Как видите, нам, чтобы определить скорость полета, нужно измерить полное давление потока и статическое давление. Классическая трубка Пито дает только полное давление. Поэтому статику приходится измерять отдельно. Во избежание этого неудобства трубка Пито была усовершенствована.
Схема работы трубки Прандтля (ПВД).
Работа указателя скорости неплохо показана в этом небольшом ролике.
Трубка Пито под крылом самолета Cessna 172.
Чаще используются так называемые комбинированные ПВД. Они по конструкции представляют собой типичные трубки Прандтля. Эти устройства обязательно снабжаются мощной системой электрического обогрева, так как небольшие отверстия для замера давлений при обледенении самолета вполне могут быть закупорены льдом, что, конечно, может помешать их корректной работе. На стоянках приемники воздушных давлений закрываются специальными заглушками или чехлами для исключения попадания посторонних предметов и грязи в отверстия.
Типичный ПВД современного самолета.
Приемник воздушного давления на СУ-24М (цифры 1 и 2).
Воздушная скорость (самая важная :-)). Она делится на два вида:
Истинная воздушная скорость ( True Airspeed ( TAS ) ) и Приборная воздушная скорость ( Indicated Airspeed ( IAS ) )
Приборная скорость – эта та скорость, которую летчик видит в своей кабине на приборе-указателе скорости. Она используется для пилотирования летательного аппарата непосредственно в данный момент времени.
Истинная скорость – это фактическая скорость полета самолета относительно воздуха. Она используется для навигации. Зная ее, например, рассчитывается время прибытия в конечный пункт маршрута и возможные при этом отклонения. Измерить эту скорость обычно невозможно. Она рассчитывается с использованием приборной скорости, давления воздуха и его температуры. При этом учитываются погрешности указателя приборной скорости. Они всегда есть, как у любого измерительного прибора на нашей земле :-). Эти погрешности (или ошибки) бывают:
Путевая скорость (Ground Speed ( GS )). Это скорость летательного аппарата относительно земли. Она рассчитывается на основании истинной скорости с учетом скорости ветра и используется при решении навигационных задач.
P.S. В заключении предлагаю вам посмотреть дополнительный ролик, рассказывающий о трубках Пито и Прандтля.
74 Комментариев: Скорость полета самолета и трубка Пито.
Полета самолета определяют 5 скоростей. Пилот имеет на борту первую скорость из этой цепочки, а ему нужна пятая по счету.
IAS — получается на борту как разность давления (см. статью). Поскольку прибор как любое механическое устройство имеет свою погрешность (зазоры, трение и пр.), то его показания надо корректировать, и получается IAS*=IAS+dVпр. Однако, механика стала сверхточной, приборы подешевели и доступны всем, от дешевых самолетов до самых дорогих, то в последних нормах лётной годности эта поправка строго нормирована, не более от 2 до 5 км/ч, то все приборы и показывают скорость с этой точностью, и приборную поправку можно больше не учитывать, используя просто IAS. Именно эта скорость записана в РЛЭ, по ней и пилотирует самолет пилот. Но есть особенность — это очень «грязная» скорость. Видя на приборе скорость 500 км/ч, это вовсе не означает, что самолет каждый час пролетаете 500 км. Подробности ниже.
CAS — calibrated airspeed, или индикаторная земная скорость. Любое тело летящее в воздухе создает вокруг себя поле давлений, или по-простому — ударную волну (это если уж со сверхзвуковой скоростью). А у нас есть ПВД и мы им измеряем давление. Для дозвукового самолета искажение поля давления распространяется на 1…2 характерных размера объекта (очень условно и примитивно, но примерно так). Например, у моего самолета хорда крыла 1,3 м, а искажение поля статического давления перед крылом распространяется на 2 м. Штанга же ПВД расположенная в носке крыла имеет длину 0,75 м (а длиннее нельзя — сломается, или делать ее из чугуна). Конечно же статическое давление измеряется с искажениями. К тому форма поля статического давления зависит от положения закрылков и угла атаки (а те в свою очередь — от скорости полета, массы самолета, и понеслись по всему учебнику…). Чтобы это учесть, в лётных испытаниях определяют «вранье ПВД», искажение измерения статического давления, и потом приборную скорость IAS корректируют (калибруют) — добавляют аэродинамическую скоростную поправку ПВД: CAS = IAS + dVа.
EAS — индикаторная скорость. Если самолет летит быстрее 400 км/ч, то воздух начинает проявлять эффект сжимаемости, что тоже влияет на измерения. По спец.таблицам для любой высоты и скорости полета можно посмотреть поправку на сжимаемость и добавить ее: EAS = CAS + dVсж. Если скорость полета меньше 400 км/ч, то сжимаемость не учитывается — EAS = CAS, соответственно. Пересчитывая IAS в CAS или EAS уже можно сравнивать характеристики конкретного самолета на разных режимах полета: даже если IAS будут разные, но CAS/EAS одинаковые, то и аэродинамические характеристики самолета одинаковые. Именно в этих скоростях записаны все нормы летной годности, по которым проектируют самолеты. Например, у самолета определили скорость сваливания, Vs = 113 км/ч, то если повторять режим сваливания на этом самолете с разными приборами и разными ПВД на разных скоростях, то IAS конечно же будет разной, но самолет сваливаться будет на одной и той же CAS/EAS, что и требуется.
TAS — истинная скорость. Скорость в невозмущенном воздухе без ветра (поэтому в русс. есть еще синоним — воздушная, вносящий не мало путаницы. Ведь все приведенные здесь скорости, кроме последней — воздушные). Поскольку самолет летает в реальной атмосфере, на разной высоте и при разной погоде, то температура и давление всегда разное, в разных комбинациях. Но аэродинамики и нормы лётной годности пользуются только стандартной атмосферой МСА, где стат.давление отсчитывается от стандартного, от 760 мм рт.ст. при +15°С. Стало быть, чтобы сравнивать характеристики самолета с нужно пересчитывать IAS в скорость на высоте полета.
Все очень просто — нужно сравнить плотность воздуха на высоте полета Rн (зная температуру и давление на этой высоте) с плотностью стандартной атмосферы у земли Ro (+15/760) и добавить эту поправку к скорости: TAS = EAS (CAS) / SQRT (Rн/Ro). Именно по этой скорости делают расчет самолета аэродинамики, и продувают аэродинамические модели в своих трубах.
А еще эту же скорость TAS используют штурманы в расчетах. Зная скорость и направление ветра U, векторно складывая ее с TAS получают путевую скорость W или GS, скорость движения самолета относительно земли.
GS — путевая скорость, и она единственная во всей цепочке — уже не воздушная. Нанося ее вектор на карту можно рассчитать время полета и проходимое фактическое расстояние на данной высоте и при данном ветре. Что-то изменилось — считай всю цепочку заново. Вот такой длинный путь от цифры на приборе в кабине пилота до линии на карте штурмана. Поэтому то раньше и были штурманы в экипаже!
Сейчас уже заканчивают свою жизнь доплеровские измерители скорости и сноса (ДИСС), зато на каждом самолете стоят GPS/GLONASS, которые сразу же выдают и вектор путевой скорости (ФПУ или TRK) и ее величину (GS). А чтобы следить за безопасной скоростью в полете и не напрягать пилота расчетом или розыском в РЛЭ по таблицам нужной скорости на самолетах ставят вычислители воздушной скорости, в которые уже введены данные о всех поправках ПВД/сжимаемости, текущей массе самолета, получают текущие данные о забортной температуре и давлении, о давлении и температуре на аэродроме посадки, о конфигурации самолета. Вычислитель ежесекундно рассчитывает опасные CAS/EAS для конкретной ситуации, потом переводит в IAS и рисует красный сектор на электронном указателе скорости, за который пилоту и автопилоту заходить нельзя. Пилот же как и раньше продолжает пилотировать самолет глядя на IAS.
Вот так сегодня разорвалась 100-летня цепочка вычислений воздушных скоростей самолета… Но физика процесса — не изменная.
Интересно, а почему нельзя производить корректировку скорости в воздухе, используя сигналы GPS?
Трубка Пито
В аэронавтике прибор Пито измеряет общее давление в контуре статического и полного давления и позволяет определить относительную скорость самолета по отношению к окружающей среде.
Резюме
Физический принцип изобретения Анри Пито
час знак равно V 2 2 грамм <\ displaystyle h = <\ frac (это без учета аэродинамического сопротивления камня).
Итак, когда вы окунете руку в поток потока (как на анимации напротив), вы увидите, что вода поднимается до определенной высоты.
Знание, действительно ли высота, достигаемая таким образом водой, равна высоте, могло бы стать хорошим упражнением в физике средней школы (мы можем ожидать определенных потерь энергии в воде из-за вязкого трения). час знак равно V 2 2 грамм <\ displaystyle h = <\ frac
Анри Пито поступил более проницательно: в первом эксперименте, который он с энтузиазмом импровизировал, когда ему в голову пришла идея создания МАШИНЫ ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ БЕГАЩЕЙ ВОДЫ И ПОСЛЕ СУДОВ, он заменил руку простой изогнутой стеклянной трубкой против течения, и при таком расположении больше нет потерь энергии: частицы воды, которые поднимаются в стеклянной трубке, очень быстро теряют свою скорость (после стабилизации водяного столба по высоте): поэтому больше нет страха перед потеря энергии за счет вязкого трения.
В случае с этой трубкой Пито высота h, достигаемая водой в трубке, действительно равна:
Исторический
Однако, если первое отверстие, обращенное к току, хорошо улавливало общее давление, второе отверстие (на конце неизогнутой стеклянной трубки) «примерно» улавливало местное статическое давление. Точнее, он захватил его с недостаточной точностью (из-за явления вентиляции выходной стороны призмы ее концом (см. Статью « Вентиляция выходной стороны цилиндра» ).
Если измерение общего давления довольно просто, следует признать, что сложность устройств для измерения скорости потока жидкости или газа в данной точке состоит, прежде всего, в том, чтобы измерить хорошее статическое давление, существующее в этой же точке. Именно по этому вопросу трубка Пито будет развиваться больше всего за два столетия, которые последуют за ее изобретением.
Ричард У. Джонсон описывает эти измерения в своем Руководстве по гидродинамике следующим образом: «В 1732 году между двумя столбами моста через Сену в Париже [Анри Пито] использовал [свой] инструмент для измерения скорости течения в представление ее результатов Академии позднее в том же году имеет большее значение, чем представление самой трубки Пито: современные теории, основанные на опыте нескольких итальянских инженеров, утверждали, что скорость течения на определенной глубине реки был пропорционален массе воды, текущей над точкой измерения, поэтому было видно, что скорость течения увеличивается с глубиной.Пито с помощью своего инструмента доказал, что в действительности скорость течения уменьшается с глубиной. «
Ричард У. Джонсон также рассматривает изобретение Анри Пито в исторической перспективе следующим образом: «[…] Разработка трубки Пито в 1732 году представляет собой существенный прогресс в экспериментальной гидродинамике. Однако в 1732 году Анри Пито не смог воспользоваться преимуществами существования трубки. уравнения Бернулли, которое Эйлер получил только 20 лет спустя. Поэтому рассуждения Пито относительно работы его трубки были чисто интуитивными, и его подход (путем измерения разницы между общим давлением в точке остановки и статическим давлением) обычно Как обсуждалось Андерсоном (1989), применение уравнения Бернулли к трубке Пито для того, чтобы вывести из двух измеренных значений давления динамическое давление (затем скорость потока), не было представлено до 1913 года Джоном Эйри из Университета Мичиган. […] Таким образом, потребовалось два столетия, чтобы мастерское изобретение Пито было включено в гидродинамику в качестве жизнеспособный экспериментальный инструмент… «
1,5%) на 3 диаметрах трубки за точкой остановки, где измерялось давление.
В последующих применениях антенны Прандтля (или комбинированной статической трубки Пито), приложений, предназначенных для измерения скорости самолета, расстояния между точкой остановки, где измеряется общее давление, и отверстием (или отверстиями), где статическое давление захваченного только увеличилось: антенна была размещена в зоне, где поток был свободен от любого влияния самолета (например, достаточно перед носом фюзеляжа или давление атаки кромки крыла), так что статическое давление потока было примерно одинаковым в точке остановки и в отверстии захвата этого статического давления.
В текущей практике производителей самолетов (в отношении дозвуковых коммерческих самолетов) от антенны Прандтля отказываются в пользу простых датчиков Пито (измеряющих полное давление сразу за пограничным слоем ), статическое давление измеряется отверстиями в стенке корпуса. фюзеляж на той же оси абсцисс (от носовой части фюзеляжа), что и измерительное отверстие одиночной трубки Пито: эти два измерения производятся в одном из шести привилегированных мест, указанных на схеме ниже.
Антенна Прандтля
Прандтль (де) антенны (названные в честь Прандтль ) представляет собой комбинированную Пито-статическая трубку. Он состоит из двух коаксиальных трубок, отверстия которых, сообщающиеся с жидкостью, скорость которой мы хотим измерить, расположены определенным образом:
Распределение по потоку и по комбинированной полусферически-цилиндрической статической трубке Пито. ПРОТИВ п <\ displaystyle C_
>
Расчет скорости
Терминология
Статический выпуск (в сочетании с Pitot или без него) улавливает статическое давление, которое является атмосферным давлением в обычном смысле этого слова.
Случай несжимаемого потока
Случай сжимаемого потока
Приложения
морской
Аэронавтика
Чаще всего Pitot оборудуют электронагревателем, чтобы избежать его засорения скоплением инея. На земле он покрыт защитой, в частности, предотвращающей попадание в него насекомых.
Типовая кривая статического давления на бока фюзеляжа.
Трубка Пито на датчике анемометрии и угла атаки Airbus A380 ( со стороны второго пилота )
Трубка Пито на носу Embraer ERJ 135
Специальные конструкции
В случае самолетов-истребителей высокие скорости и углы, под которыми самолет может двигаться, означают, что были разработаны трубы особой формы, имеющие либо несколько отверстий, либо увеличенную трубу и более тонкую трубу в центре, причем последняя только используется для измерения динамического давления.
В принципе, системы трубок Пито обеспечивают измерение, только если они расположены перед потоком. В случаях, когда необходимо измерить скорость, перпендикулярную плоскости устройства, можно использовать анемоклинометрические датчики; в основе некоторых моделей лежит трубка Пито, имеющая несколько отверстий (5 или 7). Сравнивая давление в каждой трубке, можно определить угол и скорость потока.
Трубки Пито любой формы
В своем тексте, однако, он отмечает, что эти законы механики жидкости не всегда соблюдаются, поскольку, как мы теперь знаем, число Рейнольдса иногда вмешивается, чтобы радикально изменить поток. Но Блазиус мог только предчувствовать причину этих изменений в потоке, поскольку число Рейнольдса еще не заняло своего выдающегося места над всей механикой жидкости (см. По этому поводу статью Crise_de_traine ).
Пито-Вентури
Цилиндрические питотметры
S-образные питотметры ( двунаправленные или реверсивные )
Направленные зонды
Датчики общего давления Kiel
В 1935 г. Г. Киль разработал зонд полного давления, очень нечувствительный к его позиционированию по рысканью и тангажу.
Замечательной особенностью датчика Киля является то, что он имеет точность в пределах 1% для углов рыскания и тангажа до 40 ° в широком диапазоне скоростей. Некоторые более свежие модели United Sensors (изображение прилагается) демонстрируют эти качества нечувствительности до углов 64 °.
Важно отметить, что зонд Киля измеряет только общее давление.
Альтернативные решения
Автомобильная промышленность
Трубка Пито используется в автомобиле в тех случаях, когда скорость не может быть определена только по скорости вращения шин. Точность: сравнение двух измерений (трубки Пито и скорости вращения колеса) позволяет сделать вывод о динамической эволюции раздавливания шин.
Другие приложения
Трубка Пито имеет две формы: S-образную и L-образную. Ее также можно использовать для измерения скорости газового потока, например, в промышленных дымоходах.
Ошибки измерения и неисправности
Засорение трубки Пито
Когда трубка Пито (измеряющая общее давление) заблокирована, измерение скорости автомобиля становится невозможным. Непосредственным следствием засорения трубки Пито является ошибочное измерение увеличения скорости по мере набора высоты самолетом.
Закупорка трубки Пито в самолете чаще всего вызывается водой, льдом или насекомыми. Чтобы предотвратить это, авиационные правила предусматривают предполетный осмотр трубки (труб) Пито. Кроме того, многие устройства с трубкой Пито оснащены противообледенительной системой (последняя требуется для самолетов, сертифицированных для полетов по приборам ).
Из-за множества возможных случаев отказа большие самолеты часто имеют резервную систему из нескольких датчиков Пито, обычно не менее 3. Таким образом, если один из датчиков начинает давать результаты, слишком отличающиеся от других, то можно сделать вывод, что он неисправен и игнорируйте его показания. Если бы их было только 2, то мы не смогли бы узнать, какой из них неисправен, поскольку неисправность может привести к считыванию более высокой или более низкой скорости в зависимости от обстоятельств. Кроме того, некоторые самолеты оснащены дополнительным выдвижным зондом Пито, который можно использовать при необходимости.
Заглушка статического давления заблокирована
Когда выход статического давления заблокирован, это влияет на все инструменты, основанные на системе Пито: высотомер остается на постоянном значении, вертикальная скорость остается нулевой, скорость устройства будет ошибочной, в соответствии с ошибкой, обратной случай засорения трубки Пито: показания скорости будут уменьшаться, когда самолет набирает высоту. Самолеты, кабина которых не находится под давлением, часто имеют аварийный статический датчик, который можно подключить изнутри кабины.
Внутренние неисправности
Зондам Пито присущи недостатки: