Что показывает ультразвуковой дефектоскоп

Ультразвуковой дефектоскоп: как устроен, какими функциями обладает и как не ошибиться с выбором

Импульсный ультразвуковой дефектоскоп – это прибор, предназначенный для акустического контроля сварных соединений, наплавок, поковок, основного металла, листового, фасонного проката и иных материалов на предмет несплошностей и неоднородностей. Это основная единица аппаратуры для активного метода УЗК – ручного, механизированного и автоматизированного. Именно от дефектоскопа зависит производительность, чувствительность, точность и достоверность контроля. В классическом понимании под ним подразумевается электронный блок, работающий с пьезоэлектрическими преобразователями, сканерами и иными вспомогательными и регистрирующими устройствами.

В учебной литературе принято делить ультразвуковые дефектоскопы на аналоговые и цифровые. Первые сегодня встречаются крайне редко – это морально устаревшая аппаратура. С ней операторам приходилось вручную производить многочисленные расчёты, например, для определения эквивалентной площади дефектов. Прозвучивание и обработка результатов занимала слишком много времени. Тем не менее, среди «ветеранов» отечественной УЗ-дефектоскопии по-прежнему в почёту легендарный УД2-12 («Рыжик»), USK-7S и др. В сегодняшнем мире приборы построены на цифровых технологиях и оснащаются микропроцессором, дисплеем, энергонезависимой памятью. Подробная информация об их технических возможностях доступна ниже, ну а пока – попробуем разобраться с принципиальной архитектурой приборов для акустического НК.

Устройство современных ультразвуковых дефектоскопов

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Пьезоэлектрические преобразователи (ПЭП)

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Типы развёрток

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

В ультразвуковых дефектоскопах с поддержкой фазированных решёток и TOFD встречается также S-скан. Речь идёт о так называемом секторном сканировании, при котором апертуры остаются постоянными, а отклонение луча происходит последовательно под разными углами. Главная особенность S-сканов в том, что они позволяют получить динамическое изображение в режиме реального времени по мере движения преобразователя. Технология очень эффективна для визуализации дефектов, включая беспорядочно ориентированные.

Говоря об ультразвуковых дефектоскопах с поддержкой фазированных решёток, нельзя также не упомянуть про L-скан. Это результат линейного сканирования, когда изображение формируется в виде параллелограмма за счёт пучков, сгенерированных разными активными элементами кристалла. Угол ввода при этом постоянен.

Наконец, существуют ещё Т-сканы, 2D- и 3D-визуализация, мульти-сканы и т.д. Данному вопросу нужно не только посвятить отдельную статью, но и периодически её обновлять, поскольку современные приборы, «обрастая» мощными вычислительными возможностями и цветными дисплеями высокой чёткости, постоянно совершенствуются.

Как выбрать ультразвуковой дефектоскоп

И последнее по данному параграфу. Важно понимать, что ни один ультразвуковой дефектоскоп – не вечен. Поэтому, присматриваясь к той или иной модели, оцените ещё и производителя, который её выпустил. В каком объёме и на каких условиях предоставляется техподдержка? Где находится сервисная служба? Как быстро производится гарантийный и послегарантийный ремонт? Нет ли перебоев с поставкой запчастей? Насколько доступна их стоимость? Занимаются ли аппаратурой данной марки другие сервисные центры? Акустический прибор – та вещь в лаборатории, которая будет применяться едва ли не каждый день. Важно быть готовым к быстрому и качественному устранению поломок и повреждений.

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Функционал цифровых ультразвуковых дефектоскопов

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Ультразвуковые дефектоскопы с поддержкой фазированных решёток и TOFD умеют много больше этого. В частности, речь идёт о реализации различных фокальных законов (набора переменных параметров канала – мощности, амплитуды, длительности зондирующего импульса, задержки, длительности развёртки и других). Множество инструментов предусмотрено для управления эффективной площадью излучения, его направленностью. В зависимости от типа прибора оператор может использовать 16-, 32-, 64- или даже 128-элементные датчики. Это, а также возможность генерации пучка точно в зоне несплошности многократно повышает производительность и точность контроля.

Если резюмировать, то современный ультразвуковой дефектоскоп – мощный инструмент для неразрушающего акустического контроля. Благодаря передовым секторному сканированию, дифракционно-временному методу (вышеупомянутый TOFD), новейшим цифровым технологиям приборостроения УЗК в последнее время всё чаще рассматривается в качестве полноценной альтернативы рентгену. При этом, несмотря на мощный функционал, акустические приборы становятся проще в работе – благодаря сохранению типовых настроек, интерактивным подсказкам, текстовым заметкам и другим полезным «фишкам» ПО.

Обучение работе с ультразвуковым дефектоскопом

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

«Набивать руку» желательно под присмотром опытного наставника. По мере проведения контроля разных объектов из разных материалов вы станете лучше разбираться в ПО, выработаете «короткие пути» до нужных настроек и функций, привыкнете к цветовой гамме развёрток, научитесь правильно сохранять и обрабатывать результаты.

Для лучшего понимания принципа работы ультразвукового дефектоскопа рекомендуем также побольше читать учебной и научно-технической литературы. В особенности это касается «классики жанра» – трудов В.Г. Щербинского, И.Н. Ермолова, А.К. Гурвича, Е.Ф. Кретова, В.А. Троицкого, В.Ю. Попова, Ю.В. Ланге и других авторитетных авторов. Свои учебные пособия есть в разных институтах и аттестационных центрах. Например, многие специалисты УЗК высоко отзываются о материалах, которые готовят для своих студентов преподаватели Томского политехнического университета, МГТУ им. Н.Э. Баумана, ПГУПС и т.д.

Помимо книг, пособий и справочников, нужно внимательно изучать руководящую документацию, и в особенности технологические карты, по которым предстоит работать. В грамотно составленной техкарте содержатся подробные указания по настройке ультразвукового дефектоскопа, выбору ПЭП, схемы прозвучивания, измерению характеристик дефектов и т.д. Уверенное знание нормативно-технической документации – это вообще ключ к успеху в профессии дефектоскописта, к слову сказать.

Наконец, если при работе с акустическим приборов возникают какие-либо трудности, вы всегда можете обратиться за советом к старшим товарищам. Сделать это можно на форуме «Дефектоскопист.ру». На нашем сайте зарегистрированы тысячи специалистов УЗК всех квалификационных уровней, I–III, а также преподаватели, представители фирм-производителей аппаратуры, сервисных центров и пр. В разделе «Ультразвуковой контроль» можно получить информацию практически по любым вопросам, связанным с подбором, эксплуатацией, метрологическим и техническим обслуживанием ультразвуковых дефектоскопов.

Где купить ультразвуковой дефектоскоп

Среди приборов для акустического контроля очень жёсткая конкуренция. Чтобы подобрать и приобрести хороший прибор для УЗК, вы можете обратиться к партнёрам форума «Дефектоскопист.ру».

Источник

Дефектоскопы ультразвукового контроля

В двадцатых годах прошлого столетия российский ученый Сергей Соколов разработал метод исследования поверхностей с помощью ультразвукового метода. Сегодня он активно используется в таком приборе как ультразвуковой дефектоскоп. Этот электронный прибор посылает, затем принимает ультразвуковые волны, и впоследствии показывает состав, изменения, материалов и веществ. По принципу исследования дефектоскопом делятся на: эхо-метод, резонансный и теневой.

С их помощью сегодня легко обнаруживаются дефекты в материалах на месте сварного шва, пайки, склейки и пр. Свободно производится исследование объекта, например, для проверки на однородность.

Принцип работы ультразвукового дефектоскопа

При включении прибора центральный процессор (ЦП) запускает в работу основные узлы дефектоскопа. Включается генератор синхронизирующих импульсов, они, поступая к различным блокам готовят их к началу работы.

Генератор импульсов возбуждения подает импульс на пьезоэлемент, он в свою очередь посылает колебания в сторону исследуемого объекта, создавая ультразвуковую волну. Узел ПЭП 2 работает как приемник принимая импульс, получаемый от пьезоэлемента. Приемник приняв сигнал преобразовывает его в электрический и направляет в усилитель (ПУТ). Отсюда он поступает к (АЦП) или к амплитудно-цифровому преобразователю, где импульс преобразуется с электрического сигнала определенной величины в цифровой код. Теперь показатели можно увидеть в виде цифр на дисплее.

В приборе имеется (ПЗУ) или постоянно — запоминающее устройство, здесь сохраняются основные настройки прибора.

В ОЗУ оперативно — запоминающее устройстве обрабатывается информация поступающая при измерениях и контроле, также здесь сберегаются все текущие показатели. Происходит постоянный обмен данными между ОЗУ и ЦП.

Способы проведения дефектоскопии

Он является наиболее распространенным, позволяет точно определять наличие и формы глубинных и поверхностных дефектов. Применяется для исследования металла толщиной от 4 мм и более.

Принцип работы заключается в следующем: на исследуемый объект излучаются ультразвуковые волны, дефектные части объекта отражают сигналы с отличающейся амплитудой от нормального. Ключевым для анализа является отличие в силе получаемого сигнала и времени. Таким образом можно получить сведения об исследуемом объекте и повреждениях.

К достоинствам данного метода можно отнести возможность определения точных размеров и данных поврежденных участков. Недостаток в невысокой помехоустойчивости.

Применяется при обследовании сварных швов небольшого размера.

При этом методе от излучателя исходят ультразвуковые волны с одной стороны, а с другой расположен приемник, который принимает их и показывает значение сигнала. При исследовании материала, волны без изменений с постоянной амплитудой попадают к приемнику и это отражает индикатор, если на пути встречается дефектное место, тогда часть сигнала отражается, а соответственно изменяется амплитуда. Такие скачки неизменно отразит индикатор. Плюсы у данного метода: высокая помехоустойчивость, слабая зависимость амплитуды от величины дефекта. К недостаткам можно отнести: нужен доступ с обеих сторон к исследуемому объекту, также непросто точно определить место положение дефекта.

Еще один метод, он используется для исследования размеров металла, обнаружения зон коррозии с односторонним доступом к изделию, проверяется им на целостность и биметалл.

Основан он на принципе резонанса, когда происходит накладывание волн и увеличение, что вызывает изменение амплитуды сигнала. Приемник фиксирует разницу, благодаря резонансу. При попадании волны на дефектное место уровень сигнала изменяется и показывает на приборе, что в данном месте имеется дефект. Преимущества этого метода: потребность доступа с одной стороны. Недостаток в слабой чувствительности, у теневого метода она лучше.

Источник

Ультразвуковой контроль сварных соединений (УЗК)

Содержание:

Для обеспечения безопасной эксплуатации сварных металлоконструкций необходимо регулярно проводить контроль качества стыковых соединений. Существуют разные методы проверок надежность и прочности стыков, среди которых наиболее эффективным и точным считается ультразвуковой контроль сварных швов.

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Что являет собой УЗК сварочных стыков

Данной технологией диагностируются сварные соединения разных типов. Действенной методика является для обнаружения шлаковых вкраплений в металле, выявления воздушных пустот, присутствия неметаллических элементов и химически неоднородного состава.

Сущность УЗК технологии

Контроль сварных соединений УЗК основан на излучении ультразвуковых волн акустического типа, которые при прохождении однородной среды не изменяют прямолинейной траектории.

Принцип технологии построен на способности высокочастотных колебаний (выше 20 кГц) проникать в металл, не нарушая его структуры, и отражаться от поверхности пустот, царапин, неровностей или инородных включений. Созданная искусственно волна проникает внутрь проверяемого сварочного стыка и если в нем имеет место дефект, то она отклоняется от своего естественного направления при его обнаружении.

Все отклонения отражаются на экранах специальных приборов. Сигнал на монитор передается с помощью усилителя. Он способствует построению схемы, по которой оператор может увидеть все дефекты и особенности стыковых соединений. Размер дефектного образования устанавливается по амплитуде отраженного импульса, расстояние до него определяется по времени распространения акустической волны.

Свойства и получение ультразвуковых колебаний

Практически все приборы, которыми осуществляется ультразвуковая дефектоскопия сварных швов устроены по аналогичному принципу. Состоящая из титана бария или кварца пластина является основным рабочим элементом устройства. В призматической головке, которая отвечает за поиск дефектов, расположен пьезодатчик прибора.

Головка (щуп) размещается вдоль соединений и медленно перемещается посредством возвратно-поступательных движений. К пластине подается высокочастотный ток в пределах 0,8-2,5 Мгц и в результате она перпендикулярно своей длине начинает излучение волн.

Исходящие волны воспринимаются другой принимающей пластиной, где они преобразуются в электрический переменный ток, который мгновенно отклоняет волну на мониторе осциллографа.

Датчик отправляет разные по длительности переменные импульсы колебаний, разделяя их на паузы с большей продолжительностью от 1 до 5 мкс. Такой процесс позволяет безошибочно провести контроль УЗК сварных швов, определить наличие дефектов, их тип и глубину залегания.

Виды ультразвуковой дефектоскопии

Ультразвуковой метод контроля сварных соединений регламентирован ГОСТом 23829-79 и проводится несколькими способами:

В большинстве случаев ультразвуковой контроль качества сварных соединений проводится эхо-импульсным и теневым методами основанных на отражении акустической волны от дефекта.

Порядок проведения УЗК

Существует определенный стандарт, согласно которого должен проводится ультразвуковой контроль сварных соединений трубопроводов или других металлоконструкций. Порядок выполнения контрольных операций следующий:

Часто колебания отражения волн воспринимают за дефекты, поэтому этот момент необходимо тщательно проверить. Если действительно имеет место повреждение, то оно фиксируется с обозначением места локализации.

Проверка сварных швов ультразвуком должна осуществляться согласно установленных ГОСТом требований. Если с точностью определить характер дефекта с помощью УКЗ не получается, то в таких случаях проводят более детальные проверки с применением гамма-дефектоскопии или рентгенодефектоскопии.

Рамки применения метода УЗК

Проведение ультразвукового контроля сварных соединений обеспечивает достаточно точные результаты и при соблюдении технологии способен предоставить исчерпывающую информацию в отношении любых дефектов. Но здесь следует понимать, что существуют определенные границы применения методики.

Дефекты, которые можно обнаружить методикой УЗК следующие:

УЗК сварных соединений осуществлять можно на конструкциях из легированной и аустенитной стали, меди, чугуна и металлов, которые ультразвук проводят плохо.

Геометрические параметры проведения УЗ-дефектоскопии:

Что касается видов соединений, то сварка под УЗК предполагает выполнение продольных, плоских, сварных, кольцевых, тавровых стыков. Также применяют методику для сварных труб.

Области использования дефектоскопии

Ультразвуковая проверка сварных швов активно применяется в промышленной, строительной и других сферах. Чаще всего контроль ультразвуком применяют:

Применять УЗК можно как в лабораторных, так и в полевых условиях при нахождении стыков на высоте, в замкнутых пространствах и труднодоступных местах.

Преимущества и недостатки методики

Ультразвуковой контроль сварных швов трубопроводов иди других типов металлоизделий обладает рядом преимущественных особенностей:

К недостаткам контроля сварочных швов ультразвуковым методом относят некоторые трудности при проверке металлов с крупнозернистой структурой, возникающие вследствие сильного затухания и рассеивания волн. Также в числе минусов отмечают необходимость предварительно перед установкой дефектоскопов очистить и подготовить поверхность шва и некую ограниченность информации, выдаваемой прибором об обнаруженном дефекте.

Интересное видео

Источник

Ультразвуковой контроль – самый универсальный метод НК

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Для чего проводят ультразвуковой контроль

В силу всех этих факторов ультразвуковой контроль всё чаще противопоставляют радиографическому. В пользу первого говорит ещё и то, что он безвреден для человеческого здоровья. Приборы для УЗК хороши своей портативностью, удобство работы в полевых условиях, большим многообразием датчиков, призм, сканеров и прочих принадлежностей для самых разных задач дефектоскопии.

Ультразвуковой контроль сварных соединений: последовательность действий

5) расшифровку данных, оформление заключения. Обычно дефекты классифицируются на допустимые и недопустимые по амплитуде, протяжённые и непротяжённые, поперечные, в корне и в сечении шва. Формат заключения/протокола/акта по результатам УЗК утверждается в нормативно-технической документации на контроль и согласовывается с заказчиком. Запись дефектов осуществляется с использованием условных обозначений, указанием глубины залегания, координат относительно начала отсчёта, амплитуды, протяжённости и пр. Чтобы упростить выборку дефекта и ремонт ОК, рекомендуется указывать начальные и конечные координаты каждого дефекта. В зависимости от того, какие дефекты обнаружены и какими параметрами они обладают, объект контроля относят к категории «годен», «ремонтировать» или «вырезать».

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

На каких объектах практикуется ультразвуковой контроль

Виды ультразвукового контроля

Заканчивая этот блок, нельзя не сказать и об ультразвуковой толщинометрии (УЗТ). Измерение толщины металла – один из ключевых способов коррозионного мониторинга. По результатам УЗТ можно судить об остаточном ресурсе конструкции (механизма, оборудования и пр.).

Как и в ультразвуковом контроле, принцип построен на использовании импульсов, которые излучает преобразователь. Прибор измеряет скорость, за которую они проходят через стенку. Если конкретнее, то известно 3 основных режима:

1) однократного эхо-сигнала. Измеряется время, которое проходит между начальным импульсом возбуждения и первым эхо-сигналом. Значение корректируется с учётом толщины протектора ПЭП, компенсации степени изнашивания и слоя контактной среды;

2) однократного эхо-сигнала линии задержки. Измеряется время от конца линии задержки до первого донного эхо-сигнала;

3) многократных эхо-сигналов. Измеряется время прохождения между донными эхо-сигналами.

Дефектоскопы и другое оборудование для ультразвукового метода контроля

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскоп

Помимо этого, в УЗК активно применяются различные призмы, координатные устройства и сканеры. Для настройки и калибровки не обойтись без стандартных образцов (СОП, СО) и настроечных мер. Для улучшения акустического контакта на поверхность объекта предварительно наносят контактную жидкость/гель.

Для проведения УЗТ требуется толщиномер. Такой прибор технически проще, компактнее, дешевле классического дефектоскопа.

Обучение и аттестация специалистов по ультразвуковому методу контроля

По завершении обучения необходимо сдать квалификационный экзамен, состоящий из теоретической и практической части.

Разумеется, в каждом учебном центре есть своя библиотека методической и образовательной литературы. Дополнительно к этому можно почитать «классику» учебников по УЗК – труды И.Н. Ермолова, В.Г. Щербинского, В.В. Клюева, А.Х. Вопилкина и др. Посмотреть информацию об изданиях можно в специальном разделе «Библиофонд» онлайн-библиотеки «Архиус».

Для тех, кто открыт для новых знаний и обмена опытом, на форуме «Дефектоскопист.ру» предусмотрен свой раздел. Начать рекомендуем с веток «Изучение УЗ-контроля» и «Обучение УЗК».

Источник

Как используется ультразвуковая дефектоскопия

Ультразвуковая дефектоскопия – экономичный метод. Отличается оперативностью, безопасностью применения и наглядностью результатов. Использование сложного компьютеризированного оборудования не требует много времени и большого количества персонала.

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскопУльтразвуковая дефектоскопия относится к неразрушающим методам контроля.

Суть ультразвукового метода

Впервые принцип дефектоскопии УЗ был предложен в 1928 г.: советский ученый Сергей Соколов показал, как обнаружить повреждения металла и других материалов через вариации энергии ультразвука. Соколов изобрел первый дефектоскоп, в котором применил ультразвуковые колебания для определения внутренних дефектов, трещин, посторонних включений и структуры материалов. В дальнейшем этот опыт подхватили ученые других стран, и метод получил распространение, став обязательным для многих отраслей промышленности.

Для анализа в материале при помощи дефектоскопа и преобразователей с пьезоэлементом создают высокочастотные колебания (свыше 20 кГц). Если изъянов нет – колебания не встречают препятствий и не имеют отражения. Если же присутствуют неоднородности (например, трещины, пустоты или другие включения), приемник зарегистрирует сигналы отражения от них.

Время распространения волны указывает на глубину расположения дефекта, а амплитуда отражения импульса – на размер неоднородности.

Свойства ультразвука и важность состояния диагностируемой поверхности

Ультразвук проверяет материал, не разрушая его структуры.

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскопУльтразвуковой контроль – один из основных в дефектоскопии.

При дефектоскопии учитывается длина колебаний – она прямо пропорциональна разрешающей способности и чувствительности и обратно пропорциональна энергии колебаний. Оптимальный показатель – 0,5-10 МГц.

Корректность результатов измерения зависит от состояния диагностируемой поверхности. Необходим свободный доступ ко всем измеряемым участкам для свободного прохождения волн ультразвука через объект. На поверхности не должно быть инородных тел (масла, смазки, грязи, ворсинок, брызг металла, сварочного флюса и т.д.)

Для подготовки поверхности необходимо:

Если на поверхности есть постороннее покрытие, которое невозможно удалить, нужно обеспечить полное прилипание к материалу.

Источники ультразвуковых волн

Во время анализа УЗ-колебания в объекте создают несколькими способами. Чаще с использованием пьезоэлектрического эффекта. Преобразователь создает ультразвуковое излучение, которое далее переводит электрические колебания в акустические. При переходе через измеряемую среду эти колебания оказываются на приемной пьезопластине преобразователя, а после снова становятся электрическими. Это фиксируют измерительные цепи. При этом пьезопластины могут выступать в роли только приемника или только излучателя, а также совмещать в себе функции того и другого.

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскопПьезоэлемент является источником ультразвуковых волн.

Критические углы

При выполнении ультразвукового контроля оператору нужно выбрать тип преобразователя, выполнить калибровку и настройку прибора на предполагаемые дефекты объекта. Критические углы падения (продольные и поперечные) необходимо учитывать в том случае, когда ультразвук проходит через твердые поверхности материалов.

Первый критический угол – это наименьший угол падения продольной волны, при котором преломленный луч не пересекает границу второй твердой среды. Например, для границы оргстекло-сталь он равен 27,5º.

Вторым критическим углом считают наименьший угол падения продольного луча, при котором преломление не проникает через границу во вторую твердую среду и при этом не обнаруживаются внутренние повреждения. Для оргстекла-стали он составляет 57,5º.

Третий критический угол – наименьший угол падения поперечного луча, при котором отсутствует отраженная продольная волна. Луч идет по поверхности объекта, не распознавая дефектов внутри него. Для пересечения границы сталь-воздух угол равен 33,3º.

Методы дефектоскопии ультразвуком

Выделяет 4 основных метода:

Сравнение и выбор лучшего

Выбор метода зависит от характеристик тестируемого материала, условий проведения (стационарные тесты или анализ в процессе работы) и выбирается индивидуально.

Возможности ультразвуковой диагностики

Метод УЗ позволяет:

Анализ применяется в промышленности:

Повышение точности результатов

Добиться точности, качества и достоверности результатов можно, влияя на:

Для каких объектов применимо

Метод УЗК используют на производствах нефти и газа, в отраслях крупной промышленности, в атомной энергетике и т.д. В металлургии, например, ультразвуковую дефектоскопию применяют при обработке литья и поковок. В авиастроении – для диагностики полимеров и композитов на наличие трещин, непроклеев и т.д.

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскопУльтразвуковую дефектоскопию применяют на производствах нефти и газа.

В металлургии контролю подвергают листовую сталь, которую широко используют при строительстве автодорожных и железнодорожных мостов, в гражданском и промышленном строительстве зданий и сооружений, требующих повышенной прочности и надежности.

В литейном производстве метод позволяет видеть в структуре черных и цветных металлов пустоты, пористость, включения и трещины. Также возможно измерить толщину изделия, например пустотелых отливок сложной формы, без нарушения его целостности в производстве автомобильных двигателей.

В строительстве для оценки состояния бетонных конструкций важно проверить фактическую прочность на соответствие проектным требованиям. Ведется проверка факторов, влияющих на эксплуатационные свойства бетона и арматуры. Метод УЗ дает возможность работы не только в лабораторных условиях, но и на строительной площадке.

При контроле сварных соединений и наплавок оборудования и трубопроводов атомных энергетических установок УЗ метод является единственным решением.

Это объясняется использованием нержавеющих, аустенитных крупнозернистых сталей в конструкциях атомных реакторов и резервуаров.

Для труб

Дефектоскопия применяется на магистральных и технологических трубопроводах. Благодаря этой процедуре небольшие дефекты и трещины на трубах, появляющиеся со временем естественным путем, не перерастают в проблемы, угрожающие безопасности и требующие вывода магистральных систем из рабочего состояния.

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскопМетод ультразвуковой дефектоскопии сварных швов применяется для трубопроводов.

Применение УЗ-дефектоскопии позволяет обнаружить такие повреждения труб:

Для свайных конструкций и рельсов

Диагностика сварных соединений незаменима для выявления трещин в подошве или головке рельс, для обнаружения дефектов стыка. Метод может применяться стационарно (на рельсосварочном предприятии) либо в полевых условиях. Для УЗК свай и сварочных швов используют дефектоскопы со специальными характеристиками – высокой устойчивостью к влажности, рабочей температурой до +35ºС (без образования влаги). При этом измерительные приборы нуждаются в постоянной защите от воздействий пыли.

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскопУльтразвуковая дефектоскопия остается актуальной для выявления трещин на рельсах.

Диагностика свай – необходимый этап в строительстве, на котором проверяют и фиксируют прочность бетонного основания и плотность заливки буронабивных свай. Во время проверки приемник с излучателем устанавливают на нижней точке сваи, фиксируют полученные сигналы, потом датчик перемещают на следующую точку.

Ультразвуковой метод контроля сварных швов показывает изъяны с высокой точностью и при этом не нарушает целостность несущих конструкций.

Для прочих деталей

Дефектоскопии подвергают материал во время технических освидетельствований и обследований, металл проверяют на входе и выходе. Метод применяют для проверки промышленной безопасности сосудов под давлением, корпусов насосов, арматуры, теплообменников, печей и т.д.

Плюсы и минусы диагностики ультразвуком

Главным достоинством метода является то, что он относится к неразрушающему контролю. Исследуемый объект не выводится из эксплуатации, не подвергается разборке, взятию образцов, не требует других дорогостоящих действий.

Дефектоскопия позволяет предотвратить и своевременно устранить возможные разрушения сложных агрегатов и конструкций.

Другие преимущества УЗД:

Недостатки диагностики ультразвуком:

Необходимое оборудование для проведения дефектоскопии

Для ультразвуковой диагностики применяют дефектоскоп, преобразователь со встроенным пьезоэлементом (рассчитанным на излучение и/или прием ультразвуковых колебаний) и дополнительные приспособления.

УЗ-преобразователи бывают 3 типов:

Главная составляющая преобразователя – пьезоэлемент в форме прямоугольной пластины или диска. Толщина пьезоэлемента составляет половину длины излучаемых волн. В прямых и наклонных преобразователях пьезоэлемент выступает в качестве излучателя и приемника УЗ-колебаний одновременно.

Схема устройства дефектоскопа

Дефектоскоп – это электронный блок для преобразования и усиления эхо-сигналов при отражении от дефекта, создания зондирующих импульсов высокого напряжения и наглядного отображения амплитудно-временных характеристик эхо-сигналов.

Встроенный переключатель предусмотрен для непосредственного подключения усилителя к генератору радиоимпульсов или отключения от него (в зависимости от схемы работы). Автоматический сигнализатор фиксирует дефект звуковым или световым сигналом.

Аппарат может иметь дополнительные блоки, расширяющие функции устройства и упрощающие работу оператора. К ним относится блок временной регулировки чувствительности, создающий одинаковую амплитуду сигналов при обнаружении деформаций разных размеров. Это повышает точность измерений.

Примерная стоимость дефектоскопа и других инструментов

Диапазон цен на дефектоскопы широк – от 90 000 до 2 500 000 руб. Стоимость зависит от рабочих характеристик, марки и страны производителя, года выпуска. Различается цена стационарных (для исследований в лабораториях) и портативных (для полевых условий) моделей. Возможность подключения к ПК, объем встроенной памяти и совместимость с несколькими типами преобразователей также влияют на конечную стоимость. При выборе отталкиваться следует от планируемых задач и предположительной области применения.

По каким параметрам оценивается результат

Обнаруженный дефект оценивают по его условной протяженности, амплитуде звуковой волны, форме, длине и ширине.

Что показывает ультразвуковой дефектоскоп. Смотреть фото Что показывает ультразвуковой дефектоскоп. Смотреть картинку Что показывает ультразвуковой дефектоскоп. Картинка про Что показывает ультразвуковой дефектоскоп. Фото Что показывает ультразвуковой дефектоскопРезультат оценивается по амплитуде звуковой волны.

Минимально возможный (доступный для выявления) размер повреждения на материале определяет чувствительность УЗ-контроля.

Как обучают специалистов по ультразвуковой дефектоскопии

В соответствии с действующим законодательством, специалисты, работающие в сфере ультразвуковой дефектоскопии, проходят обязательное повышение квалификации с последующей аттестацией.

Она проводится с целью определения достаточной теоретической и практической подготовки сотрудников для выполнения одного и нескольких видов НК, умения на основании полученных результатов делать заключения об исследуемом объекте повышенной опасности в промышленности и строительстве.

Подготовкой и аттестацией специалистов занимаются специализированные научно-исследовательские центры. Они составляют учебные программы длительностью от 40 до 120 академических часов.

За это время изучают:

По окончании обучения сотрудники сдают экзамены, по итогам которых получают удостоверение утвержденного образца, где указывается квалификационный уровень – I, II или III. Специалисты I уровня обслуживают технику для неразрушающего контроля и составляют отчеты по итогам работ, II – занимаются работами на опасных объектах и дают заключения. Эксперты III уровня руководят процессом на всех стадиях его выполнения, им требуется дополнительное обучение по специально разработанным методикам.

Полученную квалификацию необходимо подтверждать каждые 3 года, сдавая при этом соответствующие экзамены.

Кратко о других методах дефектоскопии

Капиллярный (жидкостный) метод предполагает выявление дефектов на поверхности металлов. Перед диагностикой детали очищаются, чтобы краситель попадал беспрепятственно. На материал наносят пенетрант, удаляют избытки и вводят проявитель, который при специальном освещении обнаруживает разрушения поверхности. Жидкостный метод прост в исполнении, но требует предварительной тщательной очистки поверхности. Автоматизировать это невозможно.

Вихретоковый контроль показывает повреждения внутри металла и на его поверхности с помощью электромагнитного поля. Вихревые токи текут по-разному в материалах с дефектами и без них. Диагностика вихревым током проводится за секунды, но применима только к металлам. Такие испытания требуют высокой квалификации операторов. Метод используют в авиационной и ядерной промышленности.

Контроль магнитными частицами обнаруживает повреждения на поверхности либо чуть ниже (работа на глубине материала невозможна). На материал наносят сухие или влажные магнитные частицы – они притягиваются к инородному телу, обозначая его форму и размер. После завершения диагностики деталь размагничивается. Этот метод подходит только для работы с ферромагнитными материалами. Для исследования требуется полное размагничивание детали, что затрудняет автоматизацию процесса.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *