Что показывает вольтамперная характеристика

Что показывает вольтамперная характеристика

Целью данной работы является исследование методологии лабораторных работ и эффективных практических методов освоения отдельных тем на примере разработки изучение педагогических аспектов профессионального изложения информации для студентов на примере создания лабораторной работы с помощью электронного конструктора. Методы исследования: теоретический и экспериментальный.

1. Изучение электронного конструктора «Знаток» и внедрение его в лабораторную работу;

2. Создание лабораторной работы по курсу физики и современного естествознания на тему «Вольт-амперные характеристики светодиодов» с помощью конструктора «Знаток».

Рассмотрение данной темы в работе является актуальной для студентов первых и вторых курсов, так как изучению светодиодной техники по программе бакалавриата специальности «Инноватика» уделяют мало внимания. Студент, освоивший данную тему, с легкостью сможет разобраться с инновациями, в которые внедрены и используются светодиоды.

Светодиод (рис. 1) или светоизлучающий диод (СД, СИД; англ. light-emitting diode, LED) – полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Что показывает вольтамперная характеристика. Смотреть фото Что показывает вольтамперная характеристика. Смотреть картинку Что показывает вольтамперная характеристика. Картинка про Что показывает вольтамперная характеристика. Фото Что показывает вольтамперная характеристика

Рис. 1. Светоизлучающий диод

Лабораторная работа «Вольт-амперные характеристики светодиодов»

Цель: Изучить ВАХ (вольт-амперные характеристики) светодиодов, построить вольт-амперные характеристики по измеренным значениям I и U, рассчитать сопротивление гасящего резистора, сделать вывод.

Использованные инструменты: мультиметр, гальванический элемент, светодиоды двух типов (красный и зеленый), реостат.

Ответить на следующие вопросы:

1. Светодиод – полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

2. Принцип работы: при пропускании электрического тока через p-n переход в прямом направлении, носители заряда – электроны и дырки – рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Эксперимент 1. Свечение зеленого светодиода

1. Соберите электрическую цепь, по схеме, приведенной на рис. 1.

Что показывает вольтамперная характеристика. Смотреть фото Что показывает вольтамперная характеристика. Смотреть картинку Что показывает вольтамперная характеристика. Картинка про Что показывает вольтамперная характеристика. Фото Что показывает вольтамперная характеристика

Рис. 1. Основная схема включения светодиода

2. В реостате выставить максимальное значения сопротивления (50 кОм). С помощью мультиметра измерить напряжение, сопротивление и силу тока.

Занесите измеренные значения в табл. 1.

3. Изменяя сопротивление реостата (40; 30; 20; 15; 10; 5 кОм), измерьте силу тока и напряжение. Запишите полученные значения I1 и U1в табл. 1.

Эксперимент 2. Свечение красного светодиода

Повторите проделанные расчеты, заменив светодиод на красный. Запишите полученные значения I2 и U2 в табл. 2.

По заданным значениям постройте на одном графике зависимости силы прямого тока от напряжения для двух видов светодиодов (рис. 2).

Сравнить график теоретический зависимости силы прямого тока от напряжения для двух видов светодиодов с полученным практическим (рис. 3). Сделать вывод.

Источник

Вольт-амперные характеристики электрических ламп

Что показывает вольтамперная характеристика. Смотреть фото Что показывает вольтамперная характеристика. Смотреть картинку Что показывает вольтамперная характеристика. Картинка про Что показывает вольтамперная характеристика. Фото Что показывает вольтамперная характеристикаСвойства электрической лампы как элемента электрической цепи, достаточно полно могут быть представлены ее вольт-амперной характеристикой, т. е. зависимостью падения напряжения на ней от величины протекающего тока.

Вольт-амперная характеристика газоразрядных ламп

В основе действия газоразрядных источников излучения лежит электрический разряд в атмосфере инертного газа (чаще всего аргон) и паров ртути. Излучение происходит за счет перехода электронов атомов ртути с орбиты с высоким содержанием энергии на орбиту с меньшей энергией. Из всего разнообразия электрических разрядов (тихий, тлеющий и т. д.) для искусственных источников характерен дуговой разряд, отличающийся высокими плотностями токов в канале разряда. Особенности дугового разряда как элемента электрической цепи определяют и особенности схем включения газоразрядных источников.

Вольт-амперная характеристика дугового разряда изображена на рис. 1 (кривая 1). Здесь же приведена вольт-амперная характеристика постоянного сопротивления (кривая 2). Для постоянного сопротивления отношение одинаково в любой точке характеристики. Оно определяет при малых приращениях на величину и знак динамического сопротивления и линейность характеристики.

Для характеристики дугового разряда это отношение, во-первых, численно непостоянно для разных точек, и во-вторых, отрицательно по знаку. Первая особенность определяет нелинейность характеристики, а вторая — так называемый «падающий» характер кривой. Таким образом, дуговой разряд имеет нелинейную падающую вольт-амперную характеристику.

Что показывает вольтамперная характеристика. Смотреть фото Что показывает вольтамперная характеристика. Смотреть картинку Что показывает вольтамперная характеристика. Картинка про Что показывает вольтамперная характеристика. Фото Что показывает вольтамперная характеристика

Рис. 1. Вольт-амперные характеристики дугового разряда (1), постоянного сопротивления (2) и лампы накаливания (3)

При непосредственном включении дугового разряда в сеть с постоянным по величине напряжением разряд неустойчив и сопровождается бесконечным увеличением тока. Следовательно, в этом случае нужно принимать меры к стабилизации разряда. Стабилизация может быть обеспечена либо использованием источника напряжения с падающей внешней характеристикой (такая характеристика, например, специально создается у сварочного генератора для стабилизации сварочной дуги), либо дополнительным баластным сопротивлением, включенным последовательно с газоразрядным промежутком. Для газоразрядных источников излучения используется второй способ стабилизации разряда.

Рассмотрим случай включения газового промежутка последовательно с активным сопротивлением. На рис. 2 приведена вольт-амперная характеристика (кривая 1) газоразрядного промежутка и разность между напряжением сети и падением напряжения на балластном сопротивлении в функции тока (прямая 2).

Что показывает вольтамперная характеристика. Смотреть фото Что показывает вольтамперная характеристика. Смотреть картинку Что показывает вольтамперная характеристика. Картинка про Что показывает вольтамперная характеристика. Фото Что показывает вольтамперная характеристика

Рис. 2. Схема включения газоразрядного промежутка последовательно с баластным сопротивлением (а) и вольт-амперные характеристики элементов (б)

Всякие стационарные режимы протекания тока в такой схеме должны удовлетворять закону Кирхгофа Uc=U б+ U л. Это условие выполняется в точках пересечения прямой 2 (Uс-Uб=f( I ) ) с вольт-амперной характеристикой I газоразрядного промежутка. Однако при падающих характеристиках пересечение возможно в нескольких точках, не каждая из которых будет соответствовать устойчивому режиму. Устойчивый режим будет в тех точках, для которых с увеличением тока сумма падений напряжений на лампе и балластном сопротивлении превысит напряжение источника, т.е. U б+ U л >uс=»» или=»» IR б+ U л >uс.

Это неравенство является критерием устойчивости. Критерию устойчивости на рис. 2 удовлетворяет точка В. В режимах левее точки В появляется положительный избыток напряжения Δ U, приводящий к увеличению тока, а в режиме правее точки В появляется отрицательный избыток напряжения Δ U, приводящий к уменьшению тока. Следовательно, режим в точке В является устойчивым, или стабилизированным.

Что показывает вольтамперная характеристика. Смотреть фото Что показывает вольтамперная характеристика. Смотреть картинку Что показывает вольтамперная характеристика. Картинка про Что показывает вольтамперная характеристика. Фото Что показывает вольтамперная характеристика

Необходимо отметить, что ни напряжение, ни ток не стабилизируются включением балластного сопротивления, а стабилизируется только режим горения дуги. В самом деле, при увеличении напряжения сети до Uc1 режим горения остается устойчивым и переходит в точку B1 для которой ток и напряжение отличаются от соответствующих значений в точке В. Так же отличаются ток и напряжение дуги в устойчивой точке B2 при уменьшенном напряжении Uc2.

Эти рассуждения позволяют сделать вывод о том, что стабилизацией напряжения на газоразрядной лампе нельзя обеспечить стабильность разряда. Полученные выше выводы и соотношения для постоянного напряжения полностью применимы для цепей переменного напряжения. Для стабилизации разряда на переменном токе используют индуктивные и емкостные балласты, так как потери на них м еньше, чем на активном.

Вольт-амперная характеристика ламп накаливания

Вольт-амперная характеристика у ламп накаливания нелинейна и имеет восходящий характер. Нелинейность обусловлена зависимостью сопротивления нити накала от температуры, а следовательно, и от тока: чем больше ток, тем больше сопротивление нити. Восходящий характер кривой объясняется положительной величиной динамического сопротивления: в любой точке кривой положительному приращению тока соответствует положительное приращение падения напряжения. Автоматически создается устойчивый режим, т. е. ток при постоянном напряжении не может измениться из-за внутренних причин. Это позволяет включать лампу накаливания прямо на напряжение.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Вольт-амперная характеристика

Что показывает вольтамперная характеристика. Смотреть фото Что показывает вольтамперная характеристика. Смотреть картинку Что показывает вольтамперная характеристика. Картинка про Что показывает вольтамперная характеристика. Фото Что показывает вольтамперная характеристика

Что показывает вольтамперная характеристика. Смотреть фото Что показывает вольтамперная характеристика. Смотреть картинку Что показывает вольтамперная характеристика. Картинка про Что показывает вольтамперная характеристика. Фото Что показывает вольтамперная характеристика

Вольт-амперная характеристика (ВАХ) — график зависимости тока через двухполюсник от напряжения на этом двухполюснике. Вольт-амперная характеристика описывает поведение двухполюсника на постоянном токе. Чаще всего рассматривают ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности Что показывает вольтамперная характеристика. Смотреть фото Что показывает вольтамперная характеристика. Смотреть картинку Что показывает вольтамперная характеристика. Картинка про Что показывает вольтамперная характеристика. Фото Что показывает вольтамперная характеристика), поскольку для линейных элементов ВАХ представляет собой прямую линию и не представляет особого интереса.

Характерные примеры элементов, обладающих существенно нелинейной ВАХ: диод, тиристор, стабилитрон.

Для трехполюсных элементов (таких, как транзистор, тиристор или ламповый триод) часто строят семейства кривых, являющимися ВАХ для двухполюсника при так или иначе заданных параметрах на третьем выводе элемента.

Необходимо отметить, что в реальной схеме, особенно работающей с относительно высокими частотами (близкими к границам рабочего частотного диапазона) для данного устройства реальная зависимость напряжения от времени может пробегать по траекториям, весьма далёким от «идеальной» ВАХ. Чаще всего это связано с ёмкостью или другими инерционными свойствами элемента.

Преобразования ВАХ

Полезно отметить некоторые свойства вольтамперных характеристик составных элементов (схем, состоящих из нескольких двухполюсников)

Параллельное соединение — при параллельном соединении двух двухполюсников, при каждом значении напряжения складываются токи, текущие через них, а при последовательном — для каждого значения тока складываются напряжения на элементах.

См. также

Что показывает вольтамперная характеристика. Смотреть фото Что показывает вольтамперная характеристика. Смотреть картинку Что показывает вольтамперная характеристика. Картинка про Что показывает вольтамперная характеристика. Фото Что показывает вольтамперная характеристика

Полезное

Смотреть что такое «Вольт-амперная характеристика» в других словарях:

вольт-амперная характеристика — Зависимость электрического напряжения на выводах элемента электрической цепи от электрического тока в нем. [ГОСТ Р 52002 2003] [ОАО РАО «ЕЭС России» СТО 17330282.27.010.001 2008] вольт амперная характеристика Зависимость тока от… … Справочник технического переводчика

вольт-амперная характеристика — зависимость напряжения от тока (или тока от напряжения) на участке электрической цепи; выражается обычно в виде графика или таблицы. * * * ВОЛЬТ АМПЕРНАЯ ХАРАКТЕРИСТИКА ВОЛЬТ АМПЕРНАЯ ХАРАКТЕРИСТИКА, зависимость напряжения от тока (или тока от… … Энциклопедический словарь

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА — зависимость напряжения от тока (или тока от напряжения) на участке электрической цепи; выражается обычно в виде графика или таблицы … Большой Энциклопедический словарь

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА — зависимость тока от приложенного к элементу электрич. цепи напряжения или зависимость падения напряжения на элементе электрич. цепи от протекающего через него тока. Если сопротивление элемента не зависит от тока, то В. а. х. прямая линия,… … Физическая энциклопедия

вольт-амперная характеристика — 93 вольт амперная характеристика Зависимость электрического напряжения на выводах элемента электрической цепи от электрического тока в нем Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа … Словарь-справочник терминов нормативно-технической документации

вольт-амперная характеристика — voltamperinė charakteristika statusas T sritis automatika atitikmenys: angl. current voltage characteristic; voltage current characteristic; volt ampere characteristic vok. Stromspannungscharakteristik, f; Strom Spannungs Kennlinie, f;… … Automatikos terminų žodynas

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА — зависимость напряжения от тока (или тока от напряжения) на участке электрич. цепи; выражается обычно в виде графика или таблицы … Естествознание. Энциклопедический словарь

Вольт-амперная характеристика — 1. Зависимость электрического напряжения на выводах элемента электрической цепи от электрического тока в нем Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий … Телекоммуникационный словарь

вольт-амперная характеристика прибора М-типа — вольт амперная характеристика Зависимость тока анода прибора М типа от напряжения анода при заданных значениях магнитного поля, фазы высокочастотной нагрузки и коэффициента стоячей волны по напряжению. [ГОСТ 23769 79] Тематики приборы и… … Справочник технического переводчика

Источник

Что показывает вольтамперная характеристика

Ознакомиться с основными фотометрическими величинами; ознакомиться с принципом работы фотометра; проверить выполнение закона Ламберта для источника света

Общие сведения

Полупроводниковые диоды и стабилитроны

Выпрямительные диоды и стабилитроны представляют собой полупроводниковые приборы с одним электронно-дырочным переходом (p–n-переходом).

Одним из свойств p–n-перехода является способность изменять свое сопротивление в зависимости от полярности напряжения внешнего источника. Причем разница сопротивлений при прямом и обратном направлениях тока через p–n-переход может быть настолько велика, что в ряде случаев, например для силовых диодов, можно считать, что ток протекает через диод только в одном направлении – прямом, а в обратном направлении ток настолько мал, что им можно пренебречь. Прямое направление – это когда электрическое поле внешнего источника направлено навстречу электрическому полю p–n- перехода, а обратное – когда направления этих электрических полей совпадают. Полупроводниковые диоды, использующие вентильное свойство p–n-перехода, называются выпрямительными диодами и широко используются в различных устройствах для выпрямления переменного тока.

Вольт-амперная характеристика (ВАХ) идеализированного p–n-перехода описывается известным уравнением

где \(I_0\) – обратный ток p–n-перехода; \(q\) – заряд электрона \(q=1,6\cdot 10^<-19>\ Кл\); \(k\) – постоянная Больцмана \(k = 1,38⋅10^ <-23>Дж\cdot град\); \(T\) – температура в градусах Кельвина.

Графическое изображение этой зависимости представлено на рис. 1.1.

Вольт-амперная характеристика имеет явно выраженную нелинейность, что предопределяет зависимость сопротивления диода от положения рабочей точки.

Различают сопротивление статическое \(R_<ст>\) и динамическое \(R_<дин>\). Статическое сопротивление \(R_<ст>\), например в точке А (рис. 1.1), определяется как отношение напряжения \(U_A\) и тока \(I_A\), соответствующих этой точке: \(R_ <ст>= \frac = tg<\alpha>\)

Динамическое сопротивление определяется как отношение приращений напряжения и тока (рис. 1.1): \(R_ <дин>= \frac<\Delta U><\Delta I>\);

При малых значениях отклонений \(∆U\) и \(ΔI\) можно пренебречь нелинейностью участка АВ характеристики и считать его гипотенузой прямоугольного треугольника АВС, тогда \(R_ <дин>= tgβ\).

Если продолжить линейный участок прямой ветви вольт-амперной характеристики до пересечения с осью абсцисс, то получим точку \(U_0\) – напряжение отсечки, которое отделяет начальный пологий участок характеристики, где динамическое сопротивление \(R_<дин>\) сравнительно велико от круто изменяющегося участка, где \(R_<дин>\) мало.

При протекании через диод прямого тока полупроводниковая структура нагревается, и если температура превысит при этом предельно допустимое значение, то произойдет разрушение кристаллической решетки полупроводника и диод выйдет из строя. Поэтому величина прямого тока диода ограничивается предельно допустимым значением \(I_<пр.max>\) при заданных условиях охлаждения.

Если увеличивать напряжение, приложенное в обратном направлении к диоду, то сначала обратный ток будет изменяться незначительно, а затем при определенной величине \(U_<проб>\) начнется его быстрое увеличение (рис. 1.2), что говорит о наступлении пробоя p–n-перехода. Существуют несколько видов пробоя p–n-перехода в зависимости от концентрации примесей в полупроводнике, от ширины p–n-перехода и температуры:

Необратимый пробой для полупроводникового прибора является нерабочим и недопустимым режимом.

Поэтому в паспортных данных диода всегда указывается предельно допустимое обратное напряжение \(U_<проб>\) (напряжение лавинообразования), соответствующее началу пробоя p–n-перехода. Обратное номинальное значение напряжения составляет обычно \(0,5\ U_<проб>\) и определяет класс прибора по напряжению. Так, класс 1 соответствует 100 В обратного напряжения, класс 2 – 200 В и т. д.

В некоторых случаях этот режим пробоя используют для получения круто нарастающего участка ВАХ, когда малому приращению напряжения \(∆U\) соответствует большое изменение тока \(ΔI\) (рис. 1.2). Диоды, работающие в таком режиме, называются стабилитронами, т. к. в рабочем диапазоне при изменении обратного тока от \(i_<обр. min>\) до \(i_<обр. max>\) напряжение на диоде остается почти неизменным, стабильным. Поэтому для стабилитронов рабочим является участок пробоя на обратной ветви ВАХ, а напряжение пробоя (напряжение стабилизации) является одним из основных параметров.

Стабилитроны находят широкое применение в качестве источников опорного напряжения, в стабилизаторах напряжения, в качестве ограничителей напряжения и др.

Эксперимент

Оборудование

Оборудование, используемое в лабораторной работе: вритуальный лабораторный стенд, блок No 1 (схемы А1–А4); комбинированный прибор «Сура», мультиметры; соединительные провода.

Порядок выполнения работы

Изучить схемы включения полупроводниковых приборов А1–А4 (рис. 1.3–1.6) для снятия вольт-амперных характеристик ВАХ диода и стабилитрона.

Ознакомиться с устройством лабораторного стенда, найти на стенде блок №1 и схемы А1–А4.

Порядок выполнения задания №1 «Исследование полупроводникового диода»

Экспериментальное получение прямой ветви ВАХ диода \(I_ <пр>= f(U_<пр>)\) с использованием схемы A1, представленной на рис. 1.3.
Экспериментальное получение обратной ветви ВАХ диода \(I_ <обр>= f(U_<обр>)\) с использованием схемы А2, представленной на рис. 1.4.

По данным табл. 1.1 и 1.2 построить ВАХ диода.

По ВАХ или таблицам определить:

Порядок выполнения задания No2 «Исследование полупроводникового стабилитрона»

Экспериментальное получение прямой ветви ВАХ стабилитрона \(I_ <пр>= f(U_<пр>)\) с использованием схемы A3, представленной на рис. 1.5.
Экспериментальное получение обратной ветви ВАХ стабилитрона \(I_ <обр>= f(U_<обр>)\) с использованием схемы А4, представленной на рис. 1.6.

По данным табл. 1.3 и 1.4 построить ВАХ стабилитрона.

Источник

Что показывает вольтамперная характеристика

Рисунок 1.2.1 Строение диода

На стыке соединения P и N образуется PN-переход. Электрод, подключенный к P, называется анод. Электрод, подключенный к N, называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя.

Диод находится в состоянии покоя, когда ни к аноду, ни к катоду не подключено напряжения (Рисунок 1.2.2).

Рисунок 1.2.2 Диод в состоянии покоя

В части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки. В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.

Обратное включение диода.

Рисунок 1.2.3 Обратное включение диода

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода.

Меняем полярность источника питания – плюс к аноду, минус к катоду.

Рисунок 1.2.4 Прямое включения диода

В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электронам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода. Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.

1.2.1 Выпрямительные диоды

Выпрямительный диод — это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.

В основе работы выпрямительных диодов лежит свойство односторонней проводимости рn-перехода, которое заключается в том, что последний хорошо проводит ток (имеет малое сопротивление) при прямом включении и практически не проводит ток (имеет очень высокое сопротивление) при обратном включении.

Основными параметрами выпрямительных полупроводниковых диодов являются:

Для сохранения работоспособности германиевого диода его температура не должна превышать +85°С, кремниевые диоды могут работать при температуре до +150°С.

Вольт-амперная характеристика германиевого и кремниевого диода представлена на рисунке 1.2.1.1

Рисунок 1.2.1.1 Вольт-амперная характеристика германиевого и кремниевого диода: а−германиевый диод; б−кремниевый диод

Падение напряжения при пропускании прямого тока у германиевых диодов составляет Uпр=0,3…0,6В, у кремниевых диодов Uпр=0,8…1,2В.

Большие падения напряжения при прохождении прямого тока через кремниевые диоды по сравнению с прямым падение напряжения на германиевых диодах связаны с большей высотой потенциального барьера рn- переходов, сформированных в кремнии. С увеличением температуры прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера. При подаче на полупроводниковый диод обратного напряжения в нем возникает незначительный обратный ток, обусловленный движением не основных носителей заряда через рn-переход. При повышении температуры рn-перехода число не основных носителей заряда увеличивается за счет перехода части электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает. В случае приложения к диоду обратного напряжения в несколько сотен вольт внешнее электрическое поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости (эффект Зенера). Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейшей рост тока и, наконец, тепловой пробой (разрушение) рn-перехода.

Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7…0,8) Uпроб. Допустимое обратное напряжение германиевых диодов достигает − 100…400В, а кремниевых диодов − 1000…1500В.

Выпрямительные диоды применяются для выпрямления переменного тока (преобразования переменного тока в постоянный); используются в схемах управления и коммутации для ограничения паразитных выбросов напряжений, в качестве элементов электрической развязки цепей и т.д.

1.2.2 Полупроводниковый стабилитрон

Полупроводниковый стабилитрон — это полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который используется для стабилизации напряжения.

В полупроводниковых стабилитронах используется свойство незначительного изменения обратного напряжения на рn-переходе при электрическом (лавинном или туннельном) пробое. Это связано с тем, что небольшое увеличение напряжения на рn-переходе в режиме электрического пробоя вызывает более интенсивную генерацию носителей заряда и значительное увеличение обратного тока.

Низковольтные стабилитроны изготовляют на основе сильнолегированного (низкоомного) материала. В этом случае образуется узкий плоскостной переход, в котором при сравнительно низких обратных напряжениях (менее 6В) возникает туннельный электрический пробой. Высоковольтные стабилитроны изготавливают на основе слаболегированного (высокоомного) материала. Поэтому их принцип действия связан с лавинным электрическим пробоем.

Основные параметры стабилитронов:

TKU стабилитрона показывает на сколько процентов изменится стабилизирующее напряжение при изменении температуры полупроводника на 1°С (TKU=−0,5…+0,2)

Условно графическое обозначение стабилитрона представлена на рисунке 1.2.2.1.

Рисунок 1.2.2.1 Условно графическое обозначение стабилитрона а) не симметричный стабилитрон б) симметричный стабилитрон

Вольт-амперная характеристика стабилитрона на рисунке 1.2.2.2

Рисунок 1.2.2.2 Вольт-амперная характеристика стабилитрона

Стабилитроны используют для стабилизации напряжений источников питания, а также для фиксации уровней напряжений в различных схемах.

Существуют также двухсторонние (симметричные) стабилитроны, имеющие симметричную ВАХ относительно начала координат. Стабилитроны допускают последовательное включение, при этом результирующее стабилизирующее напряжение равно сумме напряжений стабилитронов: Uст = Uст1 + Uст2 +…

1.2.3 Туннельный диод

Туннельный диод — это полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт-амперной характеристике при прямом напряжении участка отрицательного дифференциального сопротивления.

Туннельный диод изготовляется из германия или арсенида галлия с очень большой концентрацией примесей, т.е. с очень малым удельным сопротивлением. Такие полупроводники с малым сопротивлением называют вырожденными. Это позволяет получить очень узкий рn-переход. В таких переходах возникают условия для относительно свободного туннельного прохождения электронов через потенциальный барьер (туннельный эффект). Туннельный эффект приводит к появлению на прямой ветви ВАХ диода участка с отрицательным дифференциальным сопротивлением.

Основные параметры туннельных диодов:

Туннельные диоды используются для генерации и усиления электромагнитных колебаний, а также в быстродействующих переключающих и импульсных схемах.

Вольт-амперная характеристика туннельного диода и его УГО представлена на рисунке 1.2.3.1

Рисунок 1.2.3.1 Вольт-амперная характеристика туннельного диода и его УГО

1.2.4 Обращенный диод

Обращенный диод — диод на основе полупроводника с критической концентрацией примесей, в котором проводимость при обратном напряжении вследствие туннельного эффекта значительно больше, чем при прямом напряжении.

Принцип действия обращенного диода основан на использовании туннельного эффекта. Но в обращенных диодах концентрацию примесей делают меньше, чем в обычных туннельных. Поэтому контактная разность потенциалов у обращенных диодов меньше, а толщина рn-перехода больше. Это приводит к тому, что под действием прямого напряжения прямой туннельный ток не создается. Прямой ток в обращенных диодах создается инжекцией не основных носителей зарядов через рn-переход, т.е. прямой ток является диффузионным. При обратном напряжении через переход протекает значительный туннельный ток, создаваемый перемещение электронов сквозь потенциальный барьер из р-области в n-область. Рабочим участком ВАХ обращенного диода является обратная ветвь. Таким образом, обращенные диоды обладают выпрямляющим эффектом, но пропускное (проводящее) направление у них соответствует обратному включению, а запирающее (непроводящее) – прямому включению.

Вольт-амперная характеристика обращенного диода и его УГО представлена на рисунке 1.2.4.1

Рисунок 1.2.4.1 Вольт-амперная характеристика обращенного диода и УГО

Обращенные диоды применяют в импульсных устройствах, а также в качестве преобразователей сигналов (смесителей и детекторов) в радиотехнических устройствах.

1.2.5 Варикапы

Варикап — это полупроводниковый диод, в котором используется зависимость емкости от величины обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой емкостью. Полупроводниковым материалом для изготовления варикапов является кремний.

Основные параметры варикапов:

Варикапы широко применяются в различных схемах для автоматической подстройки частоты, в параметрических усилителях.

На рисунке 1.2.5.1 представлена вольт-амперная характеристика варикапа и его УГО

Рисунок 1.2.5.1 Вольт-амперная характеристика варикапа и УГО

1.2.6 Светоизлучающие диоды

Светодиодами называются маломощные полупроводниковые источники света, основой которых является излучающий рппереход. Свечение рn-перехода вызвано рекомбинацией носителей заряда. При подаче прямого напряжения электроны из n-области проникают в p-область, где рекомбинируют с дырками и излучают освободившуюся энергию в виде света.

Светодиоды изготавливаются из карбида кремния, арсенида или фосфида галлия. Свечение может быть весьма интенсивным и лежит в инфракрасной, красной, зеленой и синей частях спектра. Светодиод начинает испускать свет, как только подается прямое напряжение, причем с ростом тока интенсивность свечения увеличивается.

Основными параметрами светодиодов являются:

Прямая ветвь ВАХ светодиода и его условное обозначение показаны на рисунке 1.2.6.1

Рисунок 1.2.6.1 ВАХ светодиода и его УГО

Светодиоды применяют в устройствах визуального отображения информации.

1.2.7 Фотодиоды

Фотодиод — это полупроводниковые приборы, принцип действия которых основан на внутреннем фотоэффекте, состоящем в генерации под действием света электронно-дырочных пар в рппереходе, в результате чего увеличивается концентрация основных и неосновных носителей заряда в его объеме. Обратный ток фотодиода определяется концентрацией неосновных носителей и, следовательно, интенсивностью облучения. Вольт-амперные характеристики фотодиода (рисунок 1.2.7.1 (см. стр.28)) показывает, что каждому значению светового потока Ф соответствует определенное значение обратного тока. Такой режим работы прибора называют фотодиодным.

Фотодиод обозначается на схеме на рисунке 1.2.7.2

Рисунок 1.2.7.2 УГО фотодиода

Рисунок 1.2.7.1 Вольт-амперная характеристика фотодиода

Фотодиоды применяются в качестве датчиков освещенности.

Задание для самостоятельной работы

по теме 1.2 «Полупроводниковые диоды»

№1. Заполнить таблицу и поместить ее в чате.

Оценить работы своих одногруппников с помощью смайликов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *