Что понимается под косвенным прикосновением ответ
Что такое косвенное прикосновение и как защититься от него?
АгоВ одной из предыдущих статей мы уже рассказывали об опасности прямого прикосновения к токоведущим элементам и технических мерах защиты, используемых для предотвращения случайного прикосновения. В данной статье пойдет речь об опасности, которую представляет собой косвенное прикосновение. Собранные материалы позволят понять, чем оно отличается от прямого контакта и каким образом можно исключить нежелательные последствия.
Что такое косвенное прикосновение?
Под этим термином подразумевается поражение электротоком в результате прикосновения к открытым проводящим конструктивным элементам, на которых находится высокий потенциал в результате непредвиденной аварии. То есть, в штатной ситуации, эти элементы конструкции не представляли бы опасности для человеческой жизни, поскольку не находились бы под воздействием электрического тока.
Тем, кто предпочитает, чтобы определения технических терминов приводились дословно из нормативных документов, приведем цитату из ПУЭ (см. п. 1.7.12).
Определение косвенного прикосновения по ПУЭ, пункт 1.7.12
То есть в данном случае речь идет не о двойном замыкании, когда прикосновение происходит к двум фазам.
Примеры косвенных прикосновений
Приведем несколько примеров рассматриваемого прикосновения, встречающихся в быту и на производстве. Допустим, у электрочайника с металлическим корпусом произошло повреждение изоляции нагревательного элемента. В результате на корпусе образуется опасное напряжение прикосновения. Если взять такой чайник в руку, ничего не произойдет, поскольку в данном случае мы будем иметь дело с однополюсным прикосновением.
Ситуация резко изменится, если второй рукой коснуться смесителя, в этом случае образуется электрическая цепь, проходящая через тело человека (двухполюсное прикосновение). Это будет равносильно прямому контакту с нулем и фазой. Описанная угроза может исходить от многих бытовых приборов, например, пылесоса, накопительного водонагревателя (бойлера), стиральной машины и т.д.
Характерный пример на производстве – пробой изоляции фазного провода и его контакт с корпусом электроустановки. При одновременном прикосновении к металлической оболочке оборудования (где произошел пробой) и открытой, проводящей ток замыкания, конструкции с нулевым потенциалом, человек будет поражен электротоком. При нарушении изоляции нуля или защитного провода, максимум, что может произойти – однофазное замыкание, что приводит к отключению АВ.
Чем отличается прямое прикосновение от косвенного?
Определение обоих видов касаний приводится как в ПУЭ (см. п.1.7.11-12). Наглядные примеры обоих прикосновений приведены ниже.
Примеры прикосновений: 1) прямое; 2) косвенное
Как видно из рисунка, прямым типом называется прикосновение к неизолированным тоководам. В большинстве случаев это происходит по причине случайного прикосновения по не внимательности, ошибке или из-за опасного приближения к электроустановкам здания. В данном случае безопасность обеспечивается путем предотвращения случайного касания опасных токоведущих проводников. Для этого предусматриваются специальные технические меры защиты, такие как: установка ограждений, предупреждающих знаков и т.д.
Если рассматривать косвенное прикосновение, то оно происходит только при нештатной ситуации, когда нарушается изоляция токоведущих проводников. Это приводит к образованию фазного потенциала на корпусе установки и образованию опасных зон с током утечки. Для предотвращения прикосновения предусмотрены спецмеры, о которых пойдет речь далее.
Меры защиты
Учитывая, что угроза касания носит случайный характер, необходимы спецмеры для минимизации опасности, исходящей от электрического контакта с сторонними токопроводящими элементами, на которых находиться опасный потенциал. Список спецмер указан в ГОСТах 50571.1-93 и 30331.1-95, перечислим, что предлагают нормативные документы:
Рассмотрим более подробно, каждую из перечисленных мер защиты.
Заземление
В данном случае речь идет не о функциональном, а защитном заземлении. То есть, к ЗУ подключают токопроводящие поверхности оборудования, представляющие потенциальную опасность. Если сопротивление изоляции станет ниже допустимого, и в результате на корпусе образуется фазное напряжение. Прикоснувшись к такому корпусу установки, стоящий на земле человек подвергнется воздействию опасного напряжения равного потенциалу однофазного тока.
При подключении к ЗУ всех открытых токопроводящих поверхностей, представляющих возможную угрозу, описанная выше ситуация не произойдет, поскольку место касания будет с нулевым потенциалом.
Косвенное касание незаземленного и заземленного корпуса
Как видим, характер воздействия электрического прикосновения определяется сопротивлением цепи. В первом случае прикосновение с проводящим элементом приводит к прохождению электротока через тело человека. Во втором, сопротивление заземлителя значительно ниже, чем у человеческого тела, поэтому утечка идет через ЗУ.
Не следует рассматривать использование заземлителей в качестве панацеи, в некоторых случаях дополнительные требования могут исключать использование ЗУ.
Автоматическое отключение питания
При таком способе производится размыкание фазы (фаз) и нуля на вводе питания, то есть, осуществляется их одновременное отключение. Термин «автоматическое» подразумевает, что срабатывание происходит без участия человека. Система автоматического отключения (АО) может применяться совместно с заземлением или независимо от него. Скорость срабатывания защиты исчисляется десятыми долями секунды, что соответствует требованиям норм электробезопасности.
Данный способ широко применяется на производстве, например на линиях, от которых запитаны ручные электроинструменты, мобильные установки и т.д. В быту через устройства защитного отключения подается питание на накопительные водяные электронагреватели, посудомоечные и стиральные машины, а также другое оборудование.
С принципом работы и описанием основных характеристик УЗО Вы можете ознакомиться в более ранних публикациях на нашем сайте.
Уравнивание потенциалов
Под данным термином понимается подключение всех открытых токопроводящих элементов конструкции и оборудования к шине защитного заземления с нулевым потенциалом для обеспечения электробезопасности. С дословным описанием термина можно ознакомиться в ПУЭ (см. п. 1.7.32).
Приведем пример, допустим, в производственном цехе корпуса нескольких станков подключено к собственным ЗУ, в то время как остальное оборудование заземлено на шину PE. В результате такого неграмотного заземления при КЗ на корпус образуется разность потенциалов между открытыми токоведущими элементами заземленного и зануленного оборудования, что создаст серьезную угрозу для жизни.
Именно поэтому выдвигается требование уравнивания потенциалов, которое выполняется путем подключения открытых токопроводящих поверхностей к шине PE. Это исключает опасность при прикосновении к проводящим элементам.
Выравнивание потенциалов
Согласно определению в ПУЭ (см. п. 1.7.33) под выравниванием следует понимать уменьшение разности потенциалов на токопроводящем покрытии. То есть, фактически речь идет о снижении фактора воздействия, производимого шаговым напряжением. В качестве спецмеры закладываются проводники, подключенные к общему ЗУ через шину PE. Вместо них может применяться заземленное проводящее напольное покрытие.
Двойная или усиленная изоляция
Практически на любое оборудование, запитанное от сети до 1,0 кВ, может устанавливаться двойное или усиленное изоляционное покрытие (помимо основного, используемого для покрытия тоководов). При такой конструкции, если происходит снижение сопротивления в результате повреждения основной изоляции, дополнительный диэлектрик исключит касание токопроводящей поверхности. Соответственно, при проблемах с дополнительной изоляции, будет действовать основной изолирующий слой. Вероятность одновременного разрушения двух слоев крайне мала.
Допускается использовать двойную и усиленную изоляцию в качестве основной защиты от косвенного прикосновения. То есть, не задействуя другие меры защиты.
Малое (сверхнизкое) напряжение
Данный способ можно назвать универсальной мерой электробезопасности, соответственно, он работает и при косвенном прикосновении. Трансформатор, используемый для понижения напряжения, также играет роль гальванической развязки. Для сетей постоянного тока установлено значение сверхнизкого напряжения величиной 60,0 В, переменных источников питания – 25,0 В.
Данный вид защиты допускается использовать в качестве единственной меры электробезопасности для исключения угрозы прикосновения.
Электрическое разделение цепей
В данном случае речь идет о гальванической развязке, благодаря которой можно осуществлять передачу электроэнергии из одной цепи в другую при отсутствии прямого электрического соединения. Примеры разделения электроцепей приведены ниже.
Пример гальванической развязки при помощи трансформатора (1) и диодной оптопары (2)
Как видим, в первом случае гальваническая развязка осуществляется при помощи трансформатора, во втором – диодной оптопары.
Если отказаться от электрического разделения, то величина тока, протекающего из одной цепи в другую, будет ограничена их внутренним сопротивлением. Причем величина сопротивления будет незначительной. Образованные внутренними процессами выравнивающие токи, особенно в цепях большой протяженности, представляют серьезную угрозу при прикосновении.
Изолирующие помещения, зоны
Данный метод эффективен даже без наличия защитного заземления. Надежная изоляция стен и пола обеспечивает защиту при прямом и косвенном однополюсным прикосновении. Нижняя граница сопротивление изоляции помещения, для электроустановок с напряжением до 1,0 кВ, не должна опускаться ниже 100,0 кОм. Для оборудования, запитанного от электрической сети с напряжением не более 0,5 кВ обеспечивающая защиту сопротивление устанавливается в пределах 50,0 кОм.
Совмещение методов и дополнительные меры.
В большинстве своем перечисленные выше методы защиты могут быть использованы совместно. Но иногда это недопустимо, например, установка в зоне изоляции защитных проводников подключенных к ЗУ, приведет к нарушению равной величине потенциалов. Приведенный пример является скорее исключением, но он лишний раз указывает, что при выборе из доступных к одновременному использованию дополнительных мер защиты необходимо проявлять осторожность.
Похожие материалы на сайте:
Меры защиты от прикосновения к токоведущим частям электроустановок
Токоведущие части электроустановки не должны быть доступными для случайного прикосновения, а доступные прикосновению открытые проводящие части не должны находиться под напряжением, представляющим опасность поражения электротоком как в нормальном режиме работы электроустановки, так и при повреждении изоляции.
Прямое прикосновение – это электрический контакт людей или животных с токоведущими частями, находящимися под напряжением. В целях защиты от поражения электротоком в нормальном режиме следует применять по отдельности или в сочетании следующие меры защиты от прямого прикосновения:
Косвенное прикосновение – это электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции. Защита от поражения электротоком в случае повреждения изоляции осуществляется применением по отдельности или в сочетании следующих мер защиты при косвенном прикосновении:
Применение двух и более мер защиты в электроустановке не должно оказывать взаимного влияния, снижающего эффективность каждой из них.
Защиту при косвенном прикосновении выполняют во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока. В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких напряжениях, например, 25 В переменного и 60 В постоянного тока или 12 В переменного и 30 В постоянного тока при наличии требований соответствующих глав ПУЭ.
Защита от прямого прикосновения не требуется, если электрооборудование находится в зоне системы уравнивания потенциалов и наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока – во всех случаях.
Для заземления электроустановок применяют естественные и искусственные заземлители.
В качестве естественных заземлителей используют:
Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих и взрывоопасных газов и смесей, трубопроводов канализации и центрального отопления.
Искусственные заземлители могут быть из черной или оцинкованной стали или медными и не иметь окраски.
Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня а строительного мусора. Не следует располагать заземлители в местах, где земля подсушивается под действием тепла трубопроводов и пр.
К паспорту необходимо прилагать результаты визуальных осмотров, осмотров со вскрытием грунта, протоколы измерения параметров заземляющего устройства, данные о характере ремонтов и изменениях, внесенных в конструкцию устройства.
Основная изоляция токоведущих частей должна покрывать токоведущие части и выдерживать все возможные воздействия, которым она может подвергаться в процессе эксплуатации. Когда основная изоляция обеспечивается воздушным промежутком, защита от прямого прикосновения к токоведущим частям или приближения к ним на опасное расстояние осуществляется посредством оболочек, ограждений, барьеров или размещением вне зоны досягаемости.
Ограждения и оболочки должны быть надежно закреплены и иметь достаточную механическую прочность. Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей.
Барьеры предназначены для защиты от случайного прикосновения к токоведущим частям в электроустановках напряжением до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ, но не исключает преднамеренного прикосновения и приближения к токоведущим частям при обходе барьера. Для удаления барьеров не требуется применения ключа или инструмента, однако они должны быть закреплены так, чтобы их нельзя было снять непреднамеренно. Барьеры должны быть из изолирующего материала.
Размещение вне зоны досягаемости для защиты от прямого прикосновения к токоведущим частям в электроустановках до 1 кВ или приближения к ним на опасное расстояние в электроустановках напряжением выше 1 кВ может применяться при невозможности выполнения вышеуказанных мер или их недостаточности. При этом расстояние между доступными одновременному прикосновению проводящими частями в электроустановках напряжением до 1 кВ должно быть не менее 2,5 м. Внутри зоны досягаемости не допускается размещение частей, имеющих разные потенциалы и доступных одновременному прикосновению.
Установка барьеров и размещение вне зоны досягаемости допускается только в помещениях, доступ в которые имеет только квалифицированный обслуживающий персонал.
Сверхнизкое (малое) напряжение (далее СНН) – это напряжение, не превышающее 50 В переменного и 120 В постоянного тока, которое применяется в электроустановках до 1 кВ для защиты от поражения электротоком при прямом и косвенном прикосновениях в сочетании с защитным электрическим разделением цепей или в сочетании с автоматическим отключением питания. В качестве источника питания цепей СНН в обоих случаях необходимо использовать безопасный разделительный трансформатор или другой источник СНН, обеспечивающий равноценную степень безопасности.
Токоведущие части цепей СНН отделяются от других цепей с целью обеспечения электрического разделения, которое равноценно разделению между первичной и вторичной обмотками разделительного трансформатора. К тому же проводники цепей СНН прокладываются отдельно от проводников более высоких напряжений и защитных проводников, либо должны быть отделены от них заземленным металлическим экраном (оболочкой) или заключены в неметаллическую оболочку дополнительно к основной изоляции. Вилки и розетки штепсельных соединений в цепях СНН не должны допускать подключение к розеткам и вилкам других напряжений, а штепсельные розетки должны быть без защитного контакта.
При применении СНН в сочетании с электрическим разделением цепей открытые проводящие части нельзя преднамеренно присоединять к заземлителю, защитным проводникам или открытым проводящим частям других цепей и к сторонним проводящим частям. СНН и сочетании с электрическим разделением цепей применяют тогда, когда при помощи СНН нужно обеспечить защиту от поражения электротоком при повреждении изоляции не только в цени СНН, но и при повреждении изоляции в других цепях, к примеру в цепи, питающей источник.
Защитное электрическое разделение цепей – отделение одной электрической цепи от других цепей в электроустановках напряжением до 1 кВ осуществляется с помощью двойной изоляции, основной изоляции и защитного отключения, усиленной изоляции. Защитное электрическое разделение цепей применяют, как правило, для одной цепи.
При выполнении автоматического отключения питания электроустановок напряжением до 1 кВ все открытые проводящие части присоединяются к глухозаземленной нейтрали источника питания системы TN и заземляются в системах IT или ТТ. В электроустановках, где используются автоматическое отключение питания, необходимо выполнять уравнивание потенциалов. Для автоматического отключения питания применяют защитно-коммутационные аппараты, реагирующие на сверхтоки или на дифференциальный ток.
Под уравниванием потенциалов понимается электрическое соединение проводящих частей для достижения равенства их потенциалов, а под защитным уравниванием потенциалов – уравнивание потенциалов, выполняемое в целях электробезопасности. В свою очередь выравнивание потенциалов предусматривает снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путем применения специальных покрытий земли.
Защита при помощи двойной или усиленной изоляции обеспечивается применением электрооборудования класса II или заключением электрооборудования, имеющего только основную изоляцию токоведущих частей, в изолирующую оболочку. Проводящие части оборудования с двойной изоляцией не должны быть присоединены к защитному проводнику и к системе уравнивания потенциалов.
Изолирующие (непроводящие) помещения, зоны, площадки применимы в электроустановках напряжением до 1 кВ, если требования к автоматическому отключению питания невозможно выполнить, а применение других защитных мер нецелесообразно либо невыполнимо. В изолирующих помещениях (зонах) не должен предусматриваться защитный проводник, а также принимаются меры против заноса потенциала на сторонние проводящие части помещения извне. Пол и стены данных помещений не должны подвергаться воздействию влаги.
ПУЭ, глава 1.7: терминология, часть 2
ПУЭ: «1.7.12. Косвенное прикосновение − электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции».
В этом определении не указан вид повреждаемой изоляции. Отрытая проводящая часть может оказаться под напряжением при повреждении основной изоляции (см. п. 1.7.9).
Этот термин для главы 1.7 следует определить так:
косвенное прикосновение: Прикосновение человека или животного к открытым проводящим частям, оказавшимся под напряжением при повреждении основной изоляции.
Необходимо учитывать, что область применения термина «косвенное прикосновение» сократилась, поскольку в современной нормативной документации не используют понятие «защита от косвенного прикосновения». Поэтому рассматриваемый термин не определён в ГОСТ 30331.1.
ПУЭ: «1.7.14. Защита при косвенном прикосновении − защита от поражения электрическим током при прикосновении к открытым проводящим частям, оказавшимся под напряжением при повреждении изоляции.
Термин повреждение изоляции следует понимать как единственное повреждение изоляции».
Определение в п. 1.7.14 имеет несколько недостатков.
Во-первых, в названии термина речь должна идти о защите от косвенного прикосновения, поскольку автоматическое отключение питания нацелено на упреждающее отключение аварийного электрооборудования класса I в тот момент, когда на его открытой проводящей части появилось опасное напряжение вне зависимости от того, прикасается ли к ней человек или животное.
Во-вторых, применение в электроустановках зданий электрооборудования класса II, имеющего двойную или усиленную изоляцию опасных частей, находящихся под напряжением, является мерой защиты от косвенного прикосновения.
В-третьих, в определении рассматриваемого термина следовало указать основную изоляцию.
Защита от косвенного прикосновения является защитой от поражения электрическим током, которая предотвращает появление косвенного прикосновения или используется при его возникновении.
Рассматриваемый термин следует исключить из главы 1.7, поскольку в требованиях современной нормативной документации не применяют понятие «защита от косвенного прикосновения» (см. http://y-kharechko.livejournal.com/11731.html ).
В требованиях стандартов МЭК 61140, МЭК 60364‑4‑41, ГОСТ IEC 61140, ГОСТ Р 50571.3, ГОСТ 30331.1 и др. применяют понятия «основная защита» и «защита при повреждении», которые следует включить в главу 1.7. Определения этих терминов необходимо заимствовать из п. 3.1.1 и 3.1.2 ГОСТ IEC 61140:
«основная защита: Защита от поражения электрическим током при нормальных условиях»;
«защита при повреждении: Защита от поражения электрическим током при условиях единичного повреждения».
В главе 1.7 следует определить термины «защита от поражения электрическим током», «нормальные условия» и «условиях единичного повреждения», которые использованы в определениях других терминов. Они определены в п. 20.18, 20.37 и 20.88 ГОСТ 30331.1 следующим образом:
«защита от поражения электрическим током: Выполнение мер, понижающих риск поражения электрическим током»;
«нормальные условия: Условия, при которых все средства защиты являются неповрежденными»;
«условия единичного повреждения: Условия, при которых имеется единичное повреждение какого-то средства защиты».
ПУЭ: «1.7.15. Заземлитель − проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду».
В процитированном определении не указана локальная земля, в электрическом контакте с которой находятся проводящие части, образующие заземлитель. Поэтому рассматриваемое определение в главе 1.7 необходимо заменить определением из п. 20.13 ГОСТ 30331.1:
«заземлитель: Проводящая часть или совокупность электрически соединенных между собой проводящих частей, находящихся в электрическом контакте с локальной землей непосредственно или через промежуточную проводящую среду».
ПУЭ: «1.7.16. Искусственный заземлитель – заземлитель, специально выполняемый для целей заземления.
1.7.17. Естественный заземлитель − сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления».
В определении термина «естественный заземлитель» допущена ошибка, поскольку в нём указана сторонняя проводящая часть. Однако если эту проводящую часть, например здания, используют в качестве заземлителя, её классифицируют как элемент электроустановки здания. Следовательно, её нельзя называть сторонней проводящей частью. Поэтому в определении п. 1.7.17 термин «сторонняя проводящая часть» следует заменить термином «проводящая часть», а термин «земля» − термином «локальная земля». В главе 1.7 целесообразно использовать следующее определение:
естественный заземлитель: Проводящая часть здания или сооружения, находящаяся в электрическом контакте с локальной землёй непосредственно или через промежуточную проводящую среду, используемая для целей заземления.
В главу 1.7 следует включить определение термина «электрически независимый заземлитель», который используют в определении типа заземления системы TT и требованиях к системе TT. Этот термин определён в п. 20.102 ГОСТ 30331.1 так:
«электрически независимый заземлитель: Заземлитель, расположенный на таком расстоянии от других заземлителей, что электрические токи, протекающие между ними и Землёй, не оказывают существенного влияния на электрический потенциал независимого заземлителя».
ПУЭ: «1.7.18. Заземляющий проводник − проводник, соединяющий заземляемую часть (точку) с заземлителем».
Процитированное определение сформулировано некорректно, поскольку не понятно, о заземлении какой части здесь сказано. Оно хорошо характеризует заземляющий проводник переносного заземляющего устройства, которое используют для выполнения заземления проводящих частей электроустановки во время проведения в ней ремонтных или профилактических работ. Однако это определение не подходит, например, для электроустановок зданий.
Из рассматриваемого определения следует, что заземляющий проводник является универсальным защитным проводником. Этот проводник соединяет открытые проводящие части электроустановки здания с заземляющим устройством, исключая из употребления другие защитные проводники. Он же соединяет с заземляющим устройством все сторонние проводящие части здания, подменяя собой проводники уравнивания потенциалов.
В главе 1.7 следует чётко установить зону действия заземляющего проводника, а именно обеспечение электрической связи заземлителя с главной заземляющей шиной. Иначе заземляющее устройство, по его определению, приведённому в п. 1.7.19, будет «накрывать» собой всю электроустановку. В главу 1.7 рекомендуется включить определение рассматриваемого термина из п. 20.15 ГОСТ 30331.1:
«заземляющий проводник: Защитный проводник, соединяющий заземлитель с главной заземляющей шиной».
ПУЭ: «1.7.19. Заземляющее устройство – совокупность заземлителя и заземляющих проводников».
Это определение противоречит определению термина «главная заземляющая шина» в п. 1.7.37, в котором эта шина идентифицирована как часть заземляющего устройства. Заземляющее устройство электроустановки здания всегда состоит из трёх элементов: заземлителя, заземляющих проводников и главной заземляющей шины. В других низковольтных электроустановках вместо шины могут использовать зажим. Поэтому в рассматриваемом определении следует указать третий элемент заземляющего устройства − главную заземляющую шину и определить термин так же, как в п. 20.14 ГОСТ 30331.1:
заземляющее устройство: Совокупность заземлителя, заземляющих проводников и главной заземляющей шины.
ПУЭ: «1.7.20. зона нулевого потенциала (относительная земля) – часть земли, находящаяся вне зоны влияния какого-либо заземлителя, электрический потенциал которой принимается равным нулю».
Название термина в п. 1.7.20 не соответствует международному наименованию – «эталонная земля», которое применяют в национальной нормативной документации.
В стандарте МЭК 60050‑195 термин «эталонная земля» определён следующим образом: часть Земли, рассматриваемая в качестве проводящей, электрический потенциал которой условно принят в качестве нуля, находящаяся вне зоны влияния какого-либо заземляющего устройства.
Термин «зона нулевого потенциала (относительная земля)» в главе 1.7 следует заменить термином «эталонная земля», заимствовав его определение из п. 20.110 ГОСТ 30331.1:
«эталонная земля: Часть Земли, проводящая электрический ток и находящаяся вне зоны влияния какого-либо заземляющего устройства, электрический потенциал которой условно принят равным нулю.
Примечание – Понятие «Земля» означает планету со всеми её физическими свойствами».
ПУЭ: «1.7.21. Зона растекания (локальная земля) − зона земли между заземлителем и зоной нулевого потенциала.
Термин земля, используемый в главе, следует понимать как земля в зоне растекания».
В этом определении имеются недостатки.
Во-первых, только вторая часть наименования рассматриваемого термина – «локальная земля» соответствует названию международного термина.
Во-вторых, процитированное определение существенно отличается от следующего определения термина «локальная земля» в стандарте МЭК 60050‑195: часть Земли, которая находится в электрическом контакте с заземляющим электродом и электрический потенциал которой не обязательно равен нулю.
В главе 1.7 целесообразно использовать термин из п. 3.17.2 ГОСТ IEC 61140:
«локальная земля: Часть Земли, находящаяся в электрическом контакте с заземлителем, электрический потенциал которой не обязательно равен нулю».