Что понимается под напряжением прикосновения напряжением шага
Что такое напряжение прикосновения
Вообще понятие «напряжение прикосновения» относится к двум открытым для контакта проводящим частям либо к открытой проводящей части и месту на поверхности земли или пола, на котором стоит человек или животное. Если даже человек или животное не находятся в данный момент на указанном месте, можно по крайней мере судить об ожидаемом напряжении прикосновения, то есть о его предполагаемой величине.
Опасность напряжения прикосновения
Если изоляция электрического оборудования, или изоляция питающих проводов, линий, хотя бы частично повреждена, то велика вероятность того, что на корпусах такого оборудования и на конструкциях, с которыми данное оборудование находится в контакте, появится определенное напряжение.
К примеру, стоящий на земле человек дотрагивается до каркаса какой-нибудь установки, который (каркас) по какой-то причине оказался под напряжением, хотя и заземлен при этом. В таком случае разность потенциалов между точками на земле, где расположены стопы человека, и корпусом, в том месте где происходит контакт, и будет численным значением напряжения прикосновения.
Если данное напряжение безопасно (в пределах 2 вольт переменного напряжения), то нет причин для волнения, но если оно значительно выше (если хотя бы превышает 36 вольт переменного), то это может быть опасно.
По мере того, как человек удаляется от места заземления установки, величина напряжения прикосновения для него увеличивается. За пределами зоны растекания тока от установки, напряжение прикосновения будет равно напряжению непосредственно на корпусе оборудования относительно земли. Здесь зона растекания — это та часть земли, за пределами которой потенциал при замыкании частей установки под напряжением на землю принимается равным нулю.
Главный путь защиты от поражения электрическим током — надежная изоляция
Основные способы защиты людей от попадания под напряжение прикосновения — изоляция токоведщих частей электрооборудования, расположение опасных частей на недосягаемой без специального оснащения высоте, установка ограждений и сигнализации опасного приближения, наличие плакатов и знаков, предупреждающих об опасности, и конечно диэлектрические средства индивидуальной защиты. Между тем ни один из перечисленных способов защиты не является универсальным, поэтому лучше применять сразу несколько.
Итак, наличие надежной изоляции токоведущих частей — вот главное условие безопасности при эксплуатации электроустановок. Важнейшая характеристика изоляции — ее сопротивление.
Согласно ПУЭ, сопротивление изоляции кабелей, даже тех, которые работают при напряжении ниже 1000 вольт, не должно быть ниже 0,5 МОм для провода каждой из фаз, а для обмоток статоров электродвигателей регламентированное значение доходит до 1 МОм при комнатной температуре!
Суть в том, что когда человек касается, к примеру оголенного провода, ток через его тело определяется сопротивлением непосредственно тела и напряжением прикосновения в текущих условиях. Но когда человек касается изолированного провода, то сопротивление изоляции включается в цепь последовательно с телом человека, и падение напряжения, а так же ток через тело, получаются значительно меньше, и человек в данных условиях оказывается более защищен от поражения током.
Что такое шаговое напряжение и чем оно опасно
Шаговое напряжение – особенное физическое явление, возникающее около упавшего провода. Ток растекается по земле, таким образом создается потенциал между точками. Примерное расстояние потенциала составляет один человеческий шаг – приблизительно 80 см. Часто потенциал имеет опасной для здоровья и жизни напряжение. В зависимости от величины напряжения и расстояния между точками может быть от 10 до нескольких киловольт.
Такое часто происходит после бури или урагана, когда порывы ветра обрывают провода, и они падают на землю, при этом питание на них еще подается. В данной статье будет рассказано о том, как появляется подобное явление, какую физическую природу оно имеет и как возможно его избежать. В качестве дополнения в статье содержатся несколько видеороликов и одну научно-популярную статью.
Что такое напряжение шага
Шаговым напряжением (напряжением шага) называется напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек. Шаговое напряжение зависит от удельного сопротивления грунта и силы протекающего через него тока. Шаговое напряжение – это напряжение между двумя точками на земле на расстоянии шага, возникающее вокруг точки замыкания на землю токоведущей линии. Наибольшая величина этого напряжения наблюдается на расстоянии 80 – 100 см от точки касания провода с землей, затем оно бистро понижается и на расстоянии 20 м практически становится равным нулю.
В области защитных устройств от поражения током — заземления, зануления и др. — интерес представляют в первую очередь напряжения между точками на поверхности земли (или иного основания, на котором стоит человек) в зоне растекания тока с заземлителя. Очень часто путают напряжения прикосновения и напряжение шага. Напряжение прикосновения – это разность потенциалов двух точек электрической цели, которых одновременно касается человек, а напряжение шага есть напряжение между двумя точками поверхности земли в зоне растекания тока, отстоящими друг от друга на расстоянии одною шага.
Шаговое напряжение при одиночном заземлителе
Шаговое напряжение определяется отрезком, длина которого зависит от формы потенциальной кривой, т.е. от типа заземлителя, и изменяется от некоторого максимального значения до нуля с изменением расстояния от заземлителя. Допустим, что в земле в точке О размещен один заземлитель (электрод) и через этот заземлитель проходит ток замыкания на землю. Вокруг заземлителя образуется зона растекания тока по земле, т. е. зона земли, за пределами которой электрический потенциал, обусловленный токами заземления на землю, может быть условно принят равным нулю.
Причина этого явления заключается в том, что объем земли, через который проходит ток замыкания на землю, по мере удаления от заземлителя увеличивается, при этом происходит растекание тока в земле. На расстоянии 20 м и более от заземлителя объем земли настолько возрастает, что плотность тока становится весьма малой, напряжение между точками земли и точками еще более удаленными не обнаруживается сколько нибудь ощутимо.
Если измерить напряжение Uз между точками, находящимися на разных расстояниях в любом направлении от заземлителя, а затем построить график зависимости этих напряжений от расстояния до заземлителя, то получится потенциальная кривая ) Если разбить линию ОН на участки длиной 0,8 м, что соответствует длине шага человека, то ноги его могут оказаться в точках разного потенциала Чем ближе к заземлителю, тем напряжение между этими точками на земле будет больше (Uaб > Uбв; Uбв > Uвг)
Шаговое напряжение для точек В и Г определяется как разность потенциалов между этими точками
где B —коэффициент напряжения шага, учитывающий форму потенциальной кривой 1. Наибольшие значения напряжения шага и коэффициента B будут при наименьшем расстоянии от заземлителя, когда человек одной ногой стоит на заземлителе, а другая нога на расстоянии шага.
Безопасный выход из зоны поражения
Безопасным считается расстояние более 20 метров от источника высокого потенциала. Несмотря на это, считается, что максимальный радиус поражения шагового напряжения составляет 8 метров, если в месте обрыва опасное напряжение составляет выше 1000 вольт и 5 метров, если значение не превышает 1000 вольт. В то же время начиная с 380 В и выше, напряжение считается опасным, т.к. способно вызвать такой шаговый потенциал.
Чтобы покинуть опасную зону, безопасно выйти, не нужно быстро бежать, делая длинные шаги. Шаговое напряжение увеличивается при увеличении длины шага, и наоборот. Пока ноги рядом угрозы для жизни не возникнет. Выходить из зоны высокого электрического потенциала нужно, переступая с ноги на ногу, делая небольшой шаг в пределах размера ступни (такое перемещение еще называют гусиным шагом).
Шаговое напряжение и выравнивание потенциалов
Многие из нас еще с детства помнят о том, что оголенный оборванный провод, упавший на землю, – это очень опасно. Помнятся различные страсти-мордасти про мокрую погоду и про несчастных жертв, даже не имевших «счастья» прикоснуться к металлу, находящемуся под напряжением и ставшему причиной их травмы. Всего-то их и угораздило пройти в опасной близости от поврежденной линии – и этого оказалось более чем достаточно.
Но что же это за явление, благодаря которому провод, «невинно» полеживающий в стороне становится смертельной угрозой? Всем известно, что электротравму человеку может нанести только проходящий через его тело электрический ток. А электрическому току нужен свободный путь. Необходимо, как минимум, две точки приложения на теле того, кому не повезло: одна из них – фаза, откуда ток может прийти, а вторая – ноль, куда он может свободно уйти.
Но позвольте, какая «фаза»? Ну, «ноль» – еще понятно, но откуда «фаза», если человек спокойно шагает себе по земле и никаких проводов даже не трогает? Ничего ведь такого, кажется, и нет – просто влажная земля. Тропинка, например. Ну да, фазный оборванный провод лежит неподалеку в кустах. Но он же непосредственно на землю и замкнулся – цепь не включает в себя прогуливающегося пешехода и ток через него идти не должен. Но это только так кажется.
Бояться было бы нечего, если бы земля была отличным проводником с сопротивлением, близким к сопротивлению металла. Тогда обрыв провода и падение его на землю завершались бы банальным коротким замыканием. Срабатывала бы максимально-токовая защита, или сгорал бы оборванный провод, но в любом случае долго бы это не продолжалось. А на самом же деле удельное электрическое сопротивление грунта составляет минимум 60 Ом*м, а чаще всего и больше, даже если погода влажная и идет дождь. Поэтому при обрыве повода и замыкании его на землю для электрического тока просто возникает новая цепь: фазный провод – земля – заземленная нейтраль трансформатора.
Говоря по-научному, на единственном существенном сопротивлении цепи провод-земля-нейтраль – влажном грунте – происходит падение напряжения (изменение электрического потенциала) от 220 вольт возле упавшего провода до нуля у нейтрали трансформатора.
Падение это происходит нелинейно, но суть сводится к тому, что чем ближе к проводу – тем стремительнее возрастает потенциал земли. Значит, чем ближе к месту обрыва – тем большая разность потенциалов между двумя точками поверхности, расположенными на определенном расстоянии. А несчастный прохожий может стоять одной ногой на первой из этих точек и другой ногой – на второй из них. При этом он, конечно, воспримет на себя возникшую разность потенциалов, а это может оказаться практически все фазное напряжение, если провод близко.
Физика и физиология
Шаговое напряжение — это разность потенциалов между двумя участками почвы. При ударе молнии ток «растекается» в почве, создавая зону с высоким потенциалом. При наличии поблизости проводников, может формироваться цепь. Таким проводником может стать человек: ток входит через одну ногу, а выходит через другую, превращая тело в «нагрузку». Ситуация эта крайне опасная, поскольку высокое напряжение вызывает паралич мышц, как от электрошокера. В результате человек может упасть на руки, и, при многокомпонентных молниях, ток последующих разрядов пойдет через сердце, повышая риск его остановки. Если же земли коснется голова, резко увеличивается риск необратимых повреждений центральной нервной системы.
В правой части рисунка схематично изображено воздействие шагового напряжения, которое создает нагрузку через ноги (красная стрелка) — поэтому оно и получило название шагового. Обычная молния может нести десятки тысяч ампер тока (I1-2), в результате чего разность потенциалов (V1-V2) может превысить десятки тысяч вольт. Поскольку существует разность напряжений между двумя точками (ногами), то человеческое тело представляет собой комплексное электрическое сопротивление и выступает в роли нагрузки. Величина тока (Ib), проходящего через тело, в этом случае зависит от сопротивления стопы (Rf) и тела (Rb).
Проблема в том, что воздействие импульсного тока молнии на живые организмы изучено плохо. Возможность рассчитать ориентировочную величину тока и напряжения шага есть, а вот результат их взаимодействия с организмом человека менее предсказуем. Удары молний, в том числе шаговым напряжением, имеют уникальные «физиологические особенности». Прежде всего, это связано с тем, что молнии хоть и несут огромное количество энергии, но выделяется она в очень короткий промежуток времени: 1/10000—1/1000 секунды. Такие удары редко вызывают сильные ожоги и повреждения внутренних органов, как в случае ударов током от обычного электрооборудования. Но молния способна воздействовать на сердце и нервную систему, в том числе периферические нервы.
В своих вебинарах для проектировщиков систем молниезащиты доктор технических наук, профессор Эдуард Меерович Базелян неоднократно отмечал отсутствие четкого определения опасной величины шагового напряжения. Так, известно, что импульсное воздействие молнии 6 кВ может вызвать фибрилляцию сердца и возможную остановку сердцебиения. Но физиология организма людей сложна, и даже меньшее воздействие способно вызвать тяжелые травмы и привести к смерти. В случае с кардиостимуляторами и другими каналами прямого доступа тока к сердечной мышце, иногда достаточно кратковременного воздействия 1 мА для фибрилляции.
Как освободить человека
Если вы были не одни и ваш спутник впереди внезапно упал, попав в зону растекания шагового напряжения, потому что электроток вызвал непроизвольное сокращение мышц ног, не стоит бросаться к нему бегом. Нужно оценить ситуацию и подходить к нему мелкими шагами, обмотав руки сухой одеждой, оттянув пострадавшего из зоны поражения.
Под шаговое напряжение можно попасть и дома, прикоснувшись к включенному в сеть неисправному электроприбору, образовав таким образом электрическую цепь. Для избежания таких несчастных случаев в квартирном щитке необходимо установить УЗО либо организовывать систему заземления вместе с системой уравнивания потенциалов.
Что делать если на ваших глазах человек попал под действие электротока в помещении? Не паниковать, первым делом нужно разорвать цепь, выключив рубильник или автомат питания. Если нет такой возможности, сухим деревянным предметом, обмотав руки сухой одеждой, помня о своей безопасности, попытаться освободить пострадавшего этим предметом, откинув его или поместив между человеком и источником, чтобы разорвать цепь. На картинках ниже показаны меры, которые нужно предпринять для освобождения пострадавшего, в том числе после поражения шаговым напряжением:
Освободив человека, оттяните его в безопасное место, прощупайте пульс и посмотрите на реакцию зрачков на свет. Вызовите скорую и начинайте экстренную сердечно-легочную реанимацию, искусственное дыхание и массаж сердца, до приезда бригады скорой помощи. Если пострадавший пришел в сознание положите его набок, чтобы внезапный рвотный рефлекс не попал в дыхательные пути. Более наглядные пошаговые действия вы можете узнать в нашей статье — как оказать помощь при поражении электрическим током. Помните что каждый пункт в правилах, это жизнь или горький опыт пострадавшего.
Правила перемещения в опасной зоне
Необходимо как можно быстрее отключить электричество с помощью выключателя, рубильника, вынуть вилку из розетки.
Способы защиты, электробезопасность
Если вы увидите лежащий на земле провод – ни в коем случае нельзя к нему приближаться. Опасная зона может быть от 5-8 метров вокруг точки соприкосновения провода с землей и больше, в зависимости от класса напряжения линии и состояния земли (мокрая земля увеличивает пространство растекания электрического тока).
При ударе молнии в дерево, молниеотвод или опору электропередач электрический ток поступает в землю и растекается в грунте во все стороны до нескольких десятков метров. В таких местах и может быть шаговое напряжение. То же самое происходит и возле упавшего на землю электрического провода, находящегося под напряжением. Представим себе, что разряд молнии пришелся в дерево, вблизи которого в это время стоял человек.
Электрический ток молнии, попадая в землю и растекаясь в ней, проходит и под ногами человека. Если ноги расставлены, то ток входит в одну ногу и, пройдя через тело, уходит в землю через другую. Это и есть шаговое напряжение, в этом случае человек находится под шаговым напряжением.
Чтобы человек не подвергался воздействию тока, там где шаговое напряжение, необходимо все устройства защитного заземления размещать там, где нет людей. В частности, молниеотводы в сельской местности следует заземлять не ближе 4 метров от стен домов и обязательно их ограждать.
Во время грозы надо держаться подальше от опор электропередач, нельзя стоять вблизи высоких деревьев, особенно на открытой местности. Это необходимо и потому, что возле любого выделяющегося на поверхности земли предмета (дерево, мачта, опора ЛЭП, молниеотвод) во время грозы создаются условия, при которых молния устремляется именно к этому предмету, где может случиться шаговое напряжение. Как правило, она поражает все, находящееся в радиусе десятков метров.
При поражении молнией человека, там где произошло шаговое напряжение, пострадавшему надо обязательно сделать искусственное дыхание и закрытый массаж сердца. И немедленно доставить в лечебное учреждение или вызвать «скорую помощь».
В энергетике существует такой термин как «Техника безопасности» – он появился не просто так. Каждая строчка этого свода правил безопасности на действующих и отключенных электроустановках имеет свою историю, которая закончилась плачевно. Поэтому не стоит пренебрегать этими простыми советами, чтобы не попасть под действие электрического тока совершенно неожиданно для себя.
Напряжение прикосновения. Общие сведения и меры предосторожности.
Напряжение прикосновения, это электрическое напряжение, возникающее на теле человека в момент одновременного его контакта с парой точек проводника под напряжением или с парой проводящих частей электрического оборудования, например — проводом с поврежденной изоляции.
Вообще понятие напряжение прикосновения относится к двум открытым для контакта проводящим частям либо к открытой проводящей части и месту на поверхности земли или пола, на котором стоит человек. Если даже человек не находятся в данный момент на указанном месте, можно по крайней мере судить об ожидаемом напряжении прикосновения, то есть о его предполагаемой величине.
Опасность напряжения прикосновения
Если изоляция электрического оборудования, или изоляция питающих проводов, линий, хотя бы частично повреждена, то велика вероятность того, что на корпусах такого оборудования и на конструкциях, с которыми данное оборудование находится в контакте, появится определенное напряжение.
К примеру, стоящий на земле человек дотрагивается до каркаса какой-нибудь установки, который (каркас) по какой-то причине оказался под напряжением, хотя и заземлен при этом. В таком случае разность потенциалов между точками на земле, где расположены стопы человека, и корпусом, в том месте где происходит контакт, и будет численным значением напряжения прикосновения.
Если данное напряжение безопасно (в пределах 2 вольт переменного напряжения), то нет причин для волнения, но если оно значительно выше (если хотя бы превышает 36 вольт переменного), то это может быть опасно.
Защита от электрического тока — это не только надежная изоляция
Основные способы защиты людей от попадания под напряжение прикосновения:
Между тем ни один из перечисленных способов защиты не является универсальным, поэтому лучше применять сразу несколько.
Наличие надежной изоляции токоведущих частей — вот одно из главных условий безопасности при эксплуатации электроустановок. Важнейшая характеристика изоляции — ее сопротивление.
Согласно ПУЭ, сопротивление изоляции кабелей, даже тех, которые работают при напряжении ниже 1000 вольт, не должно быть ниже 0,5 МОм для провода каждой из фаз. А для обмоток статоров электродвигателей регламентированное значение доходит до 1 МОм при комнатной температуре!
Суть в том, что когда человек касается, к примеру оголенного провода, ток через его тело определяется сопротивлением непосредственно тела и напряжением прикосновения в текущих условиях. Но когда человек касается изолированного провода, то сопротивление изоляции включается в цепь последовательно с телом человека, и падение напряжения, а так же ток через тело, получаются значительно меньше. Человек в данных условиях оказывается более защищен от поражения током.
Напряжение прикосновения в электробезопасности
Одно время мне доводилось слушать лекции по электробезопасности от профессора кафедры местного техникума.
Трюк заключался в следующем: профессор, уважаемый человек преклонных лет, откровенно хулиганил, сгибая металлическую скрепку для бумаг и засовывая ее голыми руками поочередно в оба разъема электрической розетки 220 вольт. При этом последствий для здоровья профессора не наступало, током его не било. Так он иллюстрировал понятие напряжения прикосновения.
Другой иллюстрацией к этой же теме от того же профессора был рассказ о том, как он подрабатывал цеховским электриком и проверял, не греются ли контактные соединения в сборных щитах и распределительных устройствах. Метод проверки им был избран далеко не косвенный. Он просто щупал голыми руками зажимные болты и кабельные наконечники, находящиеся под напряжением, повергая в ужас всех работников цеха и даже главного энергетика предприятия.
Конечно, за этим поведением профессора чувствуется неприкрытая бравада и желание эпатировать публику. Но почему же его действительно не било током? Да потому что напряжение его прикосновения к токоведущим частям было близким к нулю.
Напряжение прикосновения
Если немного знать электротехнику, то ответ очевиден. Ведь в соответствии с законом Ома каждый элемент цепи «берет на себя» часть напряжения, прямо пропорциональную его электрическому сопротивлению. Цепь в случае фокуса со скрепкой создается примерно такая: Фазный провод – скрепка – рука профессора – его нога – подошва его ботинка – линолеум на полу – доски пола – бетонная стяжка пола – заземленные металлоконструкции здания.
Как видите, между телом профессора и надежным «Нулём» есть масса элементов цепи, сопротивление которых исчисляется, как минимум, Кило-Омами. Эти-то линолеум и доски и брали на себя все опасные 220 В. Поэтому ежегодная «скрепочная миниатюра» от профессора производила неизгладимое впечатление лишь на уборщиц и завхозов, аттестующихся на первую группу по электробезопасности. Остальная аудитория была знакома с законом Ома достаточно хорошо.
Но, несмотря на то, что профессор много раз проводил такие эксперименты, повторять его подвиги не следует. И не только потому, что нормами электробезопасности не рекомендуется прикасаться к токоведущим частям электроустановок, находящимся под напряжением. Просто, определяя напряжение прикосновения на глаз, очень легко можно ошибиться с параметрами цепи. А такая ошибка может стать фатальной.
К примеру, профессор, щупая контакт в цеховой электроустановке, мог не заметить, что из его ботинка предательски вылез гвоздь, и что неизвестный доброжелатель щедро оросил соляным раствором пол вокруг этой самой установки. Да еще и руки у профессора могли некстати оказаться потными. И чем бы тогда кончилась эта рядовая проверка?
Поэтому не следует надеяться, что напряжение прикосновения будет малым. Нужно помнить, что оно может принять и номинальную для электроустановки величину. Лучше проявить излишнюю бдительность, чем пострадать от собственной беспечности.