Что понимается под заземляющим устройством
Трансформаторные подстанции высочайшего качества
с нами приходит энергия
develop@websor.ru
Заземляющие устройства
Заземление электроустановок осуществляется преднамеренным соединением с заземляющим устройством.
Заземляющим устройством называется совокупность заземлителя и заземляющих проводников. Заземлителем называется металлический проводник или группа проводников, находящихся в непосредственном соприкосновении с землей. Заземляющими проводниками называются металлические проводники, соединяющие заземляемые части электроустановок с заземлителем
Если через заземлитель пропустить ток, то на самом заземлителе и в точках земли, расположенных в непосредственной близости от него, возникнут потенциалы, измеряемые относительно бесконечно удаленной точки, график распределения которых показан на рис. 12-1. Из графика видно, что с удалением от места расположения заземлителя потенциал уменьшается, так как поперечное сечение земли, через которое проходит ток, увеличивается в большей степени. В удаленных точках потенциалы близки к нулю. Таким образом, в качестве точек нулевого потенциала могут служить точки, достаточно удаленные от заземлителя, потенциалы которых практически равны нулю. Обычно достаточно расстояние в несколько десятков метров. Крутизна кривой распределения потенциалов зависит от проводимости грунта: чем меньше проводимость грунта, тем более пологую форму имеет кривая, тем дальше расположены точки нулевого потенциала.
Рис. 12-1. Распределение потенциалов при растекании тока в земле с одиночного вертикального заземлителя.
Для устройства заземлении в установках переменного тока следует в первую очередь использовать естественные заземлители.
Естественные заземлители — это различные конструкции и устройства, которые по своим свойствам могут одновременно выполнять функции заземлителей: водопровод, металлические оболочки кабелей, металлические и железобетонные конструкции зданий и сооружений, имеющие надежное соединение с землей.
В водопроводной сети, если трубы не изолированы от земли и выполнены из стали или чугуна, происходит растекание тока в землю на большом протяжении. Водопроводные трубы укладываются ниже глубины промерзания (и высыхания), поэтому сопротивление растеканию можно считать постоянным в течение года.
Свинцовые оболочки проложенных в земле кабелей могут обеспечивать достаточно малые значения сопротивления растеканию, и поэтому их использование рекомендуется. Алюминиевые оболочки кабелей, выпускающиеся с защитными покровами для предотвращения коррозии алюминия при соприкосновении с землей, для устройства заземлений применены быть не могут. Стальная броня кабелей как заземлитель в расчет не принимается.
Железобетонные фундаменты во влажных грунтах обладают высокой и стабильной в течение года проводимостью и рекомендуются в качестве естественных заземлителей в глинистых, суглинистых, супесчаных и других влажных грунтах. При использовании железобетонных конструкций для возможности их соединений между собой и сетью заземления должны заранее предусматриваться выводы арматуры наружу.
Преимуществом рассмотренных естественных заземлителей является малое сопротивление растеканию. Рациональное использование естественных заземлителей упрощает и удешевляет сооружение заземляющих устройств. Сопротивления естественных заземлителей зависят от многих местных факторов, и достоверные данные могут быть получены только на основании замеров.
Под искусственными заземлителями понимаются закладываемые в землю металлические электрода» специально предназначенные для устройства заземлений. Во избежание излишних затрат эти заземлители следует применять лишь при отсутствии естественных заземлителей, невозможности их использования или при слишком высоком сопротивлении естественных заземлителей.
Искусственные заземлители обычно выполняются из вертикальных электродов (труб, углов, стержней) с расположением верхнего конца у поверхности земли или ниже уровня земли на 0,5—0,7 м (рис. 12-2). При втором способе сопротивление заземления относительно стабильно, так как заземлитель соприкасается со слоями грунта, в которых относительно малы изменения влажности и температуры в течение года. Если заземлитель из одиночного вертикального электрода (рис. 12-2) не обеспечивает требуемого сопротивления заземления, то применяется расположение вертикальных электродов в ряд (рис. 12-3) или по контуру (рис. 12-4).
Рис. 12-2. Одиночные вертикальные заземлители с расположением верхнего конца у поверхности земли (а) и ниже уровня земли (б).
Рис. 12-3. Расположение вертикальных заземлителей в ряд.
При выборе размеров вертикальных электродов исходят из трех условий:
1) обеспечение требуемого сопротивления заземлителя при наименьшем расходе металла;
2) обеспечение механической устойчивости электрода при погружении в грунт;
3) обеспечение устойчивости к коррозии электродов, расположенных в грунте.
Устойчивость к коррозии проводника в грунте определяется его толщиной и площадью поверхности на единицу длины его, соприкасающейся с грунтом. Очевидно, что при равных сечениях наибольшую толщину и наименьшую поверхность имеют круглые стержни, которые и являются наиболее долговечными заземлителями.
Рис. 12-4. Контурный заземлитель. 1 — соединительные стальные полосы; 2 — стальные трубы.
Сопротивление растеканию электрода определяется в основном его длиной и мало зависит от поперечных размеров электрода. Расход же металла прямо пропорционален поперечному сечению электрода и наиболее экономичными являются заземлители наименьших возможных сечении.
Наибольшую механическую прочность при погружении в грунт при одинаковом поперечном сечении имеют трубы и уголки, наименьшую — круглые стержни. Исходя из механической прочности при погружении забивкой или вибрационным способом выбирают трубы диаметром и уголки соответственно 50х50 и 60х60 мм. Целесообразнее применять угловую сталь, так как она дешевле труб. Обычно применяемая длина вертикальных электродов равна 2 — 3 м. Применение электродов большей длины (5 — 20 м) целесообразно при высоком сопротивлении грунта и малой площади, отводимой под устройство заземлителя.
В последнее время получают распространение вертикальные заземлители в виде стержней из круглой стали диаметром 16—18 мм.
Погружение их в грунт производится ввертыванием с оконцеванием стержня в виде буравчика. Применение стержней вместо труб и уголков приводит к экономии металла (примерно 0,5 т на 100 электродов). Погруженные в грунт вертикальные электроды соединяют стальными полосами, проложенными на глубине 0,5 — 0,7 м и приваренными к верхним концам вертикальных электродов. Вместо полос часто применяется круглая сталь. Иногда горизонтально проложенные полосы или круглая сталь применяются как самостоятельные заземлители. Заземлители в виде пластин, колец и т. п. применяются реже.
При применении пластин в качестве заземлителей они располагаются вертикально во избежание нарушения соприкосновения с почвой и нарушения контакта при возможных осадках грунта.
Заземлитель в виде горизонтально расположенного в земле кольца выполняется из круглой или полосовой стали. Целесообразно размещение кольца ниже уровня промерзания.
Наименьшие размеры стальных заземлителей по условиям устойчивости к коррозии: диаметр круглой стали 6 мм; толщина полос 4 мм; сечение полос 48 мм2; толщина полок уголков 4 мм; толщина стенок труб 3,5 мм.
Так как заземлитель обычно состоит из нескольких параллельно соединенных электродов, расположенных на сравнительно небольших расстояниях друг от друга, то возникает явление экранирования (рис. 12-5), приводящее к уменьшению объема грунта, в котором происходит растекание тока с каждого электрода, и, как следствие этого, увеличение сопротивления заземлителя.
Рис. 12-5. Экранирование вертикальных заземлителей.
Таким образом, если заземлитель из одного электрода имеет сопротивление , то заземлитель из n параллельно включенных электродов имеет сопротивление не
, а
где — коэффициент использования электрода.
Коэффициент использования электрода уменьшается с увеличением числа электродов и уменьшением расстояний между ними. Вследствие этого увеличение числа вертикальных электродов при тех же размерах ряда или контура приводит к незначительному уменьшению сопротивления растеканию. По этой же причине дополнительное заполнение электродами внутренней части контура приводит к небольшому уменьшению сопротивления.
Понятие о заземлении и заземляющих устройствах
Заземление – это намеренное соединение элементов электроустановки с заземляющим устройством.
Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем.
К естественным заземлителям относятся металлические конструкции зданий, надежно соединённые с землёй.
В качестве искусственных заземлителей используют стальные труб ы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединённых друг с другом стальными полосами или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы.
Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество искусственных заземлителей.
Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы.
Измерение сопротивления контура заземления проводится нашей электроизмериельной лабораторией.
Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части
Защитное заземление – заземление, выполняемое в целях электробезопасности.
Защитное заземление —это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.
Цель защитного заземления —снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.
При электрическом переменном токе промышленной частоты (50 герц) берут во внимание только активное сопротивление человека (его тела) и соотносят его с величиной равной 1 кОм. При длительном прохождении тока сопротивление тела снижается до 500 – 300 Ом.
Примечание: сопротивление тела человека постоянному току от 3 до 100 кОм.
Расчеты, приведенные на рисунках, весьма приблизительны, но показывают оценить эффективность защитного заземления.
Существенное влияние на ток, проходящий через человека, оказывает величина тока короткого замыкания и сопротивление системы заземления. Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом — при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом — во всех остальных случаях.
Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.
Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше — с любым режимом нейтрали.
1. Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается.
Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.
Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.
Заземлители
1.Естественные
— водопроводные трубы, проложенные в земле (ХВ)
— металлические конструкции здания и фундаменты, надежно соединенные с землей
— металлические оболочки кабелей
— обсадные трубы артезианских скважин
— газопроводы и трубопроводы с горючими жидкостями
— алюминиевые оболочки подземных кабелей
— трубы теплотрасс и горячего водоснабжения
Соединение с естественным заземлителем должно быть не менее чем в двух разных местах.
2. Искуственные
Контурные
Выносные: групповые и одиночные
Позволяют выбрать место с минимальным сопротивлением грунта.
Традиционно, для искусственных заземлителей применяют угловую сталь толщиной полки не менее 4 мм, стальные полосы толщиной не менее 4 мм или прутковую сталь диаметром от 10 мм.
Широкое распространение в последнее время получили глубинные заземлители с омедненными или оцинкованными электродами, которые по долговечности и затратам на изготовление заземлителя существенно превосходят традиционные методы.
Подробную информацию о различных схемах зазелителей, способах расчета и консультации можно получить на сайте www.zandz.ru
Основная система уравнивания потенциалов.
Построение основной системы уравнивания потенциалов – создание эквипотенциальной зоны в пределах электроустановки с целью обеспечения безопасности персонала и самой электроустановки при срабатывании системы молниезащиты, заносе потенциала и коротких замыканиях.
Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:
1 ) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;
2 ) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и TT;
3 ) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание;
5 ) металлические части каркаса здания;
6 ) металлические части централизованных систем вентиляции и кондиционирования….
7 ) заземляющее устройство системы молниезащиты 2-й и 3-й категории;
8 ) заземляющий проводник функционального ( рабочего ) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;
9 ) металлические оболочки телекоммуникационных кабелей.
Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов. (ПУЭ п. 1.7.82)
Несоединенный с ГЗШ элемент конструкции, инженерной системы, независимой системы рабочего заземления ( FE ) и тд. – грубейшее нарушение целостности основной системы уравнивания потенциалов. Появление разности потенциалов ( возможность искры ) – угроза жизни персонала и безопасности объекта.
Примечание: разрядник, указанный на рисунке – специализированный искровой разрядник с малым напряжением срабатывания для систем уравнивания потенциалов. Например: серии «KFSU», «EXFS..» компании DEHN.
Система дополнительного уравнивания потенциалов
— должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток (ПУЭ п. 1.7.83).
Система дополнительного уравнивания потенциалов значительно улучшает уровень электробезопасности в помещении. Короткие проводники защитного заземления и уравнивания потенциалов, сведенные на шину, формируют эквипотенциальную зону по принципу аналогично основной системы уравнивания потенциалов.
Как видно из рисунков, схема электропитания претерпевает существенные изменения. Чрезвычайно важно обеспечить соединение контактов заземления розеток и клемм заземления стационарных приборов на шину дополнительного уравнивания потенциалов. При этом, даже если не будет выполнено соединение корпусов приборов с шиной ( безалаберная эксплуатация, особенно переносных приборов ) система сохранит свою эффективность по безопасности. Ситуация, когда земли розеток и приборов не подключены к шине, а сторонние проводящие части гарантированно соединены с шиной уравнивания потенциалов, в разы ухудшает электробезопасность в помещении даже по сравнению с классической схемой питания.
Если формально подходить к определению, то и металлическая дверная ручка и петли на деревянной двери в деревянном доме являются сторонними проводящими частями.
При формировании дополнительной системы уравнивания потенциалов возникает вопрос, что подключать, а что не подключать на шину дополнительного уравнивания потенциалов, чтобы добиться необходимого уровня электробезопасности и не делать систему слишком громоздкой. Здесь, с точки зрения здравой логики, можно руководствоваться двумя принципами:
Примеры сторонних проводящих частей подключаемых / не подключаемых к шине дополнительного уравнивания потенциалов:
Сторонняя проводящая часть
Металлическая полка, закрепленная на стене из непроводящего материала.
Металлическая полка, закрепленная на стене из железобетона.
(потенциальная связь с «землей» за счет крепежа к стене)
Металлическая полка, закрепленная на стене из непроводящего материала.
На полке расположен электроприбор.
(возможность появления потенциала при аварии прибора с классом изоляции I)
Металлическая тумбочка с резиновыми (пластиковыми) колесиками на бетонном полу.
Металлическая тумбочка с резиновыми колесиками на бетонном полу.
В помещении грязь и пыль в сочетании с повышенной влажностью.
(потенциальная связь с «землей» за счет загрязнения и повышенной влажности)
Некоторое количество вопросов с уравниванием потенциалов возникает по ванным и душевым помещениям. Современные требования и рекомендации по устройству системы дополнительного уравнивания потенциалов изложены в циркуляре № 23/2009.
Широкое применение пластиковых труб породило закономерный вопрос: является ли водопроводная вода сторонней проводящей частью и возможен ли занос потенциала через воду….
Ответ, содержащийся в циркуляре, несколько настораживает: « … Водопроводная вода нормального качества …не рассматривается как сторонняя проводящая часть . »
К сожалению, вода нормального качества из наших кранов течет не всегда и лучше перестраховаться, используя токопроводящие вставки на отводах от стояков водопровода подключив их к шине дополнительного уравнивания потенциалов, чтобы не подключать отдельно каждый кран. Этот метод в качестве рекомендуемого описан в этом же циркуляре.
Практика выполнения дополнительной системы уравнивания потенциалов.
Фактически наиболее распространены пять вариантов выполнения шин системы дополнительного уравнивания потенциалов:
Вариант 1. С использованием стандартных коробок уравнивания потенциалов ( КУП ).
Вариант 2. Стальная шина 4х40 ( 4х50 ) с приварными болтами опоясывающая помещение.
Вариант 3. Стальная шина, уложенная в стандартный пластиковый короб.
Вариант 4. Использование шины заземления в РЩ ( для небольших помещений ).
Вариант 5. С использованием специализированного щитка типа ЩРМ – ЩЗ
( встроенный щиток с шиной 100 мм 2 ( Cu ) со степенью защиты IP54 ).
Главные требования нормативов по устройству шины дополнительного уравнивания потенциалов содержат два требования:
— возможность осмотра соединения
— возможность индивидуального отключения
МЕД. ГОСТ Р 50571.28 п. 710.413.1.6.3 « Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должны быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…»
Для учреждений здравоохранения в помещениях гр.1 и особенно в помещениях гр.2 (чистые помещения) удобно воспользоваться вариантом № 5, схема которого представлена на рисунке.
Устройство, принцип работы и схемы защитного заземления
Вне зависимости от эксплуатационных характеристик, электрифицируемое здание должно иметь качественно организованную систему защитной электробезопасности. Защитное заземление позволяет создать такую систему.
Этот тип заземления характеризуется соединением определенных элементов электроустановки с ЗУ (заземляющим устройством) и ориентирован на уменьшение показателей напряжений прикосновения и шага, возникающих при замыкании циркулирующих токов на корпусах электрооборудования.
Назначение и устройство защитного заземления
Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.
Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.
Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.
Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.
Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.
Монтаж устройства защитного заземления востребован практически повсеместно.
Заземляющая система: область применения и принцип работы
При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:
Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:
Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.
Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.
Классификация заземляющих устройств
В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:
Самыми распространенными конструкциями такого типа заземлителей выступают:
Подключать элементы этой категории заземлителей необходимо минимум в двух местах.
Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.
Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества — малозатратность производства и долговечность элементов.
Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.
Как производится расчет параметров основных заземляющих элементов
На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.
Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.
Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.
Выполняются расчеты на основании таких данных:
Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.
Принцип расчета сопротивления заземлителей
Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.
К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:
В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).
Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна — достичь максимально низкого сопротивления системы.
Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.
Схемы заземления дома
Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.
Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.
Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:
Важно! При выборе схемы TN-C-S в качестве основы производства заземляющих работ важно учесть наличие глухозаземленной нейтрали. Получается, что ГЗШ дома соединяется с заземлением самого трансформатора, питающего объект.
Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.
Важно! В схеме TT полностью отсутствует организация защиты пользователя при утечке тока во время повреждения изоляции. Следовательно, монтировать УЗО для электрической проводки, реализованной по ТТ схеме, — обязательно.
В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.
Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.