Что понимается в пуэ под термином напряжение шага
Что такое напряжение шага
Шаговое напряжение — разница потенциалов на участке земли, на котором происходит растекание тока, при расстоянии между точками, равном стандартному шагу человека, то есть 0,8–1 м. Величина этого показателя зависит от физических свойств грунта (удельного сопротивления), частоты и силы тока, растекающегося по участку, и ряда других параметров.
Попавший под его воздействие чувствует покалывание в ногах, в тяжёлых случаях появляются судороги. При панических попытках покинуть аварийную зону неподготовленный человек старается убежать, причём быстро с максимально возможной длиной шага. Во многих случаях это становится причиной летальных исходов.
Благодаря эффекту рассеивания электрического тока опасность поражения шаговым напряжением уменьшается при удалении от точки соприкосновения аварийного провода с землёй. На расстоянии в пределах 20 м при нормальных условиях вероятность получения удара током уже стремится к нулю.
Причины его появления
В непосредственной близости от высоковольтных ЛЭП, на участках с кабельными коммуникациями представляет опасность возникновения такого явления, как шаговое напряжение. Возникает подобный эффект при различных обстоятельствах. Например, причиной появления может стать обрыв линии ЛЭП, при котором один из проводников упал на землю. Кроме того, опасность представляют и зоны, расположенные вокруг штатных заземлителей электрооборудования, при аварийных ситуациях с КЗ на землю.
Существует вероятность возникновения шагового напряжения и при пробое изоляции высоковольтных подземных кабелей при отказе автоматических защитных устройств, которые должны обесточить линию в аварийных ситуациях.
По этой причине не рекомендуется находиться в зонах расположения ЛЭП и подземных коммуникаций, особенно в условиях повышенной влажности, а тем более при дожде.
Виды шагового напряжения
Наиболее опасным считается шаговое напряжение, возникающее при одиночном заземлителе. К этому случаю можно приравнять ситуацию с упавшим на землю проводом ЛЭП. При этом максимальный потенциал будет именно в точке соприкосновения с поверхностью или в месте установки заземлителя.
За счёт рассеивания тока по грунту с увеличением расстояния от точки заземления величина потенциала падает, причём значение меняется по изогнутой кривой, с максимальным уменьшением именно на первом её участке. Поэтому самым опасным считается шаг, при котором одна нога расположена непосредственно на проводе или над заземлителем, а вторая на расстоянии 0,8–1 м. Потенциально опасным считается нахождение на расстоянии до 8 м при напряжении не более 1 кВ, а для высоковольтных сетей этот показатель уменьшается до 4-5 м.
Аналогичная картина наблюдается и при наличии групповых заземлителей, с той только разницей, что общий потенциал распределяется по всем заземляющим проводникам. То есть, общее шаговое напряжение (разница потенциалов) на расстоянии одного шага человека будет меньшим. А при нахождении ног на разных заземлителях никаких последствий ощущаться не будет, так как величина потенциала у них одинаковая.
Значения шагового напряжения
Из физических предпосылок возникновения такого эффекта становится понятным, что величина шагового напряжения зависит от величины удаления от заземлителя или упавшего провода, расстояния между ступнями ног.
При этом можно выделить следующие основные значения:
Именно на этих данных и обоснованы правила выхода из зоны шагового напряжения, возникающей при аварийной ситуации. Практика показала, что придерживаться этих рекомендаций следует до тех пор, пока расстояния до центра зоне не превысит значение 20 м.
Перемещения в зоне шагового напряжения
Главная задача — ставить ноги так, чтобы между точками соприкосновения с землёй была минимально возможная разница потенциалов. В том случае никаких последствий для организма за исключением неприятного покалывания не наблюдается.
Так как изменить величину потенциалов человек не может, а оставаться на месте также не вариант, ведь неизвестно, сработает ли защитная автоматика или нет, безопасный выход возможен только при максимальном уменьшении величины шага. Поэтому рекомендуется покидать зону поражения «гусиным шагом». Этот способ предполагает следующие действия:
Не рекомендуется прыгать на одной ноге, хотя такие советы можно услышать. Если рассматривать ситуацию с точки зрения разницы потенциалов, то такой вариант хорош. Но не стоит забывать об опасности споткнуться, попасть на кочку или в яму, ведь идеальных условий в поле не бывает. В результате таких происшествий удержаться на ногах будет сложно, а при падении разница потенциалов увеличится, так как расстояние между точками будет равняться росту человека. Именно такие падения становятся причиной большинства летальных исходов. Не спешите, передвигайтесь «гусиным шагом».
Выход из зоны шагового напряжения
Чтобы повысить свои шансы на спасение, при попадании в зону действия шагового напряжения действуйте по следующей схеме:
После выхода из опасной зоны немедленно сообщите в службу спасения, так как телефона энергоснабжающей организации у вас под рукой, скорее всего, не будет. Не предпринимайте никаких действий для самостоятельной ликвидации аварии, тем более, не имея доступа к устройствам, позволяющим отключить питание отдельных участков сети или обесточить электрооборудование.
Как освободить человека
Какие-либо действия можно предпринимать только в тех случаях, когда есть угроза жизни другого человека. И то, только тогда, когда вы чётко знаете что делать и уверены в своих силах. Если авария произошла в районе действия линий до 1 кВ, действуют по следующей схеме:
Если авария произошла на высоковольтной линии, то спасение возможно только при наличии СИЗ(диэлектрические перчатки, галоши) или после отключения линия. Ускорить процесс можно закоротив фазы, набросив на них ветку или проволоку. Если такой возможности нет, не старайтесь рисковать, это опасно для жизни. Вход в возможную зону поражения без индивидуальных защитных средств запрещён. Лучшая помощь — вызов спасателей.
Методы снижения шагового напряжения на предприятиях
На промышленных предприятиях используют простой метод, доказавший эффективность на практике. Для этого необходимо выровнять потенциалы в зоне возможного рассеивания электрического тока. Для этого монтируют групповые заземлители, выполненные в виде сетки с небольшим размером ячейки. Во всех точках потенциал будет одинаковым, поэтому даже при аварийных КЗ на землю эффект шагового напряжения не возникнет.
Подобная схема защиты применяется в местах установки открытых распределительных устройств, трансформаторных подстанций, мощного электрооборудования и электрических машин. Следует понимать, что обеспечить такую защиту на всём протяжении существующих линий ЛЭП вокруг каждой опоры невозможно, слишком дорого. Поэтому при обнаружении первых признаков (пощипывание, потряхивание), покидайте опасную зону, передвигаясь «гусиным шагом», не отрывая ног.
Что такое шаговое напряжение
Важнейшее понятие электрики — шаговое напряжение. Таким термином обозначается напряжение между находящимися на расстоянии шага точками передающими электричество цепи, на которые встал человек. Напряжение зависит от силы текущего по грунту/иной проводящей субстанции тока и уровня удельного сопротивления поверхности. Шаговое напряжение несет в себе большую угрозу, поэтому знать его определение и методы защиты необходимо каждому занимающемуся электротехникой.
Определение
Итак, шаговое напряжение (далее ШН) — напряжение между стопами вставшего поблизости от заземленного объекта человека. Физическое касание при этом отсутствует.
Значение ШН равно разности напряжений между некоторой удаленной от заземленного электроприбора/системы точкой и самой системой. На величину ШН влияют:
Оно возникает по разным причинам. Самые распространенные — обрыв кабеля и аварии на ЛЭП.
Опасность ШН
При попадании в область поражения человек начинает испытывать непроизвольные судороги ножных мышц и падает. На этом «нижняя петля» прекращает действовать, и ситуация становится гораздо тяжелее. Ток начинает течь от рук к ногам, воздействуя на все тело и его мышечные группы. Длительное пребывание в такой зоне после падения способно привести к гибели человека или другого живого существа.
Напряжение шага особенно опасно для крупного рогатого скота. У КРС велика дистанция шагов, поэтому эти животные подвергаются воздействию гораздо большего напряжения. Случаи гибели скота от ШН довольно часты.
Почему возникает ШН
Указанное явление обычно появляется при обрыве поставляющего электроэнергию некоторой системе кабеля. Провода часто прокладываются под землей, и энергия начинает «утекать» в нее. Самые опасные ситуации — когда это происходит во влажных местах, например, в водоемах или на болотах. Не менее опасен и мокрый асфальт, ведь вода в любом случае хорошо проводит электричество. Кроме того, ШН способно появляться не только на улице, но и в закрытых помещениях.
ШН возникает и в других случаях:
Известны случаи его возникновения даже после ударов молнии в землю.
Радиус и сила действия
Чтобы не попасть под напряжение шага необходимо знать его силу и расстояние, на котором оно представляет опасность. Расчет иллюстрируется следующим графиком:
На основании этих данных вычисляется величина и зона шагового напряжения по формуле:
UШ = (I3×ρ×a) / 2 π x (x + a)
На практике наибольшая величина ШН наблюдается в радиусе 80–100 сантиметров от эпицентра (места соприкосновения кабеля с почвой/поверхностью). По мере отдаления она понижается, полностью угасая примерно в 20 метрах.
Разумеется, точный расчет шагового напряжения можно сделать не всегда, поскольку необходимо дополнительно знать сопротивление отдельных слоев почвы, на основе которого выводится умножаемый на определенный коэффициент средний показатель. Но формула позволяет сделать примерную калькуляцию, которой можно манипулировать далее.
Это вычисление также помогает определить «шаг» возникающей электрической сетки. Его знание минимизирует шанс гибели от удара током. Обычно считается, что для покидания зоны ШН без вреда здоровью необходимо двигаться мелкими шажками (подобное передвижение называется «гусиный шаг», его совершают не отрывая стоп друг от друга), но на деле длина безопасного шага находится в зависимости от частоты полос ШН. Рассчитать не несущий опасности размер в той или иной ситуации помогает кривая:
Для получения подобного графика на реальной местности следует выполнить замеры вольтажа на различных расстояниях от электрического провода и объединить полученную информацию в схему.
Если посчитать зоны появления опасных линий и избегать их при передвижении, то ступни будут оказываться в точках с разностью потенциалов. Приведенный выше график иллюстрирует еще одну интересную особенность: чем ближе оказавшийся в опасности человек к точке электрической аварии (обрыву кабеля), тем больше уровень напряжения шага и меньше отрезки (а значит, короче и безопасные шаги).
С учетом сказанного формула принимает следующий вид:
Вычисляемый таким образом коэффициент ШН (то есть между ступнями) по умолчанию равен единице. Цифра зависит от расстояния между человеком и эпицентром аварии: чем оно меньше, тем коэффициент больше, и наоборот. Обычно безопасным считается расстояние 8–10 метров.
Важно: сильнее всего влияние электрического тока на влажной поверхности или во время гроз. При таких условиях запрещается подходить к эпицентру утечки без защиты менее чем на десять метров.
Что делать при аварии
Для предотвращения поражения ШН при возникновении аварийной ситуации следует соблюдать технику безопасность и носить защитный непроводящий костюм. Но иногда случается, что авария в электросети происходит внезапно и застает человека врасплох, или он попадает в радиус действия ШН по неосторожности/невнимательности.
Ток начинает действовать на ноги, снизу вверх. Важно знать, какова симптоматика поражения:
Интенсивность симптомов зависит от величины напряжения.
При отсутствии рядом способных помочь следует попытаться самостоятельно выйти из зоны в определенном техникой безопасности порядке. Обычно правила перемещения в зоне шагового напряжения предписывают уменьшать шаги до минимальных, без отрыва стоп от поверхности и друг друга. Второй способ — недлинные прыжки на одной ноге.
Важно: если прыгающий споткнется и упадет, или случайно встанет на обе ноги, он окажется под полным воздействием ШН. Поэтому безопаснее всего передвигаться «по-гусиному».
После прекращения воздействия электричества человек также испытывает ряд зависящих от интенсивности воздействия симптомов:
Большая часть последствий после покидания зоны шагового напряжения проходят бесследно. Но примерно в 20 процентах инцидентов человек получает хронические проблемы с работой легких и сердца, особенно при высоком напряжении воздействия.
Если необходимо оказать помощь оказавшемуся под ударом шагового тока, необходимо использовать защиту – галоши, диэлектрические ботинки и перчатки/сухую одежду на руки (если защитной обуви нет, идите «гусиным шагом»). При возможности приближения к месту аварии людей нужно предупреждать их о наличии опасности до выключения поврежденной электролинии. Пошаговый план действий:
В помещении для помощи попавшему под ШН допускается намотать на руки сухую ветошь или одежду и прекратить действие напряжения, положив между источником и пострадавшим сухой деревянный объект. Когда пострадавший окажется вне опасности, его надлежит оттащить в гарантированно безопасную область, проконтролировать реакцию зрачков подвергшегося удару на свет, вызвать врачей и выполнять до их приезда сердечно-легочную реанимацию.
Напряжение можно снять самостоятельно отключением электроустановки. Когда доступа к органам управления нет, используется способ намеренного создания короткого замыкания набрасыванием на питающую линию ветки, прута, палки, металлической проволоки и прочего. Автомат должен сам выключить питание, тем самым снимется и ШН.
Историческая справка
В истории электротехники имеется случившийся в тогда еще Ленинграде в 1928 году познавательный инцидент, известный как «лошадиная авария».
На одной из выложенных деревянными шестиугольниками площадей имелся технический колодец из чугуна с коммутационным разъединителем цепи на 2 киловольта. В определенный момент изолятор дал трещины, разъединитель остался висеть рядом со стенкой на кабеле. После дождя деревянная мостовая размокла, стала мягкой и подвижной. Далее сверху прошла лошадь с груженой телегой, поверхность прогнулась, и произошло замыкание кабеля на чугун.
Находившиеся в зоне шагового напряжения граждане отделывались простыми ударами тока, но обладающая телом длиной в полтора метра с хорошо проводящими железными подковами на ногах лошадь погибла на месте. Потом на электроподстанции включился «автомат» и обесточил цепь.
Телегу убрали, устранив замыкание. После проверок на подстанции ток снова подали, между колодцем и разъединителем появилась электродуга. На мостовой возникло шаговое напряжение, убившее еще двух лошадей работников милиции.
Заключение
Шаговое напряжение крайне небезопасно для вашей жизни и здоровья. При нем по телу течет ток, способный нанести тяжелый (и даже фатальный) ущерб органам и системам. Особенно это касается сердечной мышцы.
Поэтому для избежания таких ситуаций следует соблюдать правила техники безопасности, выполнять качественный и надежный монтаж и подключение электрооборудования. Если же где-то все же возник обрыв с появлением ШН, необходимо при первых же его симптомах покинуть опасную зону. Передвигайтесь мелкими шагами (или прыгая на одной ноге, хотя это не рекомендуется).
Видео по теме
ПУЭ, глава 1.7: терминология, часть 3
ПУЭ: «1.7.23. Напряжение на заземляющем устройстве − напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала».
Определение термина в п. 1.7.23 сформулировано некорректно.
Во-первых, в нём указана какая-то точка ввода тока в заземлитель, которая не определена в ПУЭ.
Во-вторых, из рассмотрения изъяты два элемента заземляющего устройства – заземляющий проводник и главная заземляющая шина. Однако практический интерес представляет напряжение на главной заземляющей шине, когда через заземляющее устройство в локальную землю протекает ток замыкания на землю.
В главе 1.7 рассматриваемый термин необходимо определить следующим образом:
напряжение на заземляющем устройстве: Напряжение между главной заземляющей шиной и эталонной землёй, возникающее при протекании электрического тока из заземлителя в землю.
ПУЭ: «1.7.24. Напряжение прикосновения − напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного.
Ожидаемое напряжение прикосновения − напряжение между одновременно доступными прикосновению проводящими частями, когда человек или животное их не касается».
В стандарте МЭК 60050-195 определены следующие термины:
(эффективное) напряжение прикосновения: напряжение между проводящими частями, когда их одновременно касается человек или животное.
Примечание − На значение эффективного напряжения прикосновения может существенно влиять полное сопротивление человека или животного в электрическом контакте с этими проводящими частями;
ожидаемое напряжение прикосновения: напряжение между одновременно доступными проводящими частями, когда этих проводящих частей не касается человек или животное.
Определения рассматриваемых терминов в главе 1.7 следует привести в соответствие с определениями в стандарте МЭК 60050-195. При этом из названия первого термина и примечания к его определению целесообразно исключить слово «эффективное»:
напряжение прикосновения: Напряжение между проводящими частями при одновременном прикосновении к ним человека или животного.
Примечание – На значение напряжения прикосновения может существенно влиять полное сопротивление тела человека или животного, находящегося в электрическом контакте с этими проводящими частями;
ожидаемое напряжение прикосновения: Напряжение между доступными одновременному прикосновению проводящими частями, когда человек или животное к ним не прикасаются.
ПУЭ: «1.7.25. Напряжение шага − напряжение между двумя точками на поверхности земли, на расстоянии 1 м одна от другой, которое принимается равным длине шага человека».
Это определение соответствует определению термина «шаговое напряжение» в стандарте МЭК 60050-195. Его можно использовать в главе 1.7 без изменений. При этом рассматриваемый термин следует поименовать шаговым напряжением.
ПУЭ: «1.7.26. Сопротивление заземляющего устройства − отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю».
В определении этого термина нет ошибок. Поэтому его можно применять главе 1.7.
ПУЭ: «1.7.27. Эквивалентное удельное сопротивление земли с неоднородной структурой − удельное электрическое сопротивление земли с однородной структурой, в которой сопротивление заземляющего устройства имеет то же значение, что и в земле с неоднородной структурой.
Термин удельное сопротивление, используемый в главе для земли с неоднородной структурой, следует понимать как эквивалентное удельное сопротивление».
В названии и определении рассматриваемого термина слово «земля» целесообразно заменить словом «грунт», поскольку в нормативной и справочной документации приводят значения удельного сопротивления для различных видов грунта: песка, глины, известняка и др. Такие значения, например, указаны в п. D.2 «Удельное сопротивление грунта» ГОСТ Р 50571.5.54 (см. http://y-kharechko.livejournal.com/729.html ).
ПУЭ: «1.7.28. Заземление − преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством».
Процитированное определение имеет недостатки.
Во-первых, в электрических сетях и установках, а также в электрооборудовании заземляют проводящие части, а не какие-то точки.
Во-вторых, это определение не согласовано со следующим определением термина «заземлять» в стандарте МЭК 60050‑195: выполнять электрическое соединение между данной точкой в системе или в установке, или в оборудовании и локальной землёй. В примечании к определению термина разъяснено: присоединение к локальной земле может быть: преднамеренным или непреднамеренным или случайным и может быть постоянным или временным.
В определении стандарта МЭК 60050‑195 вместо точки следует указать проводящую часть. Это также позволит исключить из определения перечисление объектов без ухудшения его качества.
В главе 1.7 следует использовать термин из п. 20.11 ГОСТ 30331.1, лишённый указанных недостатков:
«заземление: Выполнение электрического присоединения проводящих частей к локальной земле.
Примечание – Присоединение к локальной земле может быть:
— преднамеренным;
— непреднамеренным или случайным;
— постоянным или временным».
ПУЭ: «1.7.29. Защитное заземление − заземление, выполняемое в целях электробезопасности».
Этот термин определён в стандарте МЭК 60050‑195 иначе: заземление точки или точек в системе или в установке, или в оборудовании для целей безопасности. Поскольку определение имеет недостатки, указанные выше, его нельзя рекомендовать для применения в ПУЭ.
В главе 1.7 целесообразно использовать определение рассматриваемого термина, заимствованное из п. 20.20 ГОСТ 30331.1:
«защитное заземление: Заземление, выполняемое с целью обеспечения электрической безопасности».
ПУЭ: «1.7.30. Рабочее (функциональное) заземление − заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности)».
Представленное определение содержит недостатки.
Во-первых, в нём использован устаревший термин «токоведущая часть».
Во-вторых, для обеспечения нормального оперирования электрооборудования не всегда требуется заземление его частей, находящихся под напряжением. Часто заземляют проводящие части электрооборудования, которые являются экранами, предназначенными для снижения влияния электромагнитных полей на его чувствительные элементы, а также для защиты человека и животных от электромагнитного излучения. Поэтому в рассматриваемом определении вместо частного термина «токоведущая часть» следовало использовать общий термин «проводящая часть».
Во-третьих, заземляют не точки, а проводящие части.
В-четвёртых, только второе название рассматриваемого термина − «функциональное заземление» соответствует наименованию термина в стандарте МЭК 60050‑195, в котором он определён так: заземление точки или точек в системе или в установке, или в оборудовании для целей иных, чем электрическая безопасность. Однако это определение имеет недостатки, указанные выше. Поэтому его нельзя рекомендовать для применения в ПУЭ.
В главе 1.7 целесообразно использовать определение рассматриваемого термина, заимствованное из п. 20.93 ГОСТ 30331.1:
«функциональное заземление: Заземление, выполняемое по условиям функционирования не в целях электрической безопасности».
ПУЭ: «1.7.31. Защитное зануление в электроустановках напряжением до 1 кВ − преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности».
В процитированном определении допущены грубые ошибки, поскольку в нём упомянуты однофазный ток и трёхфазный ток, которых не существует.
Рассматриваемый термин не применяют в документах МЭК. В них используют термин «защитное заземление», которым обозначают соединение открытых проводящих частей с защитными проводниками, имеющими в системах TN-C, TN-S, TN-С-S электрический контакт с заземлёнными частями источников питания, находящимися под напряжением.
Термин «защитное зануление» следует исключить из ПУЭ и другой национальной нормативной документации. В главе 1.7 необходимо надлежащим образом определить типы заземления системы TN-C, TN-S, TN-С-S (см. https://y-kharechko.livejournal.com/62252.html ), посредством которых более точно идентифицируют присоединение открытых проводящих частей низковольтной электроустановки к заземлённой части источника питания, находящейся под напряжением.
ПУЭ: «1.7.32. Уравнивание потенциалов − электрическое соединение проводящих частей для достижения равенства их потенциалов.
Защитное уравнивание потенциалов − уравнивание потенциалов, выполняемое в целях электробезопасности.
Термин уравнивание потенциалов, используемый в главе, следует понимать как защитное уравнивание потенциалов».
В стандарте МЭК 60050‑195 термин «уравнивание потенциалов» определён иначе: обеспечение электрических соединений между проводящими частями, предназначенное достичь эквипотенциальности.
В главе 1.7 этот термин целесообразно определить так же, как в п. 3.16 ГОСТ IEC 61140:
«уравнивание потенциалов: Выполнение электрических соединений между проводящими частями, для обеспечения эквипотенциальности.
Примечание – Эффективность уравнивания потенциалов может зависеть от частоты электрического тока в соединениях».
Термин «защитное уравнивание потенциалов» целесообразно определить в главе 1.7 так же, как он определён в п. 20.21 ГОСТ 30331.1:
«защитное уравнивание потенциалов: Уравнивание потенциалов, выполняемое с целью обеспечения электрической безопасности».
В главу 1.7 следует включить исходный термин «эквипотенциальность» из п. 20.95 ГОСТ 30331.1:
«эквипотенциальность: Состояние, при котором проводящие части находятся под практически равными электрическими потенциалами».
ПУЭ: «1.7.33. Выравнивание потенциалов − снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путем применения специальных покрытий земли».
Выравнивание потенциалов является уравниванием потенциалов, выполняемым на поверхности, по которой перемещаться люди и животные. Поэтому рассматриваемый термин целесообразно определить в главе 1.7 кратко:
выравнивание потенциалов: Уравнивание потенциалов, выполняемое на поверхности земли или пола.