Что понимают под балансом мощностей цепи
Баланс мощностей в цепи постоянного тока
Баланс мощностей является следствием закона сохранения энергии — суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.
Источники E1 и E2 вырабатывают электрическую энергию, т.к. направление ЭДС и тока в ветвях с источниками совпадают (если ЭДС и ток в ветвях направлены в противоположную сторону, то источник ЭДС потребляет энергию и его записывают со знаком минус). Баланс мощностей для заданной цепи запишется так:
С учетом погрешности расчетов баланс мощностей получился.
Какова допустимая погрешность?? У меня выходит 0,561
По идее баланс мощности должен равняться нулю, но так как мы округляем некоторые значения при расчете — возникает погрешность, которая может составлять примерно 0,1 — 5% от потребляемой мощности.
Про знаки ЭДС сказано про знаки мощностей приёмников — нет.
Баланс мощностей
При решений электротехнических задач, часто нужно проверить правильность найденных значений. Для этого в науке ТОЭ, существует так называемый баланс мощностей.
Баланс мощностей – это выражение закона сохранения энергии, в электрической цепи. Определение баланса мощностей звучит так: сумма мощностей потребляемых приемниками, равна сумме мощностей отдаваемых источниками. То есть если источник ЭДС в цепи отдает 100 Вт, то приемники в этой цепи потребляют ровно такую же мощность.
Или
Проверим это соотношение на простом примере.
Для начала свернем схему и найдем эквивалентное сопротивление. R2 и R3 соединены параллельно.
Найдем по закону Ома ток источника и напряжение на R23, учитывая, что r1 и R23 соединены последовательно, следовательно, сила тока одинаковая.
Теперь проверим правильность с помощью баланса мощностей.
Небольшое различие в значениях связано с округлениями в ходе расчета.
С помощью баланса мощностей, можно проверить не только простую цепь, но и сложную. Давайте проверим сложную цепь из статьи метод контурных токов.
Как видите независимо от сложности цепи, баланс сошелся, и должен сойтись в любой цепи!
Баланс мощностей
Содержание:
Баланс мощностей
Для любой электрической цепи суммарная мощность , развиваемая источниками электрической энергии (источниками тока и ЭДС), равна суммарной мощности
, расходуемой потребителями (резисторами):
Мощность, рассеиваемая резистором, , мощность источника ЭДС
, мощность источника тока
.
Мощности, рассеиваемые резисторами, всегда положительные, в то время как мощности источников электрической энергии, в зависимости от соотношения направления падений напряжения и тока в них, могут иметь любой знак. Мощность положительна, когда направление тока через источник тока противоположно падению напряжения на нем. Он питает электрическую цепь. В противном случае источник питания является отрицательным, и вы являетесь потребителем электрической энергии. Следует заметить, что направление падения напряжения всегда противоположно направлению ЭДС, поэтому для источника ЭДС условием положительной мощности является совпадение направлений ЭДС и тока.
Пример расчёта разветвлённой цепи постоянного тока
Рассмотрим решение задачи для цепи, представленной на рис. 1.6, описанными выше методами расчёта.
Дано
1) все неизвестные токи, используя законы Кирхгофа; показать, что баланс мощностей имеет место;
1) Применение законов Кирхгофа. Баланс мощностей.
Возможно вам будут полезны данные страницы:
Выберем положительные направления токов и обозначим их стрелками. Выберем и обозначим стрелками направления обхода трёх независимых контуров: Составим систему уравнений по законам Кирхгофа
для узла а ;
для узла b
для узла с или
;
для контура ,
для контура
для контура
Полученные уравнения после подстановки в них числовых значений будут иметь следующий вид:
Решение данной системы:
Баланс мощностей для рассматриваемой цепи
Получено тождество 252 Вт = 252 Вт.
Примечание: падение напряжения на источнике тока определено по второму закону Кирхгофа для контура, содержащего
и
, как
Баланс мощностей
В левой части равенства слагаемое берется со знаком «+» если Е и I совпадают по направлению и со знаком если не совпадают.
Если направления ЭДС и тока I в источнике противоположны, то физически это означает, что данный источник работает в режиме потребителя.
На странице -> решение задач по электротехнике собраны решения задач и заданий с решёнными примерами по всем темам теоретических основ электротехники (ТОЭ).
Услуги:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Что такое баланс мощностей в цепи переменного тока
Баланс мощностей
При решений электротехнических задач, часто нужно проверить правильность найденных значений. Для этого в науке ТОЭ, существует так называемый баланс мощностей.
Баланс мощностей – это выражение закона сохранения энергии, в электрической цепи. Определение баланса мощностей звучит так: сумма мощностей потребляемых приемниками, равна сумме мощностей отдаваемых источниками. То есть если источник ЭДС в цепи отдает 100 Вт, то приемники в этой цепи потребляют ровно такую же мощность.
Проверим это соотношение на простом примере.
Для начала свернем схему и найдем эквивалентное сопротивление. R2 и R3 соединены параллельно.
Найдем по закону Ома ток источника и напряжение на R23, учитывая, что r1 и R23 соединены последовательно, следовательно, сила тока одинаковая.
Теперь проверим правильность с помощью баланса мощностей.
Небольшое различие в значениях связано с округлениями в ходе расчета.
С помощью баланса мощностей, можно проверить не только простую цепь, но и сложную. Давайте проверим сложную цепь из статьи метод контурных токов.
Как видите независимо от сложности цепи, баланс сошелся, и должен сойтись в любой цепи!
Дополнительные методы расчета цепей
В зависимости от сложности устройства (электрической схемы), выбирают оптимальную технологию вычислений.
Метод узлового напряжения
Основные принципы этого способа базируются на законе Ома и постулатах Кирхгофа. На первом этапе определяют потенциалы в каждом узле. Далее вычисляют токи в отдельных ветвях с учетом соответствующих электрических сопротивлений (отдельных компонентов или эквивалентных значений). Проверку делают по рассмотренным правилам.
Метод эквивалентного генератора
Эта технология подходит для быстрого расчета тока в одной или нескольких контрольных ветвях.
В данной методике общую цепь представляют в виде источника тока с определенным напряжением и внутренним сопротивлением. Далее выполняют вычисления по контрольной ветви с применением стандартного алгоритма.
Баланс мощностей в цепях переменного тока
Тогда полная комплексная мощность данного участка равна:
где – сдвиг фаз между напряжением и током.
, [Вт] – активная мощность участка,
, [ВАр] – реактивная мощность участка.
При выполнении условия баланса мощностей активная и реактивная мощности источников питания должны равняться потребляемым активной и реактивной мощностям.
Мощности источника Э.Д.С. определяем по формуле:
где – сопряжённый комплекс тока в ветви с источником Э.Д.С.
Мощность источника тока:
где – напряжение на зажимах источника тока;
– сопряжённый ток источника тока.
Мощность источника Э.Д.С. входит в выражение баланса со знаком «+», если направление Э.Д.С. источника и тока в этой ветви совпадают; если направления Э.Д.С. источника и тока не совпадают, то мощность источника Э.Д.С. отрицательная.
Мощность источника тока входит в выражение баланса со знаком «+», если ток источника и напряжения на его зажимах направлены навстречу друг другу. При совпадении направлений тока источника и напряжения мощность источника отрицательная.
Активная и реактивная мощности потребителей равны соответственно:
где – модуль действующего значения тока i–ой ветви.
где – эквивалентное реактивное сопротивление i–ой ветви.
При выполнении условия баланса мощностей:
Примеры расчёта цепей однофазного синусоидального тока
Пример 6.1
Решение
Для расчёта будем использовать метод контурных токов.
Выражаем ток из предыдущего уравнения:
Ток во второй ветви определим как алгебраическую сумму контурных токов, проходящих через данную ветвь:
Полная мощность приёмников определяется по формуле:
Активную мощность приёмников в данной схеме определим по следующей формуле:
Реактивную мощность приёмников определяем по формуле:
Полная мощность, выделяемая в систему источниками, определяется по формуле:
Выполнение баланса мощностей подтверждает правильность решения задачи.
Пример 6.2
Решение
Записываем функцию времени в виде показательной формы комплексного числа:
Определяем входное сопротивление схемы относительно зажимов источника напряжения:
Мгновенное значение тока имеет вид:
Пример 6.3
Решение
Графоаналитический метод расчёта – это совокупность графического метода и метода пропорционального пересчёта. Метод основан на линейной зависимости между токами и напряжениями. Поэтому векторная диаграмма напряжений и токов, рассчитанная и построенная для одного значения, питающего цепь напряжения, сохранит свой вид при изменении величины этого напряжения. На диаграмме изменятся лишь масштабы напряжений и токов.
Токи и напряжения, определённые с помощью диаграммы, будем обозначать одним штрихом.
Определяем по законуОма для действующих значений напряжения на участках « » и « » цепи.
Сумма векторов и определяет вектор напряжения на участке «c
Общее понятие
Электрическое напряжение определяется как отношение работы поля по переброске пробного заряда из одной заданной точки в другую к размеру потенциала. При дислокации единичного резерва выполняется работа, которая равняется напряжению на искомом участке. Общая мощность получают умножением работы электрического поля для единичного заряда на число потенциалов за определенную единицу времени.
В переменной электрической цепи выделяется 3 вида мощности:
В цепи переменного электричества формула для расчета постоянного тока применяется только для вычисления мгновенной мощности. Этот показатель претерпевает изменения во времени и почти не имеет практического смысла для всех остальных расчетов. Среднезначимый показатель мощности требует временной интеграции. Мгновенная мощность объединяется в течение определенного промежутка для расчета величины в магистрали с периодическим изменением силы переменного потока и синусоидального напряжения.
Коэффициент скорости преобразования
Мощностной коэффициент является показателем потребления тока при присутствии реактивного компонента и искажающей нагрузки. Значение коэффициента отличается от понятия косинуса сдвигаемого угла. Второе понятие характеризуется смещением протекающего переменного тока, напряжения и используется только при синусоидальном токе и силе равного значения.
Коэффициент равняется отношению расходуемой нагрузки к ее полному значению. При этом работа совершается за счет активного вида преобразования. При синусоидальном токе и вольтаже полная нагрузка находится в виде суммы реактивной и активной форм. Активная нагрузка приравнивается к усредненному произведению силы тока и напряжения и не может быть выше произведения аналогичных среднеквадратических размерностей. Мощностной коэффициент показывается в диапазоне от 0 до 1 или ставится в процентах от 0 до 100.
Расход электроэнергии на её транспорт
Ориентировочные усреднённые значения суммарных потерь электрической энергии в сетях различных классов напряжения приведены в таблице ниже. Значения даны в процентах от суммарного отпуска электроэнергии из сети данного класса напряжения.
Ориентировочные значения потерь в сетях различных напряжений [2]
Напряжение, кВ | 750—500 | 330—220 | 150—110 | 35 — 20 | 10 — 6 | 0,4 |
Потери энергии, % | 0,5 — 1,0 | 2,5 — 3,5 | 3,5 — 4,5 | 0,5 — 1,0 | 2,5 — 3,5 | 0,5 — 1,5 |
Данную таблицу можно использовать при составлении предварительного баланса энергии.
Примерная структура потерь с разбивкой по сетевым элементам представлена в таблице ниже.
Ориентировочная структура потерь электроэнергии, % [2]
Элементы электрической сети | Потери электроэнергии | |||
Переменные | Постоянные | Всего | ||
Линии электропередач | 60 | 5 | 65 | |
Подстанции | 15 | 20 | 35 | |
Трансформаторы | 15 | 15 | 30 | |
Другие элементы | – | 3 | 3 | |
Расход электроэнергии на собственные нужды | – | 2 | 2 | |
Итого | 75 | 25 | 100 |
Практическое применение и коррекция
Если к розетке с синусоидальным напряжением 50 Гц и 230 В подсоединить нагрузку с опережением или отставанием тока от напряжения на какую-то угловую величину, то на активной внутренней катушке будет создаваться увеличенная мощность. Это значит, что при работе в таких условиях выделяется много тепла, и электростанция отводит его в увеличенном количестве, по сравнению с применением активной нагрузки.
Коэффициенты полезного действия и мощности отличаются друг от друга. Мощностной показатель не влияет на потребление приемника, подключенного к сети, но изменяет энергетические потери в подводных проводах и местах выработки энергии или ее преобразования. В доме электросчетчик не реагирует на проявление мощности, так как оплачивается только та энергия, за счет которой работают приборы.
КПД влияет на потребляемую активную нагрузку. Например, энергосберегающая лампа потребляет в полтора раза больше электричества, чем аналогичный прибор накаливания. Это говорит о высоком коэффициенте полезного действия у первой лампы. Но показатель нагрузки может быть низким и высоким в обоих вариантах.
Коррекция заключается в приведении потребления прибора с низким мощностным коэффициентом к стандартным показателям при питании от силовой цепи переменного тока. Технически это осуществляется применением действенной схемы на входном устройстве, которая помогает равномерно использовать фазную мощность и исключает перегрузку нулевого провода. При этом снижаются всплески потребительского тока на верхушке синусоиды питающего вольтажа.
Реактивная нагрузка корректируется при включении в магистраль элемента с обратным действием. Например, в двигателе переменного тока для компенсации действия ставится конденсатор параллельно питающей линии. Применяется система активного или пассивного корректора при изменении используемого тока во время колебательного периода подпитывающего напряжения для преобразования коэффициента. Простым примером является последовательное подключение дросселя. При этом конечные приборы потребляют ток непропорционально гармоничным искажениям. Катушка сглаживает волновые импульсы.
Расход электроэнергии на собственные нужды электростанций
Максимальную величину потребления собственных нужд электростанций приближённо можно оценить в процентах от установленной мощности блока электростанции. Ориентировочные процентные значения мощности собственных нужд электростанций приведены в таблице ниже. Большие значения нагрузки соответствуют меньшим единичным мощностям энергоблоков.
Баланс мощностей в электрической цепи
Согласно закону Джоуля—Ленца работа, совершаемая постоянным током в сопротивлении,
Если в рассматриваемой ветви вместо резистора включен какой-либо другой преобразователь электромагнитной энергии в механическую или химическую, или другую форму энергии (электрический двигатель, заряжающийся аккумулятор и т.п.), работу, проделанную током за время t, можно подсчитать в том случае, если известно напряжение на преобразователе.
В этом случае формула Джоуля—Ленца приобретает другой вид:
При постоянном токе мощность, поступающая в участок цепи с сопротивлением r, определяется выражением:
где I, U и r сохраняют тот же смысл, что и в формуле Джоуля—Ленца.
Мощность, расходуемая во всей внешней цепи, и мощность, отдаваемая генератором, одна и та же величина. Мощность, развиваемая генератором, всегда больше той, которую генератор отдает во внешнюю цепь, так как часть мощности расходуется на покрытие потерь внутри самого генератора.
Выражение баланса мощностей для одиночного замкнутого контура, содержащего генератор с э.д.с. Е и внутренним сопротивлением ri и резистор с сопротивлением r, можно получить из уравнения Кирхгофа.
Если обе части этого равенства умножить на ток в цепи, то полученное уравнение и будет представлять собой баланс мощностей в данном контуре
При выборе одинаковых положительных направлений тока через двухполюсник I и напряжения на двухполюснике U мощность, потребляемая двухполюсником, т. е. Произведение UI, должно быть положительно. Если же при этом окажется, что произведение UI отрицательно, это будет означать, что двухполюсник не потребляет электромагнитную энергию, а наоборот является генератором электромагнитной энергии и отдает эту энергию в электрическую цепь.
Если в электрической цепи ряд двухполюсников отдает электромагнитную энергию в цепь, то остальные эту энергию поглощают. В цепи при постоянном токе не может происходить накопления электромагнитной энергии. Поэтому сумма мощностей, расходуемых в пассивных двухполюсниках и мощностей, теряемых внутри генераторов, должна быть равна алгебраической сумме мощностей, развиваемых всеми генераторами, т. е. сумме произведений ЕкIк всех генераторов, действующих в цепи:
где n — число ветвей в цепи.
Уравнение баланса, полученное для простой цепи, содержащей один генератор, можно переписать, выразив мощность, расходуемую во внешней цепи, через мощность, развиваемую генератором, и мощность, теряемую внутри генератора:
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: