Что понимают под эффектом суммации
Эффект суммации и его учет
В реальных условиях производства в выбросах и сбросах предприятий (а, следовательно, в атмосферном воздухе и водных объектах) присутствует не одно, а смесь различных загрязняющих веществ.
В воздухе населенного пункта, например, могут содержаться вещества от разных предприятий, ТЭС, транспорта. Многие из этих веществ обладают сходным токсическим действием на организм человека, а значит, в подобных случаях суммарная концентрация таких веществ может превышать предельно допустимую для каждого в отдельности. Кроме того, ряд соединений обладают синергетическим эффектом, т.е. токсичность одного в присутствии другого усиливается. Эффект синергизма хорошо виден на следующем примере: диоксид серы ослабляет защитные механизмы дыхательной системы и тем самым делает организм более восприимчивым к канцерогенам, и неблагоприятное воздействие от их совместного присутствия возрастает примерно в два раза.
Это явление называют эффектом суммации вредного воздействия, и его необходимо учитывать при нормировании как содержания, так и поступления загрязняющих веществ в окружающую среду.
Эффектом суммации при совместном присутствии обладают, в частности: ацетон и фенол; диоксид азота, озон и формальдегид; оксид углерода, диоксид азота и формальдегид; диоксид серы, оксид углерода, фенол и пыль; диоксид азота, диоксид серы и аммиак; диоксид серы и фенол; диоксид азота и диоксид серы. Перечень наиболее распространенных загрязнителей атмосферного воздуха, обладающих эффектом суммации, приведен в табл. 4.1.
Таблица 4.1 – Перечень некоторых веществ, для которых необходим
учет эффекта суммации ( + ) в атмосферном воздухе
№ п/п | Вещество | Номера веществ, приведенных по вертикали | ||||
Аммиак | · | + | + | |||
Ацетон | · | + | + | |||
Диоксид азота | + | · | + | + | + | + |
Диоксид серы | + | + | · | + | + | + |
Озон | + | · | + | |||
Оксид углерода | + | + | · | + | + | |
Сероводород | + | · | ||||
Фенол | + | + | + | · | ||
Формальдегид | + | + | + | + | · |
Поэтому известное условие: С£ПДК следует записать в иной форме, которая учитывает эффект суммации: С/ПДК£1. Совершенно очевидно, что, сколько бы вредных веществ ни присутствовало в воздухе одновременно, последнее условие должно строго соблюдаться.
Таким образом, качество воздуха будет отвечать установленным нормативам, если
(4.1)
где С1, С2,….Сn – концентрация вредных веществ, обладающих эффектом суммации; ПДК1, ПДК2,…ПДКn – соответствующие им предельно допустимые концентрации.
Уравнение (4.1) показывает, что сумма отношений концентраций вредных веществ, обладающих эффектом суммации, к соответствующим им ПДК не должна превышать единицы.
и качество воздуха будет соответствовать установленным нормативам.
Аналогичным образом эффекты суммации учитывают и для водных объектов.
Вместе с тем, следует заметить, что суммарные ПДК не отражают реальную норму эффекта, вызываемого воздействием тех же токсичных веществ на организм человека, поскольку они вычисляются расчетным путем, исходя из соотношения наблюдаемой концентрации загрязнителей и принятыми для них ПДК.
Для исправления этого недостатка предлагают использовать другие показатели. Так, для интегральной оценки состояния воздушного бассейна применяют индекс суммарного загрязнения атмосферы:
(4.2)
где qi – средняя за год концентрация і-го вещества в воздухе;
Аі – коэффициент опасности і-го вещества, обратный ПДК этого вещества: Аі=1/ПДКі;
Сі – коэффициент, зависящий от класса опасности вещества: Сі=1,5; 1,3; 1,0 и 0,85 соответственно для 1, 2, 3 и 4 классов опасности (сведения о классах опасности веществ приведены в разделе 7).
Индекс Іm является упрощенным показателем и рассчитывается обычно для m=5 – т.е. наиболее значимых концентраций веществ, определяющих суммарное загрязнение воздуха. В эту пятерку чаще других входят такие веществ, как диоксиды азота и серы, аммиак, формальдегид, 3,4-бензпирен, пыль. Значение индекса Іm изменяется от долей единицы до 15…20 – чрезвычайно опасных уровней загрязнения. Высокий индекс загрязнения имеют такие города Украины, как Кривой Рог, Мариуполь, Запорожье, Днепродзержинск, Алчевск.
Кроме того, чтобы определить состояние загрязнения воздуха несколькими веществами, которые действуют одновременно, очень часто используют комплексный показатель – индекс загрязнения атмосферы (ИЗА). Для его расчета, нормированные на соответствующие значения ПДК, средние концентрации примесей с помощью расчетов приводят к концентрации SO2
а полученные значения Кі складывают. Полученный таким образом показатель ИЗА указывает, в сколько раз суммарный уровень загрязненности атмосферы несколькими веществами превышает ПДК двуокиси серы.
Для каждого населенного пункта определен конкретный перечень пяти приоритетных примесей, по которым рассчитывается индекс загрязнения атмосферы ИЗА5.
Эффект суммации и его учет при нормировании загрязнения
В реальных условиях производства в выбросах и сбросах предприятий (а значит, в воздухе и воде) присутствует не одно, а несколько различных загрязняющих веществ. В воздухе населенного пункта, например, могут содержаться вещества от разных предприятий, тепловых станций, транспорта. Многие из этих веществ обладают сходным токсическим действием на организм человека, а значит, в подобных случаях суммарная концентрация таких веществ может превышать предельно допустимую для каждого в отдельности. Кроме того, ряд веществ обладают синэргетическим эффектом, т.е. токсичность одного в присутствии другого усиливается.
Это явление называют эффектом суммации вредного воздействия, и его необходимо учитывать при нормировании как содержания, так и поступления загрязняющих веществ в окружающую среду.
Эффект суммации проявляют, в частности: фенол и ацетон; валериановая, капроновая и масляная кислоты; озон, диоксид азота и формальдегид.
Известную нам формулу С ≤ ПДК можно записать в иной форме: С/ПДК ≤ 1. Понятно, что сколько бы вредных веществ ни присутствовало в воздухе одновременно, последнее условие должно соблюдаться.
Таким образом, качество воздуха будет отвечать установленным нормативам, если (14):
Формула (14) означает, что сумма отношений концентраций вредных веществ, обладающих эффектом суммации, к соответствующим им ПДК не должна превышать единицы.
Эффект суммации вредного действия веществ в почве не определяется, но поскольку присутствующие в ней вещества могут проникать в воздушный бассейн и в воду, он учитывается, исходя из значений ПДК для воды и воздуха.
Дата добавления: 2015-08-11 ; просмотров: 3965 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Понятие об эффекте суммации и фоновой концентрации
Понятие об эффекте суммации и фоновой концентрации.
Если в воздухе присутствует одно загрязняющее вещество, то должно соблюдаться условие: C i £ ПДК i где C i и ПДК i соответственно – концентрация и предельно допустимая концентрация загрязняющего вещества.
Эффект суммации – это однонаправленное неблагоприятное влияние на организм нескольких разных веществ.
Однонаправленное в том смысле, что вызывает одни и те же заболевания. В таком случае говорят, что вещества входят в одну группу суммации. Существует несколько десятков групп суммации, в одну из которых, напрмер, входит фенол и ацетон, а в другую аммиак, диоксид азота и диоксид серы. В том случае, когда в воздухе присутствуют несколько веществ, входящих в одну группу суммации, неравенство преображается к виду : С учётом фоновой концентрации неравенство преобразуется к виду:
В том случае, если мы имеем несколько источников выброса, которые загрязняют атмосферу одним и тем же веществом, то на территории предприятия должно соблюдаться следующее соотношение:
Неравенство для населённого пункта имеет вид:
012.gif» />
Концентрация загрязняющего вещества распространяется по факелу выброса, причём наибольшее значения концентрации достигается на оси факела выброса (оси
020.gif» />
1)
033.gif» /> и
2)
ПДВ устанавливается для каждого источника загрязнения атмосферы по каждому выбрасываемому веществу и мощность выброса всегда должна быть
В том случае, если
061.gif» />
062.gif» />
064.gif» />
065.gif» />
Пусть
Минимальная высота источника выброса при заданной мощности выброса – это такая высота, при которой максимальная приземная концентрация равна ПДК (
Если
Если
076.gif» />, то по полученному
078.gif» /> считается параметр
079.gif» />, и считается новая высота
081.gif» />,
Итерационная процедура заканчивается, когда
Для определения условий спуска сточных вод воспользуемся уравнением смешения сточных вод с природными водами:
091.gif» /> и
095.gif» />и
101.gif» />- безразмерный коэффициент смешения, зависящий от скорости течения реки, извилистости реки, глубины русла реки и оттого, куда выпускают сточные воды – у берега или в фарватер реки. Учтём, что
103.gif» />, а
Предприятия уже существуют и очистные сооружения уже построены.
Источник
Что понимают под эффектом суммации
В промышленных условиях в выбросах и сбросах предприятий (а, значит, в воздухе атмосферы, объектах воды и в почве) содержится не одно, а смесь разнообразных загрязняющих веществ.
Воздух населённых пунктов, например, может содержать вещества от разнообразных предприятий, предприятий топливно-энергетической системы, транспорта и др. Различные вещества могут обладать схожим токсическим воздействием на целостность организма человека, соответственно, в таких случаях сумма концентраций таких веществ, возможно, превысит предельно допустимую, чем каждого в отдельно.
Некоторые соединения имеют синергетический эффект, таким образом, что токсичность одного при наличии другого увеличивается. Данное положение можно проследить на таком пояснении: диоксид серы ингибирует механизм защиты дыхательной системы так, что организм становится, больше восприимчив к канцерогенам, и отрицательное воздействие от их совокупного присутствия возрастёт почти в два раза.
Данное явление и есть эффект суммации вредного воздействия, и его следует учесть в нормировании, как при содержании, так и при поступлении поллютантов в воздух населённых пунктов.
Приведем ещё примеры. Эффект суммации наступает и при одновременном присутствии таких веществ:
– диоксид азота, озон и формальдегид;
– оксид углерода, диоксид азота и формальдегид;
– диоксид серы, оксид углерода, фенол и пыль;
– диоксид азота, диоксид серы и аммиак;
– диоксид серы и фенол;
– диоксид азота и диоксид серы [2].
Согласно [3] под эффектом суммации понимается изменение вредного воздействия двух и более загрязняющих веществ при их общем присутствии в атмосфере по сравнению с индивидуальным воздействием каждого вещества отдельно.
При совместном присутствии в атмосфере рядом веществ, которые обладают суммированным действием, то сумма их концентраций не должна превысить 1 при учёте формулы (1) [1]:
(1)
Далее сопоставляются данные концентраций веществ с ПДК по соответствующему веществу, и делается заключение о соответствии норме всех веществ отдельно.
Принимаются решения о соответствии нормам комплекса веществ при их совпадающем воздействии.
Суммированный эффект можно оценить по подбору и перечню веществ, которые обладают данным эффектом. Исходные данные представлены в таблице 1.
Используя таблицу 2 можно обнаружить вещества, которые будут обладать суммацией действия [4]. Примем тот факт, что эффект суммации присутствует при наличии хотя бы двух из измеренных веществ, имеются в таблице 2.
В таблице 3 представлены нормы ПДК исходных веществ.
Таблица 1 — Исходные данные
Эффект суммации и его учет при нормировании загрязнения
В реальных условиях производства в выбросах и сбросах предприятий (а значит, в воздухе и воде) присутствует не одно, а несколько различных загрязняющих веществ. В воздухе населенного пункта, например, могут содержаться вещества от разных предприятий, тепловых станций, транспорта. Многие из этих веществ обладают сходным токсическим действием на организм человека, а значит, в подобных случаях суммарная концентрация таких веществ может превышать предельно допустимую для каждого в отдельности. Кроме того, ряд веществ обладают синэнергетическим эффектом, т.е. токсичность одного в присутствии другого усиливается.
,
Приведенная формула означает, что сумма отношений концентраций вредных веществ, склонных к эффекту суммации, к соответсвующим им ПДК не должна превышать единицы.
Экологический мониторинг
Для того чтобы разумно управлять природопользованием, не допуская или своевременно предупреждая нежелательные отклонения качества среды, необходимо наряду с получением соответствующей информации располагать данными о том, какая именно среда является оптимальной для полного благополучия общества. Понятно, что «оптимальность» оценивается по совокупности конкретных показателей. Должны быть установлены предельно допустимые нагрузки на окружающую среду, превышение которых может привести к ее ухудшению, а следовательно, и к ущербу для самого человека.
Исходным понятием в этой сложной работе является упомянутое ранее необходимое и достаточное качество среды, т.е. такая совокупность ее параметров, которая всецело удовлетворяет как экологической нише человека, так и научно-техническому прогрессу общества.
Критериями качества среды могут быть высокая биологическая продуктивность, оптимальное соотношение видов и биомасса популяций, находящихся на разных трофических уровнях и др.
Для того чтобы получить информацию об изменениях в экологической системе и вовремя отреагировать на эти изменения принятием и реализацией соответствующих решений, необходимо иметь «точку отсчета», т.е. некоторое определенное значение того или иного показателя данного качества, которое называют фоновым, не подвергавшимся ранее локальным антропогенным воздействиям. Параметры такого фонового состояния меняются под влиянием деятельности человека, причем существуют некоторые критические уровни качества среды (минимальный и максимальный), в пределах которых посторонние воздействия не должны выводить данную систему из состояния устойчивости, ибо иначе в ней могут произойти необратимые изменения. Следовательно, воздействия на экосистему также должны иметь некоторые предельно допустимые минимум и максимум.
Осуществляемый в этой связи поиск критических или наиболее чувствительных звеньев в экосистемах, которые наиболее быстро и точно характеризуют их состояние, носит название экологического мониторинга.
Основными задачами мониторинга служат: наблюдение за состоянием биосферы, оценка и прогноз состояния природной среды, выявление факторов’ и источников антропогенных воздействий на окружающую среду и др.
Организация мониторинга должна решать как локальные задачи наблюдения за состоянием отдельных экосистем или их фрагментов (например, биоты), так и задачи планетного порядка, т.е. предусматривать систему глобального мониторинга (СГМ).
Базой СГМ является авиационная, космическая и вычислительная техника. Авиационные методы наблюдения за экосистемами начали применяться еще в 30-е гг., а с начала 70-х гг. в практику вошли космические методы. В настоящее время используют термин «аэрокосмические методы», обозначающие совокупность методов по дистанционной индикации экологических систем. Аэрокосмические методы применяются для инвентаризации и картографирования природных ресурсов, наблюдения за сезонными и многолетними изменениями природной среды, слежения за ее составом и состоянием, а также за последствиями воздействия хозяйственной деятельности человека. Широко известны дистанционная индикация растительности, аэрокосмическое излучение почв. Дистанционная, т.е. безконтактная, индикация включает также регистрацию электромагнитного поля экосистем с вышек, авиационных средств, пилотируемых и беспилотных спутников. Аэрокосмические методы, кроме прямых наблюдений и природных оценок, широко используют методы фотосъемки, причем картина изменений экосистем устанавливается путем сравнения фотоизображений. На снимках хорошо видны поля загрязнения воды нефтепродуктами, лесные и степные пожары, изменения загрязненности воды в местах крупных антропогенных воздействий, например при создании дамб.
Авиационные методы, включающие аэровизуальные наблюдения и аэрофотосъемку, позволяют подсчитывать численность некоторых видов животных в период миграций или скоплений на период линьки (лоси, северные олени, гренландский тюлень). Возможна также индикация воздействия животных на рельеф, изменение физического и химического состава почв.
Локальными задачами мониторинга могут быть, например, наблюдения и слежение за динамикой популяций вредных организмов, в частности насекомых на больших площадях (в пределах всего ареала того или иного вида), учет движения популяций охраняемых видов животных. Данный путь позволяет прогнозировать возможный ущерб лесными и полевыми растениями от вредителей и болезней, а также сроки нанесения этого ущерба.
При организации мониторинга возникает необходимость решения нескольких задач разного уровня, поэтому предложено различать три ступени мониторинга (табл. 5.1).
Таблица 5.1. Система наземного мониторинга | окружающей среды | |
Ступени | Объекты мониторинга | Характеризуемые |
мониторинга | показатели мониторинга | |
Биоэкологи- | Приземной слой воздуха | ПДК токсичных веществ |
ческий | Поверхностные и грунтовые | Физические и |
(санитарно- | воды, промышленные и | биологические |
гигиенический) | бытовые стоки и различные | раздражители (шумы, |
выбросы | аллергены) | |
Радиоактивные излучения | Предельная степень | |
радиоизлучения | ||
Геосистемный | Исчезающие виды животных | Попупяционное состояние |
(природно- | и растений | видов |
хозяйственный) | Природные экосистемы | Их структура и нарушения |
Агроэкосистемы | Урожайность | |
сельскохозяйственных | ||
культур | ||
Лесные экосистемы | Продуктивность | |
насаждений | ||
Атмосфера | Радиационный баланс, | |
тепловой перегрев, состав | ||
Биосферный | и запыление | |
(глобальный) | Гидросфера | Загрязнение рек и |
водоемов, водные | ||
бассейны, круговорот | ||
воды на | ||
континентах | ||
Растительный и почвенный | Глобальные | |
покровы, животное | характеристики состояния | |
население | почв, растительного | |
покрова и животных. | ||
Глобальные круговороты и | ||
баланс СО2,О2 и других | ||
веществ |
В целом экологический мониторинг представляет собой иерархически организованную систему наблюдений, слагающуюся из звеньев разного уровня:
• глобального (биосферного) мониторинга, осуществляемого на основе международного сотрудничества, которое в последние годы становится все более интенсивным ;
• национального мониторинга, осуществляемого в пределах государства, специально созданными органами:
• регионального мониторинга, осуществляемого в пределах крупных районов, интенсивно осваиваемых народным хозяйством, например в пределах геосистем, территориально-производственных комплексов;
К локальному мониторингу относится и деятельность санитарно- промышленных лабораторий на предприятиях. В задачи этих лабораторий входят, в частности, постоянные наблюдения за загрязнением воздуха в цехах и на промышленных площадках, воды в установленных створах водных объектов.
Для осуществления мероприятий по глобальному и Национальному мониторингу, т.е. для получения информации об изменениях качества среды, происходящих уже на биосферном уровне, необходима организация специальных служб. Базой такого мониторинга являются длительно действующие территориальные комплексы с минимальным или практически нулевым предшествующим антропогенным воздействием.
Иначе говоря, необходимо иметь места, где сохранился бы без некоторой фоновой уровень качества среды, в сравнении с которым устанавливалась бы и степень воздействия человека на биосферу.
Сеть биосферных заповедников (станций) должна быть составной частью систем национального мониторинга, т.е. службы наблюдения и контроля окружающей среды на территории страны. В задачу биосферных заповедников входит проведение постоянных наблюдений и определение фоновых параметров современного состояния биосферы, а также сопоставление их с изменением, вызываемыми антропогенным воздействием.
Вполне понятно, что каждый такой заповедник по уровню, объему проводимых в нем исследований, а также по степени оснащенности должен быть крупным научно-исследовательским учреждением. В то же время нельзя не учитывать, что создание такого учреждения уже само по себе невозможно без воздействия на окружающую Среду, поскольку возникают вопросы коммуникаций, энергоснабжения, бытового обеспечения и т.п.
Список литературы
12.Кислотные дожди / Под ред. Ю, А. Израэля. Л.: Гидрометеоиздат,
1989.-269 с.