Что преобладает в минералогическом составе земли

Минералогический и гранулометрический состав почв.

Почва – многофазная полидисперсная система, состоящая из твердых, жидких, газообразных и живых компонентов. Минералогический состав твердой части почвы во многом определяет ее плодородие. Минеральная часть составляет 80–90% массы почвы, за исключением органогенных почв, в которых ее доля может уменьшаться до 10–15%. Наряду с минеральными, твердая часть почвы содержит органические вещества.

Различают первичные и вторичные минералы. Первичные образовались в глубоких слоях земли из расплавленной магмы; вторичные – в результате преобразования первичных под воздействием климатических и биологических факторов.

Первичные минералы сосредоточены преимущественно в механических элементах размером >0,001 мм, вторичные — в механических элементах размером

Классификация механических элементов. Твердая фаза почвы состоит из минеральных и органических частиц (механических элементов) различной крупности, начиная от крупных обломков породы и кончая тончайшими глинистыми частицами, диаметр которых измеряется тысячными долями миллиметра.

Количественное определение механических элементов называют механическим анализом. Отдельные группы механических элементов по-разному влияют на свойства почвы. Это объясняется их неодинаковым минералогическим и химическим составом, различными физическими и физико-химическими свойствами.

Гранулометрический состав во многом определяется минералогическим составом породы. Например, кварц наиболее устойчивый минерал, поэтому, обычно, он накапливается в крупных фракциях гранулометрического состава, полевые шпаты преобладают в среднем песке, в глинистых частицах – монтмориллонит, каолинит (рис. 1.12).

Что преобладает в минералогическом составе земли. Смотреть фото Что преобладает в минералогическом составе земли. Смотреть картинку Что преобладает в минералогическом составе земли. Картинка про Что преобладает в минералогическом составе земли. Фото Что преобладает в минералогическом составе земли

Рис.1.12 Распределение минералов по фракциям гранулометрического состава (по В.П. Ананьеву)

Близкие по размеру, а следовательно, и по свойствам частицы группируются во фракции. Группировка частиц по размерам во фракции называется классификацией механических элементов (рис.1.13).

Все частицы более 1 мм называют скелетной частью или скелетом почвы, а менее 1 мм – мелкоземом. Частицы крупнее 0,1 мм образуют физический песок, меньше 0,1 мм – физическую глину.

Что преобладает в минералогическом составе земли. Смотреть фото Что преобладает в минералогическом составе земли. Смотреть картинку Что преобладает в минералогическом составе земли. Картинка про Что преобладает в минералогическом составе земли. Фото Что преобладает в минералогическом составе земли

Рис.1.13 Классификация механических элементов (по Н.А. Качинскому)

Отдельные фракции по-разному влияют на свойства почв и пород.

Камни (более 3 мм) представляют собой достаточно крупные обломки горных пород. Каменистость является отрицательным свойством почвы, так как наличие камней затрудняет использование сельскохозяйственных машин и орудий, мешает появлению всходов. Камни являются механическим препятствием для роста и развития растений.

Г р а в и й (3–1 мм) – состоит из обломков первичных минералов. Высокое содержание гравия в почвах не препятствует их механической обработке, но придает им неблагоприятные свойства – провальную водопроницаемость, отсутствие водоподъемной способности, низкую влагоемкость.

Песок(1–0,05 мм) представляет собой обломки первичных минералов (кварца, полевых шпатов). Для этой фракции характерна высокая водопроницаемость, слабое набухание, низкая пластичность. Однако, в отличие от гравия песок обладает некоторой капиллярностью и влагоёмкостью.

Пыль крупная (0,05–0,01 мм) по минералогическому составу не отличается от песчаной фракции, поэтому обладает некоторыми физическими свойствами песка: не пластична, слабо набухает, имеет низкую влагоёмкость.

Так как, перечисленные выше фракции обладают рядом сходных свойств их объединяют в отдельную группу и называют физическим песком.

Пыль средняя(0,01–0,005 мм). Для этой фракции характерно относительно высокое содержание слюд, придающих почве повышенную пластичность и связность. Oнa хорошо удерживает влагу, но обладает слабой водопроницаемостью, не способна к коагуляции, не участвует в структурообразовании и физико-химических процессах, протекающих в почве. Поэтому почвы, обогащенные фракцией крупной и средней пыли, легко распыляются, склонны к заплыванию и уплотнению, отличаются слабой водопроницаемостью.

Почвы с высоким содержанием крупной и средней пыли легко распыляются, имеют склонность к заплыванию и уплотнению, отличаются низкой водопроницаемостью.

Пыль мелкая(0,005–0,001) характеризуется относительно высокой дисперсностью, состоит из первичных и вторичных минералов. В связи с этим обладает рядом свойств, не присущих более крупным фракциям: способна к коагуляции и структурообразованию, обладает поглотительной способностью, обогащена гумусовыми веществами. Однако обилие тонкой пыли в почвах в свободном, неагрегатированном состоянии придает им такие неблагоприятные свойства, как низкая водопроницаемость, большое количество недоступной воды, высокая способность к набуханию и усадке, липкость, трещиноватость, плотное сложение. Почвы с высоким содержанием мелкой пыли содержат много недоступной для растений воды

И л (менее 0,001 мм) состоит преимущественно из высокодисперных вторичных минералов. В незначительных количествах в нем содержатся первичные минералы, такие как кварц, ортоклаз и мусковит. Илистая фракция играет большую роль в создании почвенного плодородия, в физико-химических процессах, протекающих в почве. Она обладает высокой поглотительной способностью, содержит много гумуса и элементов зольного и азотного питания растений.

Наиболее тонкая, коллоидная фракция (

Дата добавления: 2015-10-30 ; просмотров: 7882 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Земля

1. Общие сведения.

Земля обращается вокруг Солнца по эллиптической орбите (с эксцентриситетом 0,0167) на среднем расстоянии 149,6 млн. км (144,117 млн. км в перигелии, 152,083 в афелии), период обращения 365,242 средних солнечных суток (год), скорость в среднем 29,765 км/с (30,27 км/с в перигелии, 29,27 км/с в афелии). Период обращения Земли вокруг оси 23 ч 56 мин 4,1 с (сутки), наклон оси к плоскости эклиптики 66°33’22». Положение оси вращения осложняется прецессией — медленным поворотом её по круговому конусу (полный оборот происходит за 26 тысяч лет) и нутацией — колебанием оси (налагающимся на прецессионные) с периодом 18,6 г. Положение оси вращения по отношению к телу Земли испытывает изменения (среднее положение Северного полюса смещается в сторону Северной Америки со скоростью 11 см/год, отклонение от среднего положения на 11-15 м).

Основные характеристики Земли

Полярный радиус. 6356,777 км

Средний радиус. 6371,032 км

Поверхность. 510,2•10 6 км 2

Macca. 5976•10 21 кг

Ускорение силы тяжести (на уровне моря)

на экваторе. 9,78049 м/с 2

на полюсе. 9,83235 м/с 2

стандартное. 9,80665 м/с 2

Естественный спутник Земли — Луна, обращающаяся вокруг неё по эллиптической орбите на среднем расстоянии 384 400 км Масса Луны 73,5•10 21 кг, что составляет 1/81,5 доли массы Земли.

Важнейшее отличие Земли от других планет Солнечной системы — существование на ней жизни, появившейся 3-3,5 млрд. лет назад и достигшей с появлением человека (3 млн. лет назад) своей высшей разумной формы. Земля имеет сложную форму, определяющуюся совместным действием гравитации, центробежных сил, вызванных вращением Земли, а также совокупностью эндо- и экзогенных сил. Приближённо в качестве формы (фигуры) Земли принята уровенная поверхность гравитационного потенциала — геоид. Для решения многих научных и практических задач Земли аппроксимируется эллипсоидом вращения или сфероидом.

Реклама

Согласно современным космогоническим представлениям, Земля и другие планеты Солнечной системы образовались 4,6 млрд. лет назад почти одновременно с Солнцем в результате сложного процесса объединения (аккреции) большого числа твёрдых частиц разных размеров околосолнечного допланетного облака. В зоне Земли процесс аккумуляции допланетных тел в планету длился около 10 8 лет. Согласно модели гомогенной аккреции, сперва образовалась квазиоднородная по составу и строению первичная Земля, а её зональное внутреннее строение возникло в процессе последующей эволюции. Не менее вероятна, однако, модель гетерогенной аккреции, по которой вначале аккумулировалось существенно металлические протоядро, а затем на него «налипали» в сущности силикатные частицы, образовавшие первичную мантию. Возможно и сочетание обеих моделей.

Земля обладает гравитационным, магнитным, электрическим полями, геотермическим полем. Гравитационное притяжение Земли удерживает на околоземной орбите Луну и искусственные спутники. Действием гравитационного поля обусловлены сферическая форма Земли, многие черты рельефа земной поверхности, течение рек, движение ледников и другие процессы. Магнитное поле создаётся в результате сложного движения вещества в ядре Земли (смотреть геомагнитное поле). В межпланетном пространстве оно занимает область (магнитосферу), объём которой намного превосходит объём Земли, а форма напоминает комету с хвостом (в несколько сотен земных радиусов), направленным от Солнца. С магнитным полем Земли тесно связано её электрическое поле. «Твёрдая» Земля несёт отрицательный электрический заряд, который компенсируется объёмным положительным зарядом атмосферы, так что в целом Земля, по-видимому, электронейтральна. Источником геотермического поля, возможно, являются в основном распад радиоактивных элементов в земной коре и верхней мантии, процессы химико-гравитационной дифференциации и в меньшей мере солнечная радиация (около 0,9•10 17 Дж/с), проникающая на глубину нескольких метров (смотреть геотермия).

Что преобладает в минералогическом составе земли. Смотреть фото Что преобладает в минералогическом составе земли. Смотреть картинку Что преобладает в минералогическом составе земли. Картинка про Что преобладает в минералогическом составе земли. Фото Что преобладает в минералогическом составе землиВ пространстве, ограниченном внешним пределом геофизических полей Земли (главным образом в магнитосфере и атмосфере), происходит поглощение и преобразование космических лучей, солнечного ветра, рентгеновского, ультрафиолетового, оптического и радиоизлучения Солнца, что имеет важное значение для процессов, протекающих на земной поверхности. Задерживая большей частью жёсткой электромагнитной и корпускулярной радиации, магнитосфера и особенно атмосфера защищают от их воздействия живые организмы. Поверхность Земли, гидросферу, прилегающие слои атмосферы, верхние части земной коры объединяют под названием географической, или ландшафтной, оболочки. В географической оболочке происходит закономерная дифференциация, проявляющаяся в последовательной смене географических поясов и зон, что связано с изменением количества солнечной энергии, падающей на поверхность Земли в зависимости от географической широты. Географическая оболочка явилась ареной возникновения жизни, развитию которой способствовало наличие на западе определенных физических и химических условий, необходимых для синтеза сложных органических молекул. Прямое или косвенное участие живых организмов во многих геохимических процессах со временем приобрело глобальные масштабы и качественно изменило географическую оболочку (смотреть биосфера).

Северное полушарие Земли — материковое (суша здесь занимает 39% поверхности), Южное — океаническое (суша — 19%). В Западном полушарии преобладающая часть поверхности занята водой, в Восточном — сушей.

Современные представления о Земле, её форме, строении и месте во Вселенной сформировались в процессе длительных исканий, начиная с глубокой древности, т.к. освоение планеты человечеством невозможно без определения расстояний и направлений на местности, в морях и океанах, описания и систематизации природных явлений и процессов и т.п. Форму, размеры Земли, её массу, моменты инерции, её гравитационное поле определяют с помощью геодезических методов и астрономических наблюдений. Строение и физического свойства Земли, процессы, происходящие во всех оболочках, геофизические поля изучает геофизика; состав Земли, закономерности распределения в ней химических элементов исследует геохимия. Изучением горных пород, слагающих земную кору, её строения, истории движений и развития, размещением в ней полезных ископаемых занимаются геологические науки. Природные явления и процессы, происходящие в географической оболочке и биосфере, являются областью географических наук. Вопросы рационального освоения и охраны минеральных ресурсов, их первичной переработки исследуются горными науками, экологией и др.

2. Внутреннее строение и состав «твёрдой» Земли

Что преобладает в минералогическом составе земли. Смотреть фото Что преобладает в минералогическом составе земли. Смотреть картинку Что преобладает в минералогическом составе земли. Картинка про Что преобладает в минералогическом составе земли. Фото Что преобладает в минералогическом составе землиСовременные представления о внутреннем строении Земли основаны на анализе косвенных данных сейсмологии, гравиметрии, геотермии, измерении частот собственных колебаний Земли, экспериментальных данных о свойствах и поведении горных пород в условиях высоких давлений и т.п. Этими исследованиями установлено, что Земля состоит из трёх основных геосфер: коры, мантии и ядра, подразделяющихся, в свою очередь, на ряд слоев (рис. 2). Вещество этих геосфер различается по физическим свойствам, состоянию и минералогическому составу, о чём свидетельствуют изменения температуры, плотности, упругости, вязкости и т.п.

В зависимости от величины скоростей сейсмических волн и характера их изменения с глубиной «твёрдую» Землю делят на восемь сейсмических слоев: А, В, С, D’, D», Е, F и G. Кроме того, в Земле выделяют особо прочный слой — литосферу и нижележащий размягчённый слой — астеносферу.

Слои В, С, D’ и D» входят в Мантию Земли.

Слой С (слой Голицына) занимает область глубин 400-900 км и характеризуется резким ростом скоростей волн, связанным с переходом минералов в более плотные модификации.

В слое D’ (900-2700 км) скорость волн в основном растёт за счёт сжатия однородного вещества. Нерегулярность поведения сейсмических волн в переходном слое D» (2700-2885 км), граничащим с ядром, связана, видимо, с неоднородностью его состава и высоким градиентом температуры.

Слои Е, F и G образуют ядро земли (радиусом 3486 км). На границе с ядром (на поверхности Гутенберга) скорость продольных волн уменьшается скачком на 30%, а поперечные волны исчезают, что указывает на то, что внешнее ядро (слой Е, простирающийся до глубина 4980 км) жидкое. Ниже затвердевающего переходного слоя (слой F, 4980-5120 км) находится твёрдое внутреннее ядро (слой G), в котором распространяются поперечные волны.

В результате магматических, метаморфических, тектонических процессов и процессов осадкообразования земная кора резко дифференцирована, в ней протекают сложные процессы концентрации и рассеяния химических элементов, приводящие к образованию различных типов пород и месторождений полезных ископаемых: магматических, гидротермальных, осадочных и др.

Предполагается, что верхняя мантия по составу близка к ультраосновным породам, в которых преобладает О (42,5%), Mg (25,9%), Si (19,0%) и Fe (9,85%). В минеральном отношении господствует оливин, меньше пироксенов. Нижнюю мантию считают аналогом каменных метеоритов (хондритов). В целом мантия — это силикатно-окисная оболочка, в основном состоящая из О, Fe и Mg. Обычно полагают, что по составу ядро Земли аналогично железным метеоритам, в которых содержится 80,78% Fe, 8,59% Ni, 0,63% Со. Предполагается также примесь в ядре лёгких элементов — О, Si, S, Al. На основе метеоритной модели рассчитан средний состав Земли, в котором преобладает Fe (35%), О (30%), Si (15%) и Mg (13%).

Теплоёмкость мантии с глубиной уменьшается от 1,3•10 3 до 1•10 3 Дж (кг•К). Кинетические параметры вещества Земли более неопределённы. Коэффициент теплопроводности, равный около 4 Вт/(м•К) вблизи поверхности, сначала уменьшается в два раза в области глубины 100 км, затем несколько растёт, а в металлическом ядре оценивается в 100 Вт/(м•К).

Среди эндогенных процессов, протекающих в земной коре, а также в верхней мантии, различаются тектонические, т.е. процессы перемещения и изменения внутренней структуры (деформации) отдельных её участков и блоков, магматические, т.е. процессы образования расплавленных масс глубинного вещества верхней мантии и коры (магмы), их перемещения кверху и застывания внутри коры (глубинный магматизм, или плутонизм) или на её поверхности (вулканизм), и метаморфические, т.е. процессы преобразования минерального состава и структуры горных пород под воздействием повышенных температур и давлений, а также привноса в кору некоторых дополнительных химических компонентов. Основная роль в балансе источников внутренней энергии Земли, определяющих развитие этих процессов во времени и их проявлении на разных участках земной коры, по современным представлениям, играют радиоактивный распад долгоживущих изотопов урана, тория, калия, сосредоточенных главным образом в веществе континентальной коры, гравитационная (или химико-гравитационная) дифференциация вещества в глубоких недрах Земли, в меньшей мере — энергия приливного трения, и, возможно, энергия поглощения нейтринного потока.

Что преобладает в минералогическом составе земли. Смотреть фото Что преобладает в минералогическом составе земли. Смотреть картинку Что преобладает в минералогическом составе земли. Картинка про Что преобладает в минералогическом составе земли. Фото Что преобладает в минералогическом составе землиПроисходящая в мантии и на её границе с ядром глубинная дифференциация вещества приводит к концентрации более лёгких компонентов в верхних геосферах, а более тяжёлых — в низких. Существующие представления о механизме дифференциации вещества глубинных геосфер недостаточно ясны и во многом противоречивы, в частности вопрос о химическом составе ядра и времени его формирования. В целом в мантии протекают процессы фазовых превращений, сопровождающиеся расширением и сжатием вещества, и его медленных перемещений, имеющих, очевидно, конвекционный характер. По мнению многих исследователей, наряду с восходящими потоками вещества происходят и его латеральные (горизонтальные) перемещения на различных глубинных уровнях в нижней и верхней мантии. Этим конвективным течениям, и в частности гипотетическим течениям вещества в верхней мантии, придаётся важное значение в современных мобилистских концепциях (см. Геодинамика, Мобилизм, Тектоника плит). В некоторых других геотектонических концепциях, признающих тесную связь земной коры и верхней мантии (фиксизм, гипотеза пульсаций и расширения Земли), горизонтальным течениям вещества в верхней мантии не придаётся существенного значения и допускается их возможность лишь на значительно более глубоких уровнях мантии, чем в «тектонике плит».

4. Основные тектонические элементы земной коры

Тектоническая структура материков в целом значительно древнее, чем океанов. Как на материках (с переходными зонами), так и в океанах различаются тектонические области относительно более древние и устойчивые, более молодые и мобильные.

Другой основной тип тектонических областей материков и переходных зон — широкие и весьма протяжённые подвижные пояса, возникшие 1,6-1 млрд. лет назад и прошедшие в течение позднего протерозоя и фанерозоя сложную историю тектонического развития. В современном структурном плане подвижные пояса занимают различную позицию: Североатлантический и Урало-Монгольский (Урало-Охотский) пояса располагаются между древними платформами, Средиземноморский пояс на одних своих отрезках также занимает межплатформенное положение, а на других граничит на юге с ложем Индийского океана; кольцеобразный Тихоокеанский подвижный пояс с внутренней стороны граничит с ложем Тихого океана, а с внешней — в основном с различными древними платформами и на отдельных коротких отрезках — с ложем Атлантического океана.

В строении подвижных поясов, находящихся на ранних стадиях геосинклинального развития, различаются зоны, испытывающие весьма глубокое и длительное погружение и мощное осадконакопление (см. Геосинклиналь), либо сопровождаемое мощными проявлениями вулканизма (эвгеосинклинальные прогибы), либо происходящее без них (миогеосинклинальные прогибы), а также сопряжённые с ними линейные зоны относительных, а в отдельные эпохи и абсолютных поднятий — геоантиклинали и более широкие, сравнительно устойчивые, тектонически малоподвижные участки — срединные массивы. Последние всегда характеризуются древней корой континентального типа.

Источник

Что преобладает в минералогическом составе земли

Минералогический, химический и гранулометрический состав почвообразующих пород и почв

1. Минералогический состав

Минералами называются однородные природные химические соединения элементов или самородные элементы, образующиеся в глубоких слоях литосферы и на ее поверхности. Свойства, состав и процессы их образования изучает наука – минералогия.

Большинство минералов имеют кристаллическое строение. Кристаллы и кристаллические вещества изучает раздел минералогии – кристаллография. Кристаллы часто имеют форму различных многогранников – кубов, призм, пирамид, октаэдров и др.

Всего известно около 2 тыс. минералов, а число разновидностей достигает 4 тыс. Широкое распространение в почвах и почвообразующих породах имеют около 50 минералов. Они подразделяются на первичные и вторичные. Первичные минералы (кварц, полевые шпаты и др.) образовались в глубоких слоях земной коры при высоких температурах и давлении. Только из них состоят магматические породы. Первичные минералы неустойчивы в условиях земной поверхности и подвергаются процессам выветривания. Они содержатся, в основном, в частицах почвы диаметром более 0,001 мм.

Вторичные минералы образовались в результате экзогенных процессов выветривания из первичных минералов. Они более устойчивы к процессам выветривания, по сравнению с первичными, так как образовались в термодинамических условиях земной поверхности.

Вторичные минералы являются тонкодисперсионными и содержатся, в основном, во фракции почв диаметром менее 0,001 мм.

Из группы вторичных минералов в почвах преобладают слоистые алюмосиликаты (каолинит, монтмориллонит и др.), оксиды и гидроксиды железа и алюминия, а также кальцит, гипс и другие простые соли.

В большинстве типов почв первичных минералов содержится больше, чем вторичных, за исключением некоторых тропических почв, которые характеризуются сильной степенью выветренности.

По химическому составу выделяются следующие девять классов минералов:

Большинство из перечисленных классов включают как первичные, так и вторичные минералы. Преобладают в породах и почвах силикаты и карбонаты.

Первичные минералы. Наибольшее распространение в почвах и породах имеют силикаты: кварц, полевые шпаты, амфиболы (роговые обманки и пироксены), слюды. В составе магматических пород преобладают полевые шпаты (около 60 %), амфиболы и пироксены·(около 17 %), кварц (12 %), слюды (около 4 %), прочие (около 7 %). В осадочных породах и почвах преобладает кварц (40–60 % и более), как наиболее устойчивый к выветриванию, затем идут полевые шпаты (до 20 %), слюды (3–7 %).

Тетраэдры, соединяясь через кислородные ионы, могут образовывать различные сочетания, или типы структур: островные (оливин), ленточные (амфиболы), листовые (слюды), каркасные (полевые шпаты, кварц). Если тетраэдры в структуре располагаются изолированно, соединяясь между собой через положительно заряженные атомы металлов, получается самый простой – островной тип структуры. При соединении тетраэдров через кислородные ионы образуются цепочки, ленты, листы или слои, каркасы. В каркасных структурах часть ионов кремния может замещаться алюминием, при этом образуются алюмосиликаты.

Кварц (SiO2). По химической природе кварц – типичный оксид, а по кристаллической структуре его относят к каркасным силикатам.

Известны разновидности кварца, имеющие разный цвет и прозрачность: горный хрусталь, аметист, раухтопаз, морин. Кварц весьма стойкий к выветриванию минерал, поэтому он накапливается в осадочных породах и в почвах. Особенно много кварца содержится в песчаных и супесчаных почвах. Обогащенность почв кварцем обусловливает пониженное плодородие, из-за его химической инертности, неспособности удерживать влагу и элементы питания.

Существуют разновидности кварца вторичного (экзогенного) происхождения: халцедон – скрытокристаллическая разновидность кварца; опал – аморфная разновидность, содержащая воду; гейзерит – гидротермальный опал. Все перечисленные минералы вместе с кварцем объединены в группу свободного кремнезема.

Полевые шпаты. Эта наиболее распространенная в литосфере группа минералов имеет каркасный тип кристаллической решетки. В каркасных структурах часть ионов четырехвалентного кремния замещена трехвалентным алюминием, в результате создается комплексная алюмокремниевая группа (поэтому их относят к алюмосиликатам) и возникает свободная валентность кислорода, которая компенсируется ионами калия, натрия и кальция.

По химическому составу полевые шпаты подразделяются на три подгруппы: 1) калиево-натриевые полевые шпаты; 2) натриевокальциевые полевые шпаты, или плагиоклазы; 3) фельдшпатиды по химическому составу сходны с полевыми шпатами, но имеют меньшее содержание оксидов кремния, они часто замещают полевые шпаты в основных породах.

В зависимости от содержания оксида кремния полевые шпаты подразделяются на кислые, с повышенным содержанием кремнезема (ортоклаз, микроклин, альбит); средние и основные – с пониженным содержанием (лабрадор, анортит и др.).

Полевые шпаты являются менее устойчивыми к выветриванию, по сравнению с кварцем. Среди них наиболее устойчивыми считаются кислые полевые шпаты, содержащиеся в кислых породах (гранит, липарит). Средние и основные, содержащиеся в основных магматических породах (габбро, базальт), менее устойчивы и могут являться источником элементов питания (калия, кальция и др.) для растений.

Пироксены и амфиболы. Пироксены и амфиболы занимают в литосфере по массе второе место после полевых шпатов (около 17 %). В почвах и осадочных породах они присутствуют в небольших количествах, в связи с низкой устойчивостью к выветриванию. Пироксены относятся к цепочечным силикатам. Типичным представителем является авгит – породообразующий минерал основных и ультраосновных пород.

Амфиболы относятся к ленточным силикатам. Типичным и наиболее распространенным представителем является роговая обманка.

Группа слюд. Эта группа минералов имеет листовую, слоистую структуру. В земной коре содержится около 4% слюд. В осадочных породах и почвах – встречаются в небольших количествах. В этой группе минералов часть кремнекислородных тетраэдров заменена на алюмокислородные, поэтому они относятся к алюмосиликатам.

Типичными представителями являются мусковит и биотит, в своем составе содержат калий, магний, железо. Слюды более устойчивы к процессам выветривания, по сравнению с амфиболами и пироксенами.

2. Вторичные минералы

Вторичные минералы содержатся только в осадочных породах и в почвах. Они представлены в основном глинистыми минералами, оксидами железа, алюминия и простыми солями.

Глинистые минералы. Минералы этой группы относятся к слоистым алюмосиликатам. Их название связано с тем, что они, как правило, преобладают в составе глин. К глинистым минералам относятся минералы групп каолинита, гидрослюд, монтмориллонита, смешаннослоистых минералов, хлорита. Глинистые минералы обладают рядом общих свойств: 1) высокая дисперсность; 2) поглотительная, или обменная способность по отношению к катионам; 3) содержат химически связанную воду, которая выделяется при температурах в несколько сотен градусов; 4) имеют слоистое строение, сочетающее тетраэдрические и октаэдрические слои. Различают двух-, трех- и четырехслойные минералы.

Минералы группы каолинита. Каолинит – двухслойный минерал с жесткой кристаллической решеткой, состоящей из одного слоя кремнекислородных тетраэдров и одного слоя алюмогидроксильных октаэдров. Каолинит не набухает в воде, так как вода не проникает в межплоскостное пространство минерала из-за сильной связи между пакетами. Этот минерал характеризуется узким отношением SiО2 : Al2О3 = 2. Он обладает низкой поглотительной способностью (не более 20 мг-экв на 100 г), обусловленной исключительно теми свободными связями, которые имеются на краях элементарных пакетов. К группе каолинита относится минерал галлуазит, отличающийся значительным содержанием межпакетной влаги и более высокой емкостью катионного обмена (40–60 мг-экв. на 100 г). Наиболее высокое содержание каолинита – в почвах, формирующихся в условиях субтропических и тропических влажных областей на ферраллитных и аллитных корах выветривания. В почвах умеренных широт его содержание незначительное, за исключением древних кор выветривания. Почвы, содержащие каолинит, характеризуются низкой емкостью катионного обмена, обеднены основаниями, меньше накапливают гумуса, характеризуются пониженным плодородием.

Минералы группы гидрослюд (гидробиотит, гидрамусковит и др.). Их еще называют минералами группы иллита. Эти минералы представляют собой трехслойные алюмосиликаты с нерасширяющейся решеткой, а поэтому межпакетная вода в них отсутствует.

Емкость катионного обмена гидрослюд достигает 45–50 мг-экв на 100 г. Часть кремния в тетраэдрах замещена на алюминий. Образующийся при этом отрицательный заряд компенсируется необменными ионами калия, который прочно связывает пакеты между собой. Гидрослюды характеризуются повышенным содержанием калия (до 6–8 %), который частично используется растениями.

Представитель гидрослюд – глауконит является агрономической рудой, калийным удобрением, после соответствующей термической обработки.

Минералы этой группы широко распространены в осадочных породах и почвах, в том числе в подзолистых, серых лесных и др.

К гидраслюдам близок минерал вермикулит, характеризующийся расширяющейся решеткой и очень высокой емкостью катионного обмена (до 100–120 мг-экв на 100 г). Вермикулит часто используют как компонент тепличных грунтов.

Минералы группы монтмориллонита (монтмориллонит, нонтронит, бейделит и др.). Их еще называют минералами группы смектита, молярное отношение SiО2 : Аl2О3 = 4. Эта группа минералов имеет трехслойное строение с сильно расширяющейся при увлажнении кристаллической решеткой, при этом они поглощают влагу, сильно набухают и увеличиваются в объеме. Отличительной особенностью этих минералов является высокая дисперсность. Разнообразные изоморфные замещения кремния на алюминий, алюминия на железо и магний влекут за собой появление отрицательных зарядов, которые уравновешиваются обменными катионами. Повышенная дисперсность и изоморфные замещения обусловливают высокую емкость катионного обмена – 80–120 мг-экв. на 100 г.

Минералы группы монтмориллонита чаще содержатся в почвах с нейтральной и щелочной реакцией среды (черноземы, каштановые, солонцы) и практически полностью отсутствуют в субтропических и тропических почвах на ферраллитных и аллитных корах выветривания. Много монтмориллонита содержится в слитых почвах.

Минералы группы хлорита. Они имеют четырехслойную набухающую решетку. Содержат в своем составе железо, магний. Могут быть как магматического, так и экзогенного происхождения. Имеются данные, что почвенные хлориты участвуют в формировании гидролитической кислотности почв.

Группа смешаннослойных минералов. Смешаннослойные минералы имеют кристаллические решетки, в которых чередуются слои разных минералов: монтмориллонита с иллитом, вермикулита с хлоритом и др. Соответственно составным частям они получают название – иллит-монтмориллонит, вермикулит-хлорит и др. В зависимости от состава и доли участия тех или иных минералов свойства их сильно изменяются. Эта группа минералов наиболее распространена в почвах умеренного и холодного гумидного и арктического поясов, в которых они занимают 30-80 % от общего содержания глинистых минералов.

Минералы гидроксидов и оксидов железа и алюминия. Наибольшее распространение имеют гематит Fe2О3, гетит Fe2О3·H2О, гидрогетит, гиббсит (гидрагелит) Al2О3·3H2О. Минералы этих групп встречаются в иллювиальных горизонтах подзолистых, серых лесных почв, почв влажных тропических и субтропических областей (красноземы, ферраллиты и др.). Они образуются путем кристаллизации из аморфных гидратов оксидов железа и алюминия.

Минералы этой группы принимают участие в оструктуривании почв, в связывании фосфорной кислоты. В условиях кислой реакции среды гидраты оксидов железа и алюминия растворяются и принимают активное участие в процессах почвообразования.

Аллофаны. Группа вторичных минералов, состоящая из октаэдров и тетраэдров, но расположенных не систематически, а беспорядочно и поэтому имеющих аморфное строение. Они повышают емкость поглощения, увеличивают гидрофильность, липкость и набухаемость почв.

Минералы – соли. Могут быть как вторичными, так и первичными. Наибольшее распространение имеют карбонаты: кальцит – СаСО3, доломит – СаСО3 MgCО3, сода – Na23·10H2О. Среди сульфатов наиболее распространены гипс – CaSО4·2H2О, мирабилит – Na24·10H2О, среди хлоридов – галит NaCl. Много солей содержится в засоленных почвах и почвообразующих породах в аридных областях, где они оказывают ведущее влияние на свойства и плодородие почв.

Агромелиоративное значение минералогического состава почв. Минералогический состав почв наследуется от почвообразующих пород, является довольно устойчивым во времени и пактически не поддается регулированию, за исключением приемов пескования, глинования; химических мелиораций – известкования, гипсования; удаления из почв водорастворимых солей промывками.

С минералогическим составом тесно связаны гранулометрический и химический составы почв, физико-механические, а также физические и физико-химические свойства. Очень часто он определяет направленность почвообразовательных процессов и приводит к формированию специфических типов почв, получивших название литогенных, в составе и свойствах которых в меньшей степени проявляется влияние биологического и климатического факторов почвообразования. Минералогический состав оказывает влияние на прочность связи гумусовых веществ с минеральной частью почв и, в целом, на количество накапливающегося гумуса, на емкость катионного обмена, реакцию среды, потенциальный запас элементов питания для растений, на процессы формирования агрономически ценной структуры и поэтому является одним из ведущих факторов, определяющих уровень почвенного плодородия.

В агрономическом аспекте наиболее благоприятны полиминеральные почвы с определенным соотношением минералов, обусловливающих те или иные свойства почв. Абсолютное преобладание какого-либо минерала чаще всего негативно проявляется на агрономических свойствах почв. Например, на каолиновых породах формируются бедные, уплотненные почвы с низкой влагоемкостью и слабой поглотительной способностью. Еще более бедны почвы на кварцевых песках. На монтмориллонитовых глинах развиваются набухающие, слитные почвы, крайне неблагоприятные для сельскохозяйственного использования. Такие категории почв называют литогенными. Относительно благоприятны почвы с гидрослюдистым минералогическим составом. Однако плодородие их существенно повышается при участии в них умеренных количеств монтмориллонитовых минералов, способствующих образованию структурных агрегатов, повышению емкости катионного обмена, буферности, влагоемкости.

Химический состав почвообразующих пород и почв в определенной степени зависит от химического состава минералов, входящих в породу и почву. Средний химический состав почв и пород можно характеризовать следующими данными. Почти половина твердой фазы (49 %) приходится на кислород, одна треть (33 %) – на кремний, более 10 % – на алюминий и железо и только 8 % на остальные элементы.

Из органогенных элементов в почвах и почвообразующих породах встречаются C, H, N, P, S, K, Ca, Mg. Они являются источником питания растений, и от их содержания зависит плодородие почвы. Кроме того в почвах и породах содержатся токсичные для растений элементы: хлор, натрий, марганец. Повышенное их содержание в породах и почвах делает почву засоленной. В почвах и породах имеются микроэлементы: бор, молибден, цинк, кобальт, йод, играющие важную физиологическую роль. В небольшом количестве в почвах и породах представлены радиоактивные элементы: уран, торий, радий, изотопы калия, кальция, углерода.

От минералогического состава пород и почв в большой степени зависит и гранулометрический состав почвы.

3. Гранулометрический состав

Твердая фаза почвы состоит из частиц разного размера, которые называются механическими элементами.

Гранулометрический состав почвы характеризуется содержанием механических элементов разного размера, выраженном в % к массе абсолютно сухой почвы. Близкие по размерам механические элементы характеризуются примерно одинаковыми свойствами и поэтому их группируют во фракции. Существует несколько группировок, или классификаций механических элементов как отечественных, так и зарубежных. В России наибольшее распространение получила классификация механических элементов, разработанная А.Н. Сабининым и В.Р. Вильямсом и уточненная впоследствии Н.А. Качинским.

Частицы размером более 1 мм называются почвенным скелетом, менее 1 мм – мелкоземом. Сумма частиц мельче 0,001 мм называется илистой фракцией, и при определении гранулометрического состава для практических целей на более мелкие фракции не подразделяется.

Отдельные фракции механических элементов различаются по химическому и минералогическому составу, а также по физикохимическим и физическим свойствам. Наиболее резкие различия наблюдаются между фракцией ила ( 10).

Гранулометрический состав наследуется почвой от породы и является признаком разновидности почв.

4. Агромелиортивная оценка гранулометрического состава почв

Гранулометрический состав оказывает очень большое влияние на процессы почвообразования, свойства и режимы почв.

Как правило, гранулометрический состав наследуется от почвообразующей породы и очень медленно изменяется во времени. Необходимы тысячи и десятки тысяч лет для его изменения. В связи с этим на породах разного гранулометрического состава часто формируются почвы, отличающиеся по свойствам. Особенно резко эта граница выражена между песчаными и супесчаными разновидностями, с одной стороны, и всеми остальными – с другой. Обычно в почвенной классификации разные по гранулометрическому составу почвы выделяются на уровне низких таксономических рангов – разновидностей, иногда родов, однако песчаные почвы во многих природных зонах выделяются в отдельные альфегумусовые подзолы среди подзолистых почв.

Песчаные и супесчаные почвы состоят в основном из кварца с незначительной примесью полевых шпатов и других первичных минералов. Поэтому в их химическом составе более 90 %, а зачастую более 95 %, приходится на долю оксида кремния. Такие почвы имеют раздельно частичное сложение и характеризуются высокой водопроницаемостью, низкой влагоемкостью, отсутствием структурных агрегатов, низким содержанием гумуса, низкой емкостью катионного обмена и поглотительной способностью в целом, низким содержанием элементов питания. Все эти свойства в основном являются негативными для растений.

Преимуществом песчаных и супесчаных почв является рыхлое сложение, хорошая воздухопроницаемость и быстрая прогреваемость, что положительно сказывается на обеспечении кислородом корневых систем. Песчаные и супесчаные почвы требуют меньших затрат на обработки, в связи с чем их и называют легкими. Свойства легких почв существенно улучшаются при внесении в них органических веществ, высоких (мелиоративных) норм торфа, компостов, использовании зеленого удобрения. Супесчаные почвы приближаются к оптимальным в холодных и влажных областях. Многие культуры, такие как картофель, озимая пшеница, ряд овощных культур, ячмень, овес, в условиях таежно-лесной зоны дают более высокие урожаи на легких почвах, по сравнению с тяжелыми. Исключение составляет озимая рожь, предпочитающая тяжелые почвы.

По мере продвижения к югу, в лесостепную, степную и сухостепную зоны, на легких почвах резко возрастает недостаток влаги и, соответственно, снижается их производительная способность, поэтому более оптимальными становятся тяжелосуглинистые и глинистые почвы.

Сопоставляя многочисленные данные по гранулометрическому составу почв и урожайности зерновых культур в зональном аспекте, Н.А. Качинский разработал десятибалльную систему оценки основных типов и подтипов почв (таблица 1). Наиболее высоким бонитетом среди подзолистых почв характеризуются легкосуглинистые разновидности, довольно близки к ним супесчаные в переувлажненных и холодных районах. На более южных дерново-подзолистых почвах наивысший бонитет отмечается у среднесуглинистых разновидностей. Из серых лесных почв высшую оценку получают тяжелосуглинистые, из черноземов – глинистые разновидности, наиболее гумусированные и оструктуренные, где негативные стороны высокого содержания глинистых частиц компенсируются их хорошей агрегатированностью. Увеличение бонитета более тяжелых почв к югу связано с более благоприятным водным режимом в засушливых условиях.

Для коренного улучшения песчаных и супесчаных почв иногда применяют глинование – внесение тяжелосуглинистого или глинистого мелкозема, взятого, по возможности, из верхнего гумусированного слоя почв, в дозе 300–800 т/га. Это мероприятие очень дорогостоящее и применяется на небольших площадях. Весьма эффективным приемом коренного улучшения легких почв является внесение высоких (мелиоративных) доз (150–300 т/га) торфа или торфанавозных компостов.

Для коренного улучшения бесструктурных тяжелосуглинистых и глинистых почв используют пескование – внесение высоких доз песка (300–700 т/га). Пескованне является также весьма дорогостоящим мероприятием и применяется на ограниченных площадях. Так же, как и на легких, на тяжелых почвах часто вносят мелиоративные

дозы торфа или органических компостов, которые в этом случае оказывают разрыхляющее действие, усиливают водопроницаемость и улучшают водный режим.

Таблица 1 – Примерная оценка гранулометрического состава почв для зерновых культур (по Качинскому)

ПочвыОценка по гранулометрическому составу почв, баллы
глинистыетяжело-суглинистыесредне-суглинистыелегко-суглинистыесупе-счаныепесчаные,

рыхлые

Глееподзолистые46810853
Подзолистые56810853
Дерновоподзолистые67108642
Серые лесные81097642
Черноземы

типичные

10986431
Черноземы

южные

91087531
Темнокаштановые81097631
Каштановые79108631

Имеются существенные различия в использовании тяжелых и легких почв. Они заключаются в дозах внесения химических мелиорантов при оптимизации реакции среды (на легких почвах дозы меньше, но мелиорации проводят чаще), в нормах полива в орошаемом земледелии, в сроках и способах обработки, в разных нормах и видах минеральных удобрений.

Гранулометрический состав учитывается при землеустройстве территории: при выборе участков под многолетние насаждения, при введении специализированных севооборотов, проведении почвозащитных мероприятий и др.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *