Что при нагревании становится твердым

Виды термообработки

Термическая обработка (термообработка) стали, цветных металлов — процесс изменения структуры стали, цветных металлов, сплавов при нагревании и последующем охлаждении с определенной скоростью.
Термическая обработка (термообработка) приводит к существенным изменениям свойств стали, цветных металлов, сплавов. Химический состав металла не изменяется.

Виды термической обработки стали

Отжиг

Отжиг — термическая обработка (термообработка) металла, при которой производится нагревание металла, а затем медленное охлаждение. Эта термообработка (т. е. отжиг) бывает разных видов (вид отжига зависит от температуры нагрева, скорости охлаждения металла).

Закалка

Закалка — термическая обработка (термообработка) стали, сплавов, основанная на перекристаллизации стали (сплавов) при нагреве до температуры выше критической; после достаточной выдержки при критической температуре для завершения термической обработки следует быстрое охлаждение. Закаленная сталь (сплав) имеет неравновесную структуру, поэтому применим другой вид термообработки — отпуск.

Отпуск

Отпуск — термическая обработка (термообработка) стали, сплавов, проводимая после закалки для уменьшения или снятия остаточных напряжений в стали и сплавах, повышающая вязкость, уменьшающая твердость и хрупкость металла.

Нормализация

Нормализация — термическая обработка (термообработка), схожая с отжигом. Различия этих термообработок (нормализации и отжига) состоит в том, что при нормализации сталь охлаждается на воздухе (при отжиге — в печи).

Нагрев заготовки

Нагрев заготовки — ответственная операция. От правильности ее проведения зависят качество изделия, производительность труда. Необходимо знать, что в процессе нагрева металл меняет свою структуру, свойства и характеристику поверхностного слоя и в результате от взаимодействия металла с воздухом атмосферы, и на поверхности образуется окалина, толщина слоя окалины зависит от температуры и продолжительности нагрева, химического состава металла. Стали окисляются наиболее интенсивно при нагреве больше 900°С, при нагреве в 1000°С окисляемость увеличивается в 2 раза, а при 1200°С — в 5 раз.

Хромоникелевые стали называют жаростойкими потому, что они практически не окисляются.

Легированные стали образуют плотный, но не толстый слой окалины, который защищает металл от дальнейшего окисления и не растрескивается при ковке.

Углеродистые стали при нагреве теряют углерод с поверхностного слоя в 2-4 мм. Это грозит металлу уменьшением прочности, твердости стали и ухудшается закаливание. Особенно пагубно обезуглероживание для поковок небольших размеров с последующей закалкой.

Заготовки из углеродистой стали с сечением до 100 мм можно быстро нагревать и потому их кладут холодными, без предварительного прогрева, в печь, где температура 1300°С. Во избежание появлений трещин высоколегированные и высокоуглеродистые стали необходимо нагревать медленно.

При перегреве металл приобретает крупнозернистую структуру и его пластичность снижается. Поэтому необходимо обращаться к диаграмме «железо-углерод», где определены температуры для начала и конца ковки. Однако перегрев заготовки можно при необходимости исправить методом термической обработки, но на это требуется дополнительное время и энергия. Нагрев металла до еще большей температуры приводит к пережогу, от чего происходит нарушение связей между зернами и такой металл полностью разрушается при ковке.

Пережог

Пережог — неисправимый брак. При ковке изделий из низкоуглеродистых сталей требуется меньше число нагревов, чем при ковке подобного изделия из высокоуглеродистой или легированной стали.

При нагреве металла требуется следить за температурой нагрева, временем нагрева и температурой конца нагрева. При увеличении времени нагрева — слой окалины растет, а при интенсивном, быстром нагреве могут появиться трещины. Известно из опыта, что на древесном угле заготовка 10-20 мм в диаметре нагревается до ковочной температуры за 3-4 минуты, а заготовки диаметром 40-50 мм прогревают 15-25 минут, отслеживая цвет каления.

Химико-термическая обработка

Химико-термическая обработка (ХТО) стали — совокупность операций термической обработки с насыщением поверхности изделия различными элементами (углерод, азот, алюминий, кремний, хром и др.) при высоких температурах.

Поверхностное насыщение стали металлами (хром, алюминий, кремний и др.), образующими с железом твердые растворы замещения, более энергоемко и длительнее, чем насыщение азотом и углеродом, образующими с железом твердые растворы внедрения. При этом диффузия элементов легче протекает в решетке альфа-железо, чем в более плотноупакованной решетке гамма-железо.

Химико-термическая обработка повышает твердость, износостойкость, кавитационную, коррозионную стойкость. Химико-термическая обработка, создавая на поверхности изделий благоприятные остаточные напряжения сжатия, увеличивает надежность, долговечность.

Цементация стали

Цементация стали — химико-термическая обработка поверхностным насыщением малоуглеродистой (С табл.1

Температура, °СЦвета каленияТемпература, °СЦвета каления1600Ослепительно бело-голубой850Светло-красный1400Ярко-белый800Светло-вишневый1200Желто-белый750Вишнево-красный1100Светло-белый600Средне-вишневый1000Лимонно-желтый550Темно-вишневый950Ярко-красный500Темно-красный900Красный400Очень темно-красный (видимый в темноте)

Тонкая пленка окислов железа, придающая металлу различные быстро меняющиеся цвета — от светло-желтого до серого. Такая пленка появляется, если очищенное от окалины стальное изделие нагреть до 220°С; при увеличении времени нагрева или повышении температуры окисная пленка утолщается и цвет ее изменяется. Цвета побежалости одинаково проявляются как на сырой, так и на закаленной стали.

При низком отпуске (нагрев до температуры 200-300° ) в структуре стали в основном остается мартенсит, который, однако, изменяется решетку. Кроме того, начинается выделение карбидов железа из твердого раствора углерода в альфа-железе и начальное скопление их небольшими группами. Это влечет за собой некоторое уменьшение твердости и увеличение пластических и вязких свойств стали, а также уменьшение внутренних напряжений в деталях.

Для низкого отпуска детали выдерживают в течение определенного времени обычно в масляных или соляных ваннах. Если для низкого отпуска детали нагревают на воздухе, то для контроля температуры часто пользуются цветами побежалости, появляющимися на поверхности детали.

табл.1

Цвет побежалостиТемпература, °СИнструмент, который следует отпускать
Бледно-желтый210
Светло-желтый220Токарные и строгальные резцы для обработки чугуна и стали
Желтый230Тоже
Темно-желтый240Чеканы для чеканки по литью
Коричневый255
Коричнево-красный265Плашки, сверла, резцы для обработки меди, латуни, бронзы
Фиолетовый285Зубила для обработки стали
Темно-синий300Чеканы для чеканки из листовой меди, латуни и серебра
Светло-синий325
Серый330

Появление этих цветов связано с интерференцией белого света в пленках окисла железа, возникающих на поверхности детали при ее нагреве. В интервале температур от 220 до 330 ° в зависимости от толщины пленки цвет изменяется от светло-желтого до серого. Низкий отпуск применяется для режущего, измерительного инструмента и зубчатых колес.

При среднем (нагрев в пределах 300-500°) и высоком (500-700°) отпуске сталь из состояния мартенсита переходит соответственно в состояние тростита или сорбита. Чем выше отпуск, тем меньше твердость отпущенной стали и тем больше ее пластичность и вязкость.

При высоком отпуске сталь получает наилучшее сочетание механических свойств, повышение прочности, пластичности и вязкости, поэтому высокий отпуск стали после закалки ее на мартенсит назначают для кузнечных штампов, пружин, рессор, а высокий — для многих деталей, подверженных действию высоких напряжений (например, осей автомобилей, шатунов двигателей).

Для некоторых марок стали отпуск производят после нормализации. Этот относится к мелкозернистой легированной доэвтектоидной стали (особенно никелевой), имеющий высокую вязкость и поэтому плохую обрабатываемость режущим инструментом.

Для улучшения обрабатываемости производят нормализацию стали при повышенной температуре (до 950-970°), в результате чего она приобретает крупную структуру (определяющую лучшую обрабатываемость) и одновременно повышенную твердость (ввиду малой критической скорости закалки никелевой стали). С целью уменьшения твердости производят высокий отпуск этой стали.

Дефекты закалки

К дефектам закалки относятся:

Главная причина трещин и поводки — неравномерное изменение объема детали при нагреве и, особенно, при резком охлаждении. Другая причина — увеличение объема при закалке на мартенсит.

Трещины возникают потому, что напряжения при неравномерном изменении объема в отдельных местах детали превышают прочность металла в этих местах.

Лучшим способом уменьшения напряжений является медленное охлаждение около температуры мартенситного превращения. При конструировании деталей необходимо учитывать, что наличие острых углов и резких изменений сечения увеличивает внутреннее напряжение при закалке.

Коробление (или поводка)возникает также от напряжений в результате неравномерного охлаждения и проявляется в искривлениях деталей. Если эти искривления невелики, они могут быть исправлены, например, шлифованием. Трещины и коробление могут быть предотвращены предварительным отжигом деталей, равномерным и постепенным нагревом их, а также применением ступенчатой и изотермической закалки.

Обезуглероживание стали с поверхности — результат выгорания углерода при высоком и продолжительном нагреве детали в окислительной среде. Для предотвращения обезуглероживания детали нагревают в восстановительной или нейтральной среде (восстановительное пламя, муфельные печи, нагрев в жидких средах).

Образование окалины на поверхности изделия приводит к угару металла, деформации. Это уменьшает теплопроводность и, стало быть, понижает скорость нагрева изделия в печи, затрудняет механическую обработку. Удаляют окалину либо механическим способом, либо химическим (травлением).

Выгоревший с поверхности металла углерод делает изделия обезуглероженным с пониженными прочностными характеристиками, с затрудненной механической обработкой. Интенсивность, с которой происходит окисление и обезуглерожевание, зависит от температуры нагрева, т. е. чем больше нагрев, тем быстрее идут процессы.

Образование окалины при нагреве можно избежать, если под закалку применить пасту, состоящую из жидкого стекла — 100 г, огнеупорной глины — 75 г, графита — 25 г, буры — 14 г, карборунда — 30 г, воды — 100 г. Пасту наносят на изделие и дают ей высохнуть, затем нагревают изделие обычным способом. После закалки его промывают в горячем содовом растворе. Для предупреждения образования окалины на инструментах быстрорежущей стали применяют покрытие бурой. Для этого нагретый до 850°С инструмент погружают в насыщенный водный раствор или порошок буры

Антикоррозионная обработка изделий после термической обработки

После термической обработки, связанной с применением солей, щелочей, воды и прочих веществ, могущих вызывать при длительном хранении изделий коррозию, следует провести антикоррозионную обработку стальных изделий, заключающуюся в том, что очищенные, промытые и высушенные изделия погружают на 5 минут в 20 — 30% водный раствор нитрита натрия, после чего заворачивают в пропитанную этим же раствором бумагу.
В таком виде изделия могут храниться длительное время

Источник

Сжатие при нагревании: почему такое возможно?

Большинство материалов расширяются при нагревании, но существуют несколько уникальных веществ, которые ведут.

Большинство материалов расширяются при нагревании, но существуют несколько уникальных веществ, которые ведут себя по-другому. Инженеры Калифорнийского технологического института впервые выяснили, каким образом один из этих любопытных материалов, трифторид скандия (ScF3), сжимается при нагревании.

Когда нагревают твердые материалы, большая часть тепла уходит на колебания атомов. В обычных материалах эти колебания «раздвигают» атомы, в результате чего материал расширяется. Однако некоторые вещества имеют уникальные кристаллические структуры, которые заставляют их сокращаться при нагревании. Это свойство называется отрицательным тепловым расширением. К сожалению, эти кристаллические структуры очень сложны, и ученые до сих пор были не в состоянии увидеть, каким образом колебания атомов приводят к сокращению размеров материала.

Ситуация изменилась благодаря открытию в 2010 году отрицательного теплового расширения у ScF3, порошкообразного вещества с относительно простой кристаллической структурой. Чтобы выяснить, как его атомы вибрируют под воздействием высокой температуры, американские ученые использовали компьютер для моделирования поведения каждого атома. Также свойства материала изучались в нейтронной лаборатории комплекса ORNL в штате Теннеси.

Результаты исследования впервые дали четкую картину того, как сжимается материал. Для того чтобы понять этот процесс, нужно представить атомы скандия и фтора шарами, соединенными друг с другом пружинами. Более легкий атом фтора связан с двумя более тяжелыми атомами скандия. При повышении температуры все атомы начинают раскачиваться в нескольких направлениях, но из-за линейного расположения атома фтора и двух атомов скандия первый больше вибрирует в направлениях, перпендикулярных пружинам. С каждым колебанием фтор притягивает атомы скандия друг к другу. Поскольку это происходит по всему материалу, он сокращается в размерах.

Наибольшее удивление вызвал тот факт, что при сильных колебаниях энергия атома фтора пропорциональна четвертой степени перемещения (колебание четвертой степени или биквадратное колебание). При этом для большинства материалов характерны гармонические (квадратичные) колебания, такие как возвратно-поступательное движение пружин и маятников.

По заявлению авторов открытия, практически чистый квантовый оссцилятор четвертой степени никогда до этого не был зафиксирован в кристаллах. Это означает, что изучение ScF3 в перспективе позволит создать материалы с уникальными тепловыми свойствами.

Источник

10 процессов, которые были бы невозможны без нагревания

Многие физические и химические процессы были бы просто невозможны, если бы человек несколько тысяч лет назад не понял, что можно нагревать предметы, вещества и воздух. С появлением огня расширился ареал обитания, люди стали появляться на северных территориях, а способность готовить и отапливать помещения сделали жизнь лучше и комфортнее. Сегодня процесс используется в быту, промышленности и развлечениях. Человек берет за основу те биохимические и геологические процессы, которые связаны с нагреванием, и создает инновационные технологии в электронике, промышленности и быту. Совместно c брендом IQOS сделали подборку технологий и процессов, которые невозможны без принципа нагревания и контроля температуры.

Читайте «Хайтек» в

Древняя история нагревания

Человеку еще на ранних стадиях эволюции было проще жить в регионах с тропическим и экваториальным климатом. Главный фактор, облегчающий жизнь в таких климатических зонах, — температура. Там, где тепло, проще добывать себе пищу, легче выращивать сельскохозяйственные культуры, да и просто выживать, так как не требуется строительство монументальных жилищ, защищающих от низких температур и непогоды. Научившись добывать огонь, человек стал больше уделять времени и сил приготовлению пищи, а его ареал обитания существенно расширился. Человеческие поселения стали появляться все севернее, а жизнь там, несмотря на более суровый климат, становилась более приемлемой для выживания. Возможность использовать огонь позволила человеку не только готовить пищу, но и отапливать свое жилище, защищать свое тело во время зимних сезонов или даже в условиях вечной мерзлоты. Сегодня только в северных регионах проживают 21 млн россиян.

Одним из факторов, позволивших человечеству стать превалирующим видом на Земле, стало понимание, что тела, жидкости и газ вокруг нас можно нагревать, а тепло позволяет делать жизнь комфортнее, полноценнее и легче. Конечно, первобытный человек не сразу освоил технику использования огня (тем более не с точки зрения сжигания, а именно нагревания). Первые доказательства использования людьми огня для приготовления пищи и обогрева были найдены в Восточной Африке: в Чесованьи возле озера Баринго, Кооби-Фора и Ологесалирие в Кении.

Что при нагревании становится твердым. Смотреть фото Что при нагревании становится твердым. Смотреть картинку Что при нагревании становится твердым. Картинка про Что при нагревании становится твердым. Фото Что при нагревании становится твердым

Так, доказательства в Чесованьи представляют собой осколки красной глины, возраст которой составляет 1,42 млн лет. Судя по твердости, они были нагреты до 400°C. В Кении найдены свидетельства использования огня Homo erectus с возрастом примерно 1,5 млн лет, с красными отложениями, которые могут образоваться лишь при температуре 200–400 °C.

Что такое нагревание?

Нагревание — это естественный или искусственный физический процесс повышения температуры. Это может происходить за счет внутренней энергии или подведения энергии извне. Для последнего используется нагревательный элемент. Конструкции могут быть самыми разными: от костра до ядерного реактора.

Помимо различий в источниках энергии, сам процесс нагревания может происходить как снаружи, так и изнутри. К последним примерам относятся: тепло, вырабатываемое в ядре Земли, благодаря энергии, которую переносят потоки магмы; растворы во время электролиза или, к слову, современные системы нагревания табака. С нагреванием снаружи все просто — это классический огонь, отопление, СВЧ.

Нагревание происходит за счет увеличения скорости движения или колебаний молекул и атомов, из которых состоит тело. В разных телах этот процесс происходит по-разному. Если речь идет о газах, то их молекулы хаотично движутся с большими скоростями (это могут быть сотни метров в секунду) по всему объему, заполненному газом. Во время своего движения молекулы сталкиваются и отскакивают друг от друга, меняя при этом скорость и направление движения. В случае с жидкостями молекулы в них колеблются около равновесных положений, поскольку расположены очень близко друг к другу, и сравнительно редко могут перескакивать из одного положения в другое. В твердых телах частицы колеблются около положения равновесия. Нагревание во всех перечисленных случаях приводит к тому, что скорость частиц увеличивается. Поэтому хаотичное движение частиц принято в физике называть тепловым. А само нагревание тела зависит от его теплоемкости и теплопроводности.

Теплоемкость — количество теплоты, поглощаемой или выделяемой телом в процессе нагревания (остывания) на 1 К (Кельвин).

Теплопроводность — способность тел проводить теплоту от более нагретых частей тела к менее нагретым частям путем хаотического движения частиц (атомов, молекул, электронов). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Нагревание сегодня применяется в самых различных областях человеческой жизни: от бытового использования в приготовлении пищи и отопления до научных экспериментов и транспортировки. Да и сама природа использует этот процесс: тает лед, изменяется климат, растет температура воды в Мировом океане, меняется флора и фауна, образуются химические вещества и породы.

Кипячение

Кипячение — самый распространенный способ нагрева воды, применяемый исключительно человеком. Речь идет не только о приготовлении еды, для которого необходим кипяток. Кипячение также позволяет уничтожить большинство паразитов, обитающих в воде, произвести обеззараживание продуктов, а также очистить вещи, предметы от жировых загрязнений.

Процесс кипячения состоит из трех стадий: на первой в воде появляются пузырьки воздуха, которые проскакивают со дна емкости, на второй — пузырьки начинают стремительно подниматься к поверхности, происходит помутнение, напоминающее бегущую из родника воду. На третьей стадии начинается бурление воды, поверхности достигают большие пузыри, а вода может разбрызгиваться.

Что при нагревании становится твердым. Смотреть фото Что при нагревании становится твердым. Смотреть картинку Что при нагревании становится твердым. Картинка про Что при нагревании становится твердым. Фото Что при нагревании становится твердым

Процесс кипячения сопровождается выделением пара. Кроме того, при кипячении оседают коллоидные частицы грязи, а вода смягчается, так как в осадок выпадают соли, а концентрация легколетучих компонентов и свободного хлора уменьшается.

Но при длительном кипячении возрастает концентрация нелетучих веществ. Нагрев воды до состояния кипятка не может уничтожить тяжёлые металлы, пестициды, гербициды, нитраты, фенолы и нефтепродукты. Есть микробы, способные выжить в кипящей воде довольно длительное время — минуты и даже часы. Прионы не деактивируются даже при кипячении в течение 18 минут при температуре 134°C в герметичном паровом автоклаве.

Термическая обработка пищи

Тепловая обработка применяется в кулинарии разных народов и культур для большого числа продуктов. Как правило, у такой обработки три цели: размягчение, улучшение вкуса или внешнего вида, а также обеззараживание, особенно если речь идет о мясной продукции.

Кроме варки, которая может проходить не только с процессом кипячения, но и на пару, а также при пониженной температуре, к этому же виду обработки относят готовку в вакууме — су-вид, когда продукты варят в вакуумной упаковке. Помимо этого существует способ варки в автоклаве, где готовка происходит под избыточным давлением при температуре 110–130°C.

Еще один вид термической обработки — жаренье, второй по распространенности способ готовки. Продукт прилегает к посуде, поверхность которой смазана тонким слоем горячего жира. Если речь идет о мучных изделиях и особой категории блюд, то используют выпекание в варочном шкафу или духовке. А мясные и рыбные продукты часто коптят с помощью горячего и холодного дыма.

Для поддержания температуры перед раздачей или во время перевозки используется особый вид обработки — термостатирование. А для эффектной подачи используют краткосрочное воспламенение готового блюда, это называется фламбированием.

Отопление

Об этом способе нагревания воздуха знают жители многих стран — без отопления пережить продолжительный зимний сезон практически невозможно. На территории России средняя температура воздуха в этот период составляет −19,7°С. Водяное отопление — это самый популярный и дешевый способ, но сегодня есть и другие варианты, позволяющие обогревать жилище современного человека. Причем в их задачу входит не только обогрев помещения для возмещения теплопотерь, но и поддержание температуры.

В зависимости от преобладающего способа теплопередачи отопление помещений может быть конвективным и лучистым. Под конвективным понимается вид отопления, при котором тепло распространяется благодаря перемешиванию объемов горячего и холодного воздуха. К недостаткам конвективного отопления относится большой перепад температур в помещении (высокая температура воздуха наверху и низкая внизу) и невозможность вентиляции помещения без потерь тепловой энергии. Лучистый способ подразумевает наличие специальных приборов, которые устанавливаются под пол или над обогреваемой зоной либо монтируются прямо в стены.

По источнику тепла отопление может быть самое разнообразное: от печного и парового до жидкотопливного и инфракрасного.

Системам отопления уже много сотен лет. Первым средством обогрева считают костер. А отопительным устройством — гипокауст, древний «теплый пол», который использовали римляне. Нагревалась поверхность каменного пола с помощью газа, который выходил из печей и скапливался в полостях под полом.

Ядро Земли

Самый крупный в мире «обогреватель» находится в самом сердце нашей планеты — в ядре Земли. Центральная и наиболее глубокая часть планеты находится под мантией и, предположительно, состоит из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2 900 км. Ядро разделяется на твердое внутреннее ядро радиусом около 1 300 км и жидкое внешнее ядро толщиной около 2 200 км. Температура на поверхности твердого ядра Земли достигает 6 230 ± 500 K (5 960 ± 500 °C).

Что при нагревании становится твердым. Смотреть фото Что при нагревании становится твердым. Смотреть картинку Что при нагревании становится твердым. Картинка про Что при нагревании становится твердым. Фото Что при нагревании становится твердым

От земного ядра поднимаются колоссальные восходящие тепловые потоки магмы — плюмы. У поверхности мантии они растекаются в стороны, вызывая дрейф континентов, а остыв, опускаются в глубину. Но у ядра есть свои источники нагрева: распад долгоживущих радиоактивных элементов и трение между ядром и внешними слоями Земли, вращение которых постепенно тормозят приливы. И все же ядро остывает и от этого постепенно кристаллизуется: диаметр внутреннего твердого ядра увеличивается на несколько сантиметров в столетие.

Нагревание в химии

Увеличение температуры используют в химической отрасли для ускорения массообменных и химических процессов, температурные условия протекания которых зависят от теплоносителя и способа нагрева: водяным паром, горячими жидкостями, точечными газами, электрическим током и излучением.

Самым наиболее частым методом в органическом синтезе является кипячение и нагревание. Согласно правилу Вант Гоффа, при нагревании на 10°С скорость химических реакций возрастает в 2–4 раза. Химические реакции в органической химии (в отличие от неорганической) идут довольно медленно. Поэтому нагревание существенно ускоряет работу химиков.

Но органические соединения довольно не стабильны и при сильном воздействии осмоляются. Поэтому в ряде случаев реакции проводят не при нагревании, а при охлаждении.

Водяные бани применяют только в тех случаях, когда требуется нагревание до температуры не выше 100°С. Песочные бани используются для осторожного воздействия до высокой температуры или для осторожного прокаливания. Температура песочной бани 200–300°С. Нагревание до высоких температур осуществляют в муфельных печах. Прокаливание проводят в тиглях, которые обычно закрывают крышками.

Нагрев электрическим током также используется в химической отрасли, в первую очередь, для экономии средств. Прямой нагрев воды и водных растворов переменным электрическим током при электрическом напряжении, меньшем напряжения разложения жидкостей, показывает, что при малых удельных мощностях генерируемая тепловая энергия превышает затраченную электрическую, вводимую в нагреваемую жидкость.

Индукционный нагрев

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Такой нагрев изделий из проводящих материалов — проводников — происходит с помощью магнитного поля индукторов. Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. А магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки (скин-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Индуктор и сам сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Такой способ применяется в самых разных промышленных сферах: от сверхчистой бесконтактной плавки до ювелирного дела и обеззараживания медицинских инструментов.

Диэлектрический нагрев (СВЧ)

Для нагрева диэлектрических материалов используется переменное электрическое поле или электромагнитная волна — речь о популярных СВЧ-печах, или микроволновках. ТВЧ-нагрев (с токами высокой частоты) создается в конденсаторах, а СВЧ (сверхвысокочастотное излучение) — в волноводах и объемных резонаторах. При этом способе нагревание тел вызывается потерями на дипольную поляризацию диэлектриков.

Из недостатков такого способа — его неоднородность. При СВЧ-методе происходит лишь поверхностный нагрев, который зависит от теплопроводности материала.

Что при нагревании становится твердым. Смотреть фото Что при нагревании становится твердым. Смотреть картинку Что при нагревании становится твердым. Картинка про Что при нагревании становится твердым. Фото Что при нагревании становится твердым

При использовании электромагнитных СВЧ-волн нагрев вызывается молекулярным дипольным вращением в диэлектрике — типичной дипольной молекулой является молекула воды. Метод наиболее широко применяется для разморозки и нагрева при приготовлении пищи. Поскольку вода в пищевых продуктах содержит большое количество солей, которые диссоциируют на ионы, служащие носителями электрических зарядов и также реагирующие на переменное электромагнитное поле, нагрев продуктов обусловлен как переориентацией полярных молекул-диполей, так и смещением ионов.

Нагревание табака

Нагревание табака, а не его горение стало фундаментальным отличием альтернативных бездымных продуктов, которые разрабатываются в научно-исследовательском центре компании «Филип Моррис Интернэшнл» (ФМИ). Компания сделала ставку на прорывные технологии, науку и инновации. В Центре работают более 430 ученых и инженеров разных специальностей, которые уже более 10 лет применяют весь свой опыт и знания в целях создания будущего без сигаретного дыма. Компания проводит поэтапную и всестороннюю научную оценку своих инновационных бездымных продуктов, основанную на практиках, применяемых в фармацевтической отрасли, следуя международным стандартам качества, принципам надлежащей лабораторной практики (GLP) и надлежащей клинической практики (GCP). IQOS прошел все стадии тщательной научной оценки, включая 18 доклинических и 10 клинических исследований, в ходе которых было подтверждено, что при использовании IQOS выделяется на 95% меньше вредных веществ по сравнению с сигаретами.*

Важно: это не означает снижение риска на 95%. Использование IQOS не исключает риски для здоровья.

* «на 95% меньше вредных веществ» означает среднее снижение уровней вредных веществ (без учета никотина) в аэрозоле IQOS в сравнении с дымом эталонной сигареты, используемой в исследовании (3R4F).

В IQOS используется технология HeatControl™, которая устроена следующим образом: керамический элемент в форме лезвия нагревает табак изнутри до температуры, не превышающей 350°С. Такой температурный режим исключает горение, а значит, не образуется дыма и пепла, нет риска прожечь одежду, обивку в салоне автомобиля, мебель или обжечь кого-то.

Что при нагревании становится твердым. Смотреть фото Что при нагревании становится твердым. Смотреть картинку Что при нагревании становится твердым. Картинка про Что при нагревании становится твердым. Фото Что при нагревании становится твердым

Уникальность технологии заключается в том, что нагревание происходит изнутри, а не снаружи, и элемент соприкасается непосредственно с табаком, не поджигая его, а бережно нагревая. Кроме того, благодаря инновационным технологиям температура нагрева во время работы устройства IQOS контролируется и поддерживается на необходимом уровне автоматически. Дорожки из золота и платины, нанесенные на нагревательный элемент, вместе образуют термопару, которая измеряет и передает данные о температуре в блок управления, расположенном в держателе устройства.

Во всех без иключения моделях IQOS – от классической 2.4 Plus до новейшей и самой элегантной IQOS 3 DUOS – используется запатентованная технология разработанная в Швейцарии. При создании IQOS ученым и технологическим экспертам удалось исключить процесс горения, заменив его на нагревание, поэтому IQOS обладает рядом преимуществ по сравнению с продолжением курения сигарет. Сегодня уже более 11 миллионов совершеннолетних пользователей по всему миру сделали свой выбор в пользу IQOS*.

*Данные на основе внутренней финансовой отчетности ФМИ, опросов совершеннолетних пользователей IQOS и анализа рынка на [октябрь 2020 года]. Учитывались совершеннолетние пользователи IQOS, которые полностью прекратили курить сигареты, и для которых потребление табачных стиков ФМИ составило не менее 70% от всего табака нагреваемого в течение последних 7 дней на момент опроса.

Плазменная обработка

Если совместить теплофизические и электрохимические процессы на поверхности анода, связанные с локальным вскипанием жидкости, то получится явление, которое называют электролитно-плазменной обработкой. Другое название — анодный электролитный нагрев.

Впервые явление свечения и нагрева электродов заметили сразу несколько ученых в XIX веке — Артур Венельт, Александр Вальтер и Георг Симон Ом. Они доказали, что в результате теплового воздействия тока на электрод со сравнительно малой поверхностью вокруг него происходит локальное вскипание раствора с образованием парового слоя и размыканием электрической цепи. Имеющаяся в цепи индуктивность способствует появлению э.д.с. и пробою парогазового слоя со световыми явлениями.

Сегодня этот метод нагрева широко используется для скоростного упрочнения поверхностей деталей — например, цементации, азотирования, борирования, нитроцементации и/или закалки в рабочем электролите. А электролитно-плазменная обработка стали увеличивает ее поверхностную твердость, износостойкость, коррозионную устойчивость.

Лазерный нагрев

Лазерная обработка материалов используется повсеместно, в том числе и для получения нанотрубок из графена. В зависимости от интенсивности и длительности воздействия лазерного излучения можно нагревать материал без видимого разрушения, расплавлять его, испарять и даже вымывать продукты разрушения.

Расчеты показывают, что скорость нагрева при лазерном облучении материалов очень высока — до 10–10°С/с. За короткое время поверхностные слои успевают нагреться до высоких температур, расплавиться и перегреться. В перегретом металле примеси успевают раствориться.

Лазерный нагрев так же, как и газоразрядный, используется для концентрации энергии на поверхности графита. Эта энергия используется для термического распыления графита. При лазерном распылении получают практически только многослойные нанотрубки — с числом слоев от 4 до 24 и длиной до 300 нм. При этом графитовый образец — мишень, на которую фокусируется лазерное излучение, — помещают в печь для дополнительного нагрева.

Что при нагревании становится твердым. Смотреть фото Что при нагревании становится твердым. Смотреть картинку Что при нагревании становится твердым. Картинка про Что при нагревании становится твердым. Фото Что при нагревании становится твердым

А группа физиков-теоретиков одного из лондонских колледжей даже придумала новый метод, который может позволить лазерам нагревать определенные материалы до температур солнечного ядра и выше, правда, всего за 20 квадриллионных секунды.

Человек в своих технологических достижениях всегда вдохновлялся природой: начиная от применения огня для приготовления пищи и заканчивая современными атомными реакторами, в основе работы которых лежат те же самые процессы, что и в выработке тепла из ядра Земли. Умение нагревать позволило человечеству стать доминирующим видом на планете, расширить ареал своего обитания даже на самые суровые климатические зоны, ускорить химические реакции, создать суперпрочные материалы и, наконец, сделать жизнь комфортнее и технологичнее.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *