Что принято считать системой счисления
Системы счисления
Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).
Системы счисления бывают:
Непозиционные системы счисления
Примеры: унарная, римская, древнерусская и др.
Позиционные системы счисления
Основание системы счисления —
количество различных цифр, используемых в этой системе.
отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде
где i — номер разряда, а s — основание системы счисления.
Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:
По определению веса разряда
где i — номер разряда, а s — основание системы счисления.
Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:
Например, для системы счисления с основанием 4:
Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:
= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =
= 64 + 48 + 2 + 0,5 = 114,5
Таким образом, для перевода числа из любой системы счисления в десятичную следует:
Вспомним пример перевода из системы счисления с основанием 4 в десятичную:
13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114
Иначе это можно записать так:
114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024
Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно
Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.
В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:
Системы счисления. Основные понятия.
Запись числа в некоторой системе счисления называется кодом числа.
Количество разрядов в записи числа называют разрядностью и совпадает с его длиной.
Системы счисления делятся на позиционные и непозиционные. Позиционные системы счисления делятся
на однородные и смешанные.
Непозиционная система счисления — древнейшая, здесь все цифры числа имеют величину, которая не
зависит от позиции (разряда).
Т.е., если есть 5 палочек, значит число соответственно равно 5, так как каждой палочке, вне зависимости
от её места в строке, соответствует только 1 предмет.
Позиционная система счисления — значение каждой цифры зависит от позиции (разряда) этой цифры в числе.
Например, стандартная 10-я система счисления является позиционной. Допустим дано число 453.
Цифра 4 означает число сотен и соответствует числу 400, 5 — кол-во десятков и соответствует значению
50, а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.
Таким образом, заданное число запишем в виде суммы 400+50+3=453.
Однородная система — для каждого разряда (позиции) числа набор допустимых символов (цифр)
одинаковый. Как пример снова используем 10-ю систему. Если записывать число в однородной 10-й системе,
(1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, так как символ F не входит в набор цифр от 0 до 9.
Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может
отличаться от наборов в других разрядах. Хороший пример — система измерения времени. В разряде
В непозиционных системах счисления вес цифры не зависим от позиции, которую она занимает в
числе. К примеру, в римской системе счисления в числе XXXII (32) вес цифры X в каждой позиции
Цифрами в римской системе служат: I(1), V(5), X(10), L(50), C(100), D(500), M(1000).
Размер числа в римской системе счисления определяют как сумму либо разность цифр в числе. Когда
меньшая цифра стоит слева от большей – она вычитается, когда справа – прибавляется.
Самая первая система счисления — единичная (непозиционная).
В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в
последовательности цифр, которые изображают число.
Каждая позиционная система характеризуется своим основанием.
Основание позиционной системы счисления – это количество разных знаков либо символов, которые
используются для изображения цифр в этой системе.
множество позиционных систем.
Перевод систем счисления. Числа можно перевести из одной системы счисления в другую.
Таблица соответствия цифр в различных системах счисления.
Системы счисления
Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.
Цифры бывают разные: самыми распространёнными являются арабские цифры, представляемые знаками от нуля (0) до девяти (9); менее распространены римские цифры, их можно встретить на циферблате часов или в обозначении века (XIX век).
Поскольку чисел гораздо больше чем цифр, то для записи числа обычно используется набор (комбинация) цифр. Только для небольшого количества чисел — для самых малых по величине целых чисел — бывает достаточно одной цифры. Существует много способов записи чисел с помощью цифр, называемых системой счисления. Величина числа может зависеть от порядка цифр в записи, а может и не зависеть. Это свойство определяется системой счисления и служит основанием для простейшей классификации таких систем, что позволяет все системы счисления разделить на четыре класса (группы):
Позиционные системы счисления подробно рассмотрены ниже, после краткого обзора смешанных и непозиционных систем.
Денежные знаки — это пример смешанной системы счисления.
Сейчас в России используются монеты и купюры следующих номиналов: по 5, 10, 50 копеек и по 1, 2, 5, 10, 50, 100, 200, 500, 1000, 2000, 5000 рублей. Чтобы получить некоторую сумму в рублях, нужно использовать некоторое количество денежных знаков различного достоинства.
Предположим, что пылесос стоит 6379 рублей. Для покупки можно использовать шесть купюр по тысяче рублей, три купюры по сто рублей, одну пятидесятирублёвую купюру, две десятки, одну пятирублёвую монету и две монеты по два рубля. Если записать количество купюр или монет начиная с 1000 руб. и заканчивая пятью копейками, заменяя нулями неиспользуемые номиналы, то получится число 600312120000.
Если перемешать цифры в числе 600312120000, оно представит ложную цену пылесоса. Следовательно, такая запись относится к позиционным системам.
В непозиционных системах счисления величина числа не зависит от положения цифр в записи. Если к каждой цифре приписать знак номинала, то такие составные знаки (цифра + номинал) уже можно перемешивать, то есть такая запись является непозиционной.
Примером «рафинированной» непозиционной системы счисления является римская система.
Содержание
Позиционные системы счисления
Введение
Позиционные системы счисления — это системы счисления, в которых значение цифры напрямую зависит от её положения в числе.
Например, число 01 обозначает единицу, 10 — десять.
Позиционные системы счисления позволяют легко производить арифметические расчёты.
Представление чисел с помощью арабских цифр — самая распространённая позиционная система счисления, она называется «десятичной системой счисления». Десятичной системой она называется потому, что использует десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Заметьте: максимальная цифра (9) на единицу меньше количества цифр (10).
Для составления машинных кодов удобно использовать не десятичную, а двоичную систему счисления, содержащую только две цифры, 0 и 1. Обратите внимание, что в двоичной системе максимальная цифра 1.
Программисты для вычислений также пользуются ещё восьмеричной и шестнадцатеричной системами счисления.
Количество цифр, используемых в системе счисления, называется её «основанием». В десятичной системе основание равно десяти, в двоичной системе — двум, ну а в восьмеричной и шестнадцатеричной — соответственно, восьми и шестнадцати. То есть в ручной системе счисления количество цифр равно р и используются цифры от 0 до р-1.
Зависимость плотности записи информации от основания системы счисления
Удельная натурально логарифмическая плотность записи числа зависит от основания системы счисления х и выражается функцией y=ln(x)/x. Эта функция имеет максимум при x=e=2,718281828….
То есть система счисления с наибольшей плотностью записи имеет не целочисленное основание.
Из целочисленных систем счисления наибольшей плотностью записи информации обладает троичная система счисления, то есть система с основанием равным трём.
Преобразование чисел
Посмотрим чему равны числа из примеров. Используем только что приведённую формулу:
Что и следовало ожидать, получили: 11001 2 <\displaystyle 11001_<2>> .
Представим число 25 в троичной системе счисления:
Получили число: 221 3 <\displaystyle 221_<3>> .
Для закрепления наших знаний проделаем вычисления для восьмеричной и десятичной систем счисления.
Восьмеричная система счисления:
Десятичная система счисления:
Чтобы ещё лучше понять перевод в различные системы счислений, посмотрим, какие трансформации происходят внутри числа 4567 10 <\displaystyle 4567_<10>> .
Представим это число в виде
4 ⋅ 10 3 + 5 ⋅ 10 2 + 6 ⋅ 10 1 + 7 ⋅ 10 0 = 4 ⋅ 1000 + 5 ⋅ 100 + 6 ⋅ 10 + 7 <\displaystyle 4\cdot 10^<3>+5\cdot 10^<2>+6\cdot 10^<1>+7\cdot 10^<0>=4\cdot 1000+5\cdot 100+6\cdot 10+7> .
Шестидесятеричная система счисления
То, как мы представляем время на часах, это пример шестидесятеричной позиционной системы счисления. В представлении времени используется три позиции: для часов, минут и секунд; так как для каждой позиции приходится использовать 60 цифр, а у нас только десять цифр, то для каждой шестидесятиричной позиции используется две десятичные цифры (00, 01, 02, …, 59), а позиции разделяются двоеточием.
Чтобы получить время в секундах мы должны посчитать вот по такой формуле:
h 60 2 + m 60 1 + s 60 0 = h 3600 + m 60 + s <\displaystyle h60^<2>+m60^<1>+s60^<0>=h3600+m60+s>
Рассмотрим действия с шестидесятеричной системой на двух небольших задачках:
Чтобы производить вычисления в шестидесятеричной системе счисления нужно знать таблицу сложений и умножений шестидесятеричных чисел. Каждая таблица очень большая, она размером 60х60 ячеек, мы то обычную таблицу умножения еле запомнили, а уж выучить шестидесятиричную таблицу умножения нам врядли окажется по силам.
Чтобы решить эти задачи можно посчитать всё в десятичной системе, а потом результат перевести назад в шестидесятиричную систему.
Приступим. Чтобы перевести 45 минут в количество секунд, нужно просто, подставить числа в верхнюю формулу: h равняется нулю, m равняется 45 и s — нулю, получаем
Ответ на первый вопрос: пирог нужно печь в духовке 2700 секунд.
Ответ на второй вопрос: чтобы испечь десять пирогов потребуется 7 часов 30 минут и 0 секунд.
Двоичная система счисления
В компьютерной технике очень часто используется двоичная система счисления. Такую систему очень легко реализовать в электронике (полупроводниковые транзисторы и микросхемы), так как для неё требуется всего два устойчивых состояния (0 и 1).
Двоичная система счисления может быть непозиционной и позиционной системой. В ней используется две цифры: 0 и 1. В реальном устройстве это может быть реализовано присутствием какого-либо физического явления или его отсутствием. Например: есть электрический заряд или его нет, есть напряжение или нет, есть ток или нет, есть сопротивление или нет, отражает свет или нет, намагничено или не намагничено, есть отверстие или нет и т.п.
Мы уже знаем, как переводить числа в различные системы счисления. Посмотрим, как это происходит с двоичной системой счисления. Переведём число из двоичной системы счисления в десятичную.
10101010 2 = 1 ⋅ 2 7 + 0 ⋅ 2 6 + 1 ⋅ 2 5 + 0 ⋅ 2 4 + 1 ⋅ 2 3 + 0 ⋅ 2 2 + 1 ⋅ 2 1 + 0 ⋅ 2 0 = 128 + 32 + 8 + 2 = 170 <\displaystyle 10101010_<2>=1\cdot 2^<7>+0\cdot 2^<6>+1\cdot 2^<5>+0\cdot 2^<4>+1\cdot 2^<3>+0\cdot 2^<2>+1\cdot 2^<1>+0\cdot 2^<0>=128+32+8+2=170> ;
Вы это можете проверить на программе-калькуляторе (gcalctool в gnome, Kcalc в KDE, или калькулятор в Windows). Он умеет производить расчёты в двоичной, восьмеричной и шестнадцатиричной системах счисления. Теперь вы знаете, как он это проделывает. Если вы захотите посвятить свою жизнь программированию, то вам часто придётся работать со степенями двойки. Ниже представлена таблица:
Степень | Значение |
---|---|
0 | 1 |
1 | 2 |
2 | 4 |
3 | 8 |
4 | 16 |
5 | 32 |
6 | 64 |
7 | 128 |
8 | 256 |
9 | 512 |
10 | 1024 |
11 | 2048 |
12 | 4096 |
13 | 8192 |
14 | 16384 |
15 | 32768 |
16 | 65536 |
Произведём обратное преобразование. Чтобы преобразовать число в десятичном виде к двоичному, нам нужно будет делить всё время на два и смотреть на остаток от деления. Возьмём число 33.
Возьмём число 55. Посмотрим, что получится.
Ниже приведены ещё примеры со сложением, вычитанием, умножением и делением.
Программа двоичного представления десятичного числа (Написана на Си)
Троичная система счисления
Из целочисленных систем счисления обладает наибольшей плотностью записи информации. Первая троичная ЭВМ «Сетунь» была построена в 1958 году Н. П. Брусенцовым в МГУ.
Четверичная система счисления
Обладает такой же плотностью записи, как и двоичная система счисления. Таблица такая же, как и для двоичной системы счисления.
Восьмеричная и шестнадцатеричная системы счислений
Компьютерам очень удобно оперировать двоичными числами, но люди не привыкли работать с большим количеством цифр. Например, чтобы представить в двоичном виде число 1234 потребуется больше 10 двоичных цифр (10011010010). Поэтому были придуманы восьмеричная и шестнадцатеричная системы счислений. Они удобны как и десятичные числа тем, что для представления числа требуется меньшее количество разрядов. А по сравнению с десятичными числами, перевод в двоичное представление очень простой. Это как будто мы двоичное число разбили на группы по три или четыре разряда и каждой двоичной комбинации придумали значок. Вот таблица для восьмеричных цифр:
Двоичная комбинация | Значок |
---|---|
000 | 0 |
001 | 1 |
010 | 2 |
011 | 3 |
100 | 4 |
101 | 5 |
110 | 6 |
111 | 7 |
А вот таблица для шестнадцатеричных цифр:
Двоичная комбинация | Значок |
---|---|
0000 | 0 |
0001 | 1 |
0010 | 2 |
0011 | 3 |
0100 | 4 |
0101 | 5 |
0110 | 6 |
0111 | 7 |
1000 | 8 |
1001 | 9 |
1010 | A |
1011 | B |
1100 | C |
1101 | D |
1110 | E |
1111 | F |
Перевод произвести очень просто, посмотрим на примере числа 010011010010.
Разбиваем его на группы по три цифры: 010 011 010 010. И по таблице переводим: 2322 8 <\displaystyle 2322_<8>> .
Чтобы перевести число в шестнадцатеричное представление разбиваем двоичное число на группы по четыре цифры: 0100 1101 0010. И по таблице переводим: 4 D 2 16 <\displaystyle 4D2_<16>> . С помощью калькулятора Windows мы можем убедиться, что всё проделано верно.
СИСТЕМЫ СЧИСЛЕНИЯ
СИСТЕМЫ СЧИСЛЕНИЯ (нумерация) – совокупность способов обозначения натуральных чисел.
На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержавшая бóльшее число предметов, объединялась в понятии «много». Предметы при счете сопоставлялись обычно с пальцами рук и ног. По мере развития цивилизации потребность человека в счете стала необходимой. Первоначально натуральные числа изображались с помощью некоторого количества черточек или палочек, затем для их изображения стали использовать буквы или специальные знаки. В древнем Новгороде использовалась славянская система, где применялись буквы славянского алфавита; при изображении чисел над ними ставился знак
Древние римляне пользовались нумерацией, сохраняющейся до настоящего времени под именем «римской нумерации», в которой числа изображаются буквами латинского алфавита. Сейчас ею пользуются для обозначения юбилейных дат, нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т.д. В позднейшем своем виде римские цифры выглядят так:
I = 1; V = 5; X = 10; L = 50; С = 100; D = 500; M = 1000.
О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. В римской нумерации явственно сказываются следы пятеричной системы счисления. Все целые числа (до 5000) записываются с помощью повторения вышеприведенных цифр. При этом, если бóльшая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед бóльшей (в этом случае она не может повторяться), то меньшая вычитается из бóльшей). Например, VI = 6, т.е. 5 + 1, IV = 4, т.е. 5 – 1, XL = 40, т е. 50 – 10, LX = 60, т.е. 50 + 10. Подряд одна и та же цифра ставится не более трех раз: LXX = 70; LXXX = 80; число 90 записывается ХС (а не LXXXX).
Первые 12 чисел записываются в римских цифрах так:
I, II, III, IV, V, VI, VII, VIII. IX, X, XI, XII.
Другие же числа записываются, например, как:
XXVIII = 28; ХХХIХ = 39; CCCXCVII = 397; MDCCCXVIII = 1818.
Выполнение арифметических действий над многозначными числами в этой записи очень трудно. Тем не менее, римская нумерация преобладала в Италии до 13 в., а в других странах Западной Европы – до 16 в.
В славянской системе нумерации для записи чисел использовались все буквы алфавита, правда, с некоторым нарушением алфавитного порядка. Различные буквы означали различное количество единиц, десятков и сотен. Например, число 231 записывалось в виде
СЛА (C – 200, Л – 30, А – 1).
Этим системам свойственны два недостатка, которые привели к их вытеснению другими: необходимость большого числа различных знаков, особенно для изображения больших чисел, и, что еще важнее неудобство выполнения арифметических операций.
Более удобной и общепринятой и наиболее распространенной является десятичная система счисления, которая была изобретена в Индии, заимствована там арабами и затем через некоторое время пришла в Европу. В десятичной системе счисления основанием является число 10.
Существовали системы исчисления и с другими основаниями. В Древнем Вавилоне, например, применялась шестидесятеричная система счисления. Остатки ее мы находим в сохранившемся до сих пор делении часа или градуса на 60 минут, а минуты – на 60 секунд.
Широкое распространение имела в древности и двенадцатеричная система, происхождение которой, вероятно, связано, как и десятичной системы, со счетом на пальцах: за единицу счета принимались фаланги (отдельные суставы) четырех пальцев одной руки, которые при счете перебирались большим пальцем той же руки. Остатки этой системы счисления сохранились и до наших дней и в устной речи, и в обычаях. Хорошо известно, например, название единицы второго разряда – числа 12 – «дюжина». Сохранился обычай считать многие предметы не десятками, а дюжинами, например, столовые приборы в сервизе или стулья в мебельном гарнитуре. Название единицы третьего разряда в двенадцатеричной системе – гросс – встречается теперь редко, но в торговой практике начала столетия оно еще бытовало. Например, в написанном в 1928 стихотворении Плюшкин В.В.Маяковский, высмеивая людей, скупающих все подряд, писал: «. укупил двенадцать гроссов дирижерских палочек». У ряда африканских племен и в Древнем Китае была употребительна пятеричная система счисления. В Центральной Америке (у древних ацтеков и майя) и среди населявших Западную Европу древних кельтов была распространена двадцатеричная система. Все они также связаны со счетом на пальцах.
Самой молодой системой счисления по праву можно считать двоичную. Эта система обладает рядом качеств, делающей ее очень выгодной для использования в вычислительных машинах и в современных компьютерах.
Позиционные и непозиционные системы счисления.
Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами.
В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы.
В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе – шестидесятeричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим – десятки.
Однако наиболее употребительной оказалась индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр.
Различие между позиционой и непозиционной систем счисления легче всего понять на примере сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Бóльшая цифра соответствует бóльшему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.
Позиционные системы счисления.
Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 5557 – число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы – это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p, как x = an·p n +an – 1·p n –1 + a1·p1 + a0·p0, где an. a0 – цифры в представлении данного числа. Так, например,
103510=1·10 3 + 0·10 2 + 3·10 1 + 5·10 0 ;
10102 = 1·2 3 + 0·2 2 + 1·2 1 + 0·2 0 = 10.
Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины, однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.
Чтобы оперировать с числами, записанными в таких нетрадиционных системах, нужно иметь в виду, что принципиально они ничем не отличаются от привычной десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.
Почему же не используются другие системы счисления? В основном, потому, что в повседневной жизни люди привыкли пользоваться десятичной системой счисления, и не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать числами, записанными в двоичном виде, довольно просто.
Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.
Перевод чисел из одной системы счисления в другую.
Наиболее часто встречающиеся системы счисления – это двоичная, шестнадцатеричная и десятичная. Как же связаны между собой представления числа в различных системах счисления? Есть различные способы перевода чисел из одной системы счисления в другую на конкретных примерах.
Пусть нужно перевести число 567 из десятичной в двоичную систему. Сначала определяется максимальная степень двойки, такая, чтобы два в этой степени было меньше или равно исходному числу. В данном случае это 9, т.к. 2 9 = 512, а 2 10 = 1024, что больше начального числа. Таким образом получается число разрядов результата, оно равно 9 + 1 = 10, поэтому результат будет иметь вид 1ххххххххх, где вместо х могут стоять любые двоичные цифры. Вторая цифра результата находится так – двойка возводится в степень 9 и вычитается из исходного числа: 567 – 2 9 = 55. Остаток сравнивается с числом 2 8 = 256. Так как 55 меньше 256, то девятый разряд – нуль, т.е. результат имеет вид 10хххххххх. Рассмотрим восьмой разряд. Так как 2 7 = 128 > 55, то и он будет нулевым.
Седьмой разряд также оказывается нулевым. Искомая двоичная запись числа принимает вид 1000хххххх. 2 5 = 32 4 = 16 9 + 0·2 8 + 0·2 7 + 0·2 6 + 1·2 5 + 1·2 4 + 0·2 3 + 1·2 2 + 1·2 1 + 1·2 0
При другом способе перевода чисел используется операция деления в столбик. Если взять то же число 567 и разделить его на 2, получается частное 283 и остаток 1. Та же операция производится и с числом 283. Частное – 141, остаток – 1. Опять полученное частное делится на 2 и так до тех пор, пока частное не станет меньше делителя. Теперь, чтобы получить число в двоичной системе счисления, достаточно записать последнее частное, т.е. 1, и приписать к нему в обратном порядке все полученные в процессе деления остатки.
Результат, естественно, не изменился: 567 в двоичной системе счисления записывается как 1 000 110 111.
Например,так можно перевести число 4A3F в десятичную систему. По определению, 4A3F= 4·16 3 + A·16 2 + 3·16 + F. При замене A на 10, а F на 15, получается 4·16 3 + 10·16 2 + 3·16 + 15= 19007.
Таблица 1. ДВОИЧНО-ШЕСТНАДЦАТЕРИЧНАЯ ТАБЛИЦА | ||||||||
2-ная | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
16-ная | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2-ная | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
16-ная | 8 | 9 | A | B | C | D | E | F |
Таблица 2. ДВОИЧНО-ВОСЬМЕРИЧНАЯ ТАБЛИЦА | ||||||||
2-ная | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
8-ная | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Известный французский астроном, математик и физик Пьер Симон Лаплас (1749–1827) писал об историческом развитии систем счисления, что «Мысль выражать все числа девятью знаками, придавая им, кроме значения по форме, еще значение по месту, настолько проста, что именно из-за этой простоты трудно понять, насколько она удивительна. Как нелегко было прийти к этому методу, мы видим на примере величайших гениев греческой учености Архимеда и Аполлония, от которых эта мысль осталась скрытой.»
Сравнение десятичной системы исчисления с иными позиционными системами позволило математикам и инженерам-конструкторам раскрыть удивительные возможности современных недесятичных систем счисления, обеспечившие развитие компьютерной техники.
0>