хэш код что это
Чудеса хеширования
Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, защиту файлов и даже обнаружение зловредного ПО. Как они работают и где применяются?
Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, проверку целостности данных, защиту файлов и даже обнаружение зловредного ПО. Существует масса алгоритмов хеширования, отличающихся криптостойкостью, сложностью, разрядностью и другими свойствами. Считается, что идея хеширования принадлежит сотруднику IBM, появилась около 50 лет назад и с тех пор не претерпела принципиальных изменений. Зато в наши дни хеширование обрело массу новых свойств и используется в очень многих областях информационных технологий.
Что такое хеш?
Если коротко, то криптографическая хеш-функция, чаще называемая просто хешем, — это математический алгоритм, преобразовывающий произвольный массив данных в состоящую из букв и цифр строку фиксированной длины. Причем при условии использования того же типа хеша длина эта будет оставаться неизменной, вне зависимости от объема вводных данных. Криптостойкой хеш-функция может быть только в том случае, если выполняются главные требования: стойкость к восстановлению хешируемых данных и стойкость к коллизиям, то есть образованию из двух разных массивов данных двух одинаковых значений хеша. Интересно, что под данные требования формально не подпадает ни один из существующих алгоритмов, поскольку нахождение обратного хешу значения — вопрос лишь вычислительных мощностей. По факту же в случае с некоторыми особо продвинутыми алгоритмами этот процесс может занимать чудовищно много времени.
Как работает хеш?
Например, мое имя — Brian — после преобразования хеш-функцией SHA-1 (одной из самых распространенных наряду с MD5 и SHA-2) при помощи онлайн-генератора будет выглядеть так: 75c450c3f963befb912ee79f0b63e563652780f0. Как вам скажет, наверное, любой другой Брайан, данное имя нередко пишут с ошибкой, что в итоге превращает его в слово brain (мозг). Это настолько частая опечатка, что однажды я даже получил настоящие водительские права, на которых вместо моего имени красовалось Brain Donohue. Впрочем, это уже другая история. Так вот, если снова воспользоваться алгоритмом SHA-1, то слово Brain трансформируется в строку 97fb724268c2de1e6432d3816239463a6aaf8450. Как видите, результаты значительно отличаются друг от друга, даже несмотря на то, что разница между моим именем и названием органа центральной нервной системы заключается лишь в последовательности написания двух гласных. Более того, если я преобразую тем же алгоритмом собственное имя, но написанное уже со строчной буквы, то результат все равно не будет иметь ничего общего с двумя предыдущими: 760e7dab2836853c63805033e514668301fa9c47.
Впрочем, кое-что общее у них все же есть: каждая строка имеет длину ровно 40 символов. Казалось бы, ничего удивительного, ведь все введенные мною слова также имели одинаковую длину — 5 букв. Однако если вы захешируете весь предыдущий абзац целиком, то все равно получите последовательность, состоящую ровно из 40 символов: c5e7346089419bb4ab47aaa61ef3755d122826e2. То есть 1128 символов, включая пробелы, были ужаты до строки той же длины, что и пятибуквенное слово. То же самое произойдет даже с полным собранием сочинений Уильяма Шекспира: на выходе вы получите строку из 40 букв и цифр. При всем этом не может существовать двух разных массивов данных, которые преобразовывались бы в одинаковый хеш.
Вот как это выглядит, если изобразить все вышесказанное в виде схемы:
Для чего используется хеш?
Отличный вопрос. Однако ответ не так прост, поскольку криптохеши используются для огромного количества вещей.
Для нас с вами, простых пользователей, наиболее распространенная область применения хеширования — хранение паролей. К примеру, если вы забыли пароль к какому-либо онлайн-сервису, скорее всего, придется воспользоваться функцией восстановления пароля. В этом случае вы, впрочем, не получите свой старый пароль, поскольку онлайн-сервис на самом деле не хранит пользовательские пароли в виде обычного текста. Вместо этого он хранит их в виде хеш-значений. То есть даже сам сервис не может знать, как в действительности выглядит ваш пароль. Исключение составляют только те случаи, когда пароль очень прост и его хеш-значение широко известно в кругах взломщиков. Таким образом, если вы, воспользовавшись функцией восстановления, вдруг получили старый пароль в открытом виде, то можете быть уверены: используемый вами сервис не хеширует пользовательские пароли, что очень плохо.
Вы даже можете провести простой эксперимент: попробуйте при помощи специального сайта произвести преобразование какого-нибудь простого пароля вроде «123456» или «password» из их хеш-значений (созданных алгоритмом MD5) обратно в текст. Вероятность того, что в базе хешей найдутся данные о введенных вами простых паролях, очень высока. В моем случае хеши слов «brain» (8b373710bcf876edd91f281e50ed58ab) и «Brian» (4d236810821e8e83a025f2a83ea31820) успешно распознались, а вот хеш предыдущего абзаца — нет. Отличный пример, как раз для тех, кто все еще использует простые пароли.
Еще один пример, покруче. Не так давно по тематическим сайтам прокатилась новость о том, что популярный облачный сервис Dropbox заблокировал одного из своих пользователей за распространение контента, защищенного авторскими правами. Герой истории тут же написал об этом в твиттере, запустив волну негодования среди пользователей сервиса, ринувшихся обвинять Dropbox в том, что он якобы позволяет себе просматривать содержимое клиентских аккаунтов, хотя не имеет права этого делать.
Впрочем, необходимости в этом все равно не было. Дело в том, что владелец защищенного копирайтом контента имел на руках хеш-коды определенных аудио- и видеофайлов, запрещенных к распространению, и занес их в список блокируемых хешей. Когда пользователь предпринял попытку незаконно распространить некий контент, автоматические сканеры Dropbox засекли файлы, чьи хеши оказались в пресловутом списке, и заблокировали возможность их распространения.
Где еще можно использовать хеш-функции помимо систем хранения паролей и защиты медиафайлов? На самом деле задач, где используется хеширование, гораздо больше, чем я знаю и тем более могу описать в одной статье. Однако есть одна особенная область применения хешей, особо близкая нам как сотрудникам «Лаборатории Касперского»: хеширование широко используется для детектирования зловредных программ защитным ПО, в том числе и тем, что выпускается нашей компанией.
Как при помощи хеша ловить вирусы?
Примерно так же, как звукозаписывающие лейблы и кинопрокатные компании защищают свой контент, сообщество создает списки зловредов (многие из них доступны публично), а точнее, списки их хешей. Причем это может быть хеш не всего зловреда целиком, а лишь какого-либо его специфического и хорошо узнаваемого компонента. С одной стороны, это позволяет пользователю, обнаружившему подозрительный файл, тут же внести его хеш-код в одну из подобных открытых баз данных и проверить, не является ли файл вредоносным. С другой — то же самое может сделать и антивирусная программа, чей «движок» использует данный метод детектирования наряду с другими, более сложными.
Криптографические хеш-функции также могут использоваться для защиты от фальсификации передаваемой информации. Иными словами, вы можете удостовериться в том, что файл по пути куда-либо не претерпел никаких изменений, сравнив его хеши, снятые непосредственно до отправки и сразу после получения. Если данные были изменены даже всего на 1 байт, хеш-коды будут отличаться, как мы уже убедились в самом начале статьи. Недостаток такого подхода лишь в том, что криптографическое хеширование требует больше вычислительных мощностей или времени на вычисление, чем алгоритмы с отсутствием криптостойкости. Зато они в разы надежнее.
Кстати, в повседневной жизни мы, сами того не подозревая, иногда пользуемся простейшими хешами. Например, представьте, что вы совершаете переезд и упаковали все вещи по коробкам и ящикам. Погрузив их в грузовик, вы фиксируете количество багажных мест (то есть, по сути, количество коробок) и запоминаете это значение. По окончании выгрузки на новом месте, вместо того чтобы проверять наличие каждой коробки по списку, достаточно будет просто пересчитать их и сравнить получившееся значение с тем, что вы запомнили раньше. Если значения совпали, значит, ни одна коробка не потерялась.
Как работает hashCode() по умолчанию?
Тривиальная загадка
После корректирования toString() наш кастомный hashCode() перестал вызываться. Мы пропустили тест.
Чем является реализация по умолчанию hashCode()?
Здравый смысл подсказывает, что идентификационный хеш использует целочисленное представление адреса памяти. Об этом свидетельствует документация J2SE на Object.hashCode():
. обычно реализуется с помощью конвертации внутреннего адреса объекта в целочисленное значение, но в Java эта методика не требуется.
Однако с этим связаны проблемы, поскольку контракт метода (method contract) требует:
При применении к одному и тому же объекту более одного раза в ходе выполнения Java-приложения метод hashCode должен в обязательном порядке возвращать одно и то же целочисленное значение.
Учитывая, что JVM будет перемещать объекты (например, при сборке мусора в ходе продвижения или уплотнения), после вычисления идентификационного хеша объекта мы должны сделать так, чтобы он как-то отслеживал местоположение самого объекта.
Например, можно взять текущую позицию объекта в памяти при первом вызове hashCode() и сохранить её где-нибудь, например в заголовке объекта. Тогда при перемещении объекта в другое место с ним переедет и исходный хеш. Недостаток способа: два объекта могут иметь одинаковый хеш, но это разрешено спецификацией.
Лучшим подтверждением будет посмотреть в исходный код. К сожалению, дефолтная java.lang.Object::hashCode() является нативной функцией:
Настоящий hashCode()
Обратите внимание, что идентификационная реализация hashCode() зависит от JVM. Я буду рассматривать только исходный код OpenJDK, помните об этом при каждом дальнейшем упоминании JVM. Все ссылки относятся к набору изменений 5934:87ee5ee27509 дерева Hotspot, и полагаю, что большинство из них применимы и к Oracle JVM, но в других машинах есть свои нюансы.
Можно наивно ожидать, что ObjectSynchronizer::FastHashCode() делает что-то вроде:
Но оказывается, что там функция на сотню строк. А это куда сложнее. По крайней мере, мы можем отметить пару блоков «если-не-существует-то-генерировать»:
Реальное генерирование идентификационного хеша
0. Случайно сгенерированное число.
1. Функция адреса объекта в памяти.
2. Жёстко запрограммированное значение 1 (используется при тестировании на чувствительность (sensitivity testing)).
3. Последовательность.
4. Адрес объекта в памяти, приведённый к целочисленному значению.
5. Состояние потока, объединённое с xorshift (https://en.wikipedia.org/wiki/Xorshift)
Какой метод используется по умолчанию? Согласно globals.hpp, в OpenJDK 8 это метод 5:
Так что, если я не ошибаюсь, как минимум с шестой версии реализация по умолчанию hashCode в OpenJDK не имеет ничего общего с адресом памяти.
Заголовки объектов и синхронизация
Вернёмся немного и рассмотрим пару пропущенных моментов. Во-первых, функция ObjectSynchronizer::FastHashCode() выглядит слишком сложной, в ней используется больше 100 строк кода для выполнения того, что мы считали тривиальной операцией «получить-или-сгенерировать». Во-вторых, что это вообще такое – monitor – и почему у него есть заголовки нашего объекта?
Структура слова mark — хорошее место для начала изысканий. В OpenJDK она выглядит так:
Для 32 и 64 битов формат несколько различается. Во втором случае могут быть два варианта, в зависимости от того, включены ли указатели сжатых объектов (Compressed Object Pointers). В Oracle и OpenJDK 8 по умолчанию они включены.
Таким образом, заголовки объектов могут относиться к свободному блоку или к реальному объекту, так что возможны несколько разных состояний. В простейшем случае («нормальный объект») идентификационный хеш сохраняется напрямую в младшие биты заголовка.
Попробуем ответить на все эти вопросы.
Привязанная блокировка (biased locking)
Привязанные объекты — это результат привязанной блокировки. Это запатентованный механизм, по умолчанию используемый начиная с HotSpot 6. Он пытается снизить стоимость блокирования объектов. Подобные операции дороги, поскольку ради безопасной обработки запросов блокировки/разблокировки объекта от разных потоков их реализации часто опираются на атомарные процессорные инструкции (сравнение с обменом). Но подмечено, что во многих реализациях большинство объектов когда-либо блокируются лишь одним потоком, так что использование атомарных операций зачастую расточительно. Чтобы этого избежать, JVM’ы с привязанной блокировкой позволяют потокам попытаться самостоятельно «привязать» объект. Когда потоку это удаётся, он может блокировать/разблокировать объект без использования атомарных инструкций. А раз у нас нет потоков, борющихся за один и тот же объект, то мы получаем прирост производительности.
Погодите. Здесь просто отменяются привязка и привязанная блокировка объекта (метод false означает «не пытайся снова привязать»). Несколькими строками ниже это остаётся действительно неизменным:
Если я прочитал правильно, то простой запрос идентификационного хеша объекта отключает привязанную блокировку, что предотвратит любые попытки заблокировать объект для использования дорогих атомарных инструкций.
Почему сохранение состояния привязанной блокировки конфликтует с сохранением идентификационного хеша?
Для ответа на этот вопрос мы должны понять, где может находиться слово mark (содержащее идентификационный хеш) в зависимости от состояния блокировки объекта. Ниже показаны возможные переходы:
Моё (возможно, ошибочное) мнение таково.
Для четырёх состояний в верхней части схемы OpenJDK сможет использовать представления thin-блокировок. В простейшем случае (без блокировок) это означает хранение идентификационного хеша и других данных прямо в пространстве слова mark в объекте:
В более сложных случаях это пространство используется для хранения указателя на «запись о блокировке». Тогда слово mark будет «перемещено» в другое место.
Поскольку заблокировать объект у нас только пытается один поток, этот указатель фактически ссылается на область памяти в собственном стеке потока. Это хорошо по двум причинам:
Нашим нуждам удовлетворяет структура ObjectMonitor, которая на схеме называется «тяжёлый монитор». Оставшееся в заголовке объекта значение указывает не на «перемещённое слово mark», а на реальный объект (монитор). Теперь для доступа к идентификационному хешу требуется «получить монитор» (inflating the monitor): сделать указатель на объект и считывать/изменять в зависимости от поля, содержащего перемещённое слово mark. Это дороже и требует координации.
В строках с L640 по L680 выполняется поиск заголовка и проверка на наличие закешированного идентификационного хеша. Я считаю, что это быстрый способ проверки случаев, когда нам не нужно получить монитор.
Начиная с L682 придётся стиснуть зубы:
Это даёт разумное объяснение, почему вызов hashCode() применительно к объекту класса, который не переопределяет реализацию по умолчанию, делает объекты недоступными для привязанной блокировки:
Промежуточные итоги
Бенчмарки
Для проверки своих умозаключений я написал простой тест JMH.
Бенчмарк (исходник) делает нечто вроде этого:
Кастомный хеш в четыре раза ускоряет цикл блокировки/разблокировки по сравнению с идентификационным хешем (который отключает привязанную блокировку). Когда за блокировку конкурируют два потока, привязанная блокировка отключается в любом случае, так что между двумя методам хеширования не наблюдается значимой разницы.
Метод хеширования больше не влияет на результат, и withoutIdHash теряет своё преимущество.
Все бенчмарки прогонялись на Intel Core i5 2,7 ГГц.
Ссылки
Всё, что не является дикими спекуляциями и моими слабыми рассуждениями в попытке осмыслить исходные коды JVM, собрано из разных источников. Основные из них:
Разбираемся с hashCode() и equals()
Что такое хеш-код?
Если очень просто, то хеш-код — это число. На самом деле просто, не так ли? Если более точно, то это битовая строка фиксированной длины, полученная из массива произвольной длины (википедия).
Пример №1
Выполним следующий код:
Вторая часть объяснения гласит:
полученная из массива произвольной длины.
В итоге, в терминах Java, хеш-код — это целочисленный результат работы метода, которому в качестве входного параметра передан объект.
Подведём итог:
Сперва, что-бы избежать путаницы, определимся с терминологией. Одинаковые объекты — это объекты одного класса с одинаковым содержимым полей.
Понятие эквивалентности. Метод equals()
Начнем с того, что в java, каждый вызов оператора new порождает новый объект в памяти. Для иллюстрации создадим какой-нибудь класс, пускай он будет называться “BlackBox”.
Пример №2
Выполним следующий код:
Во втором примере, в памяти создастся два объекта.
Эквивалентность и хеш-код тесно связанны между собой, поскольку хеш-код вычисляется на основании содержимого объекта (значения полей) и если у двух объектов одного и того же класса содержимое одинаковое, то и хеш-коды должны быть одинаковые (см. правило 2).
Класс Object
При сравнение объектов, операция “ == ” вернет true лишь в одном случае — когда ссылки указывают на один и тот-же объект. В данном случае не учитывается содержимое полей.
Заглянем в исходный код метода hashCode() в классе Object :
При вычислении хэш-кода для объектов класса Object по умолчанию используется Park-Miller RNG алгоритм. В основу работы данного алгоритма положен генератор случайных чисел. Это означает, что при каждом запуске программы у объекта будет разный хэш-код.
Но, как мы помним, должно выполняться правило: “если у двух объектов одного и того же класса содержимое одинаковое, то и хеш-коды должны быть одинаковые ”. Поэтому, при создании пользовательского класса, принято переопределять методы hashCode() и equals() таким образом, что бы учитывались поля объекта.
Это можно сделать вручную либо воспользовавшись средствами генерации исходного кода в IDE. Например, в Eclipse это Source → Generate hashCode() and equals().
В итоге, класс BlackBox приобретает вид:
Теперь методы hashCode() и equals() работают корректно и учитывают содержимое полей объекта:
Кому интересно переопределение в ручную, можно почитать Effective Java — Joshua Bloch, chapter 3, item 8,9.
Что такое HES-код в Турции и как его получить туристам
Этот материал обновлен 24.06.2021
HES-код — это специальный номер, который получают путешественники перед поездкой в Турцию. Он позволяет властям страны связаться с туристом, если тот контактировал с больными коронавирусной инфекцией.
Сама анкета понадобится, чтобы улететь в Турцию. Ее пассажиры должны предъявить при посадке на рейс в бумажном или электронном виде. Без нее могут не допустить на борт самолета. Подробнее об этом мы рассказывали в отдельной статье.
«HES-код спрашивали только в торговых центрах»
Я отдыхала в Анталье в начале марта 2021 года. На туристическом форуме прочитала, что в городе нельзя оплатить поездки в автобусе по разовому билету — нужно расплачиваться банковской или транспортной картой, к которой придется привязать HES-код.
Отзывы туристов были противоречивыми. Одни утверждали, что без кода не оплатить проезд. Другие говорили, что без проблем купили билет.
В городе у меня спрашивали HES-код только в торговых центрах. Охрана проверяла его в своей системе, поэтому поддельный код показать не получится.
Для чего нужен HES-код
HES-код может понадобиться, чтобы купить билеты на внутренние рейсы в Турции, а также еще в нескольких случаях:
С 15 марта в Стамбуле HES-код будет нужен, чтобы зайти в государственные учреждения, кофейни, парки развлечений, частные школы, салоны красоты, театры, сауны, бильярдные, тематические парки, бани, массажные салоны, спортзалы и другие заведения. Об этом сообщает генеральное консульство России в Стамбуле.
Посольства и консульства пока не сообщили, ужесточат ли требования к наличию кода в других регионах страны.
Напомним, что перед поездкой в Турцию нужно еще получить справку об отсутствии коронавируса. Без нее в страну могут въезжать вакцинированные или переболевшие туристы. Подробно об этом мы рассказали в отдельной статье.
Что такое хэш и хэш-функция: практическое применение, обзор популярных алгоритмов
Цифровые технологии широко применяют хеширование, несмотря на то, что изобретению более 50 лет: аутентификация, осуществление проверки целостности информации, защита файлов, включая, в некоторых случаях, определение вредоносного программного обеспечения и многие другие функции. Например, множество задач в области информационных технологий требовательны к объему поступающих данных. Согласитесь, проще и быстрее сравнить 2 файла весом 1 Кб, чем такое же количество документов, но, к примеру, по 10 Гб каждый. Именно по этой причине алгоритмы, способные оперировать лаконичными значениями, весьма востребованы в современном мире цифровых технологий. Хеширование – как раз решает эту проблему. Разберемся подробно, что такое хэш и хэш-функция.
Что за «зверь» такой это хеширование?
Чтобы в головах читателей не образовался «винегрет», начнем со значения терминологий применительно к цифровым технологиям:
Исходя из пояснений, делаем вывод: хеширование – процесс сжатия входящего потока информации любого объема (хоть все труды Уильяма Шекспира) до короткой «аннотации» в виде набора случайных символов и цифр фиксированной длины.
Коллизии
Коллизии хэш-функций подразумевает появление общего хэш-кода на два различных массива информации. Неприятная ситуация возникает по причине сравнительно небольшого количества символов в хэш. Другими совами, чем меньше знаков использует конечная формула, тем больше вероятность итерации (повтора) одного и того же хэш-кода на разные наборы данных. Чтобы снизить риск появления коллизии, применяют двойное хеширование строк, образующее открытый и закрытый ключ – то есть, используется 2 протокола, как, например, в Bitcoin. Специалисты, вообще, рекомендуют обойтись без хеширования при осуществлении каких-либо ответственных проектов, если, конечно же, это возможно. Если без криптографической хэш-функции не обойтись, протокол обязательно нужно протестировать на совместимость с ключами.
Важно! Коллизии будут существовать всегда. Алгоритм хеширования, перерабатывающий различный по объему поток информации в фиксированный по количеству символов хэш-код, в любом случае будет выдавать дубли, так как множеству наборов данных противостоит одна и та же строчка заданной длины. Риск повторений можно только снизить.
Технические параметры
Основополагающие характеристики протоколов хеширования выглядят следующим образом:
Здесь стоит так же отметить важные свойства алгоритмов: способность «свертывать» любой массив данных, производить хэш конкретной длины, распределять равномерно на выходе значения функции. Необходимо заметить, любые изменения во входящем сообщении (другая буква, цифра, знак препинания, даже лишний пробел) внесут коррективы в итоговый хэш-код. Он просто будет другим – такой же длины, но с иными символами.
Требования
К эффективной во всех отношениях хэш-функции выдвигаются следующие требования:
Данные требования выполнимы исключительно тогда, когда протокол базируется на сложных математических уравнениях.
Практическое применение
Процедура хеширования относительно своего функционала может быть нескольких типов:
Разберемся детальней в сфере применения протоколов хеширования.
Скачивание файлов из Всемирной Паутины
Этим занимается фактически каждый активный пользователь Всемогущей Сети, сталкиваясь с хэш-функциями сам того не осознавая, так как мало кто обращает внимание при скачивании того или иного файла на череду непонятных цифр и латинских букв. Однако именно они и есть хэш или контрольные суммы – перед вереницей символов стоит название используемой категории протокола хеширования. В общем-то, для обывателей абсолютно ненужная «инфа», а продвинутый юзер может выяснить, скачал ли он точную копию файла или произошла ошибка. Для этой процедуры необходимо установить на собственный ПК специальную утилиту (программу), которая способна вычислить хэш по представленному протоколу.
Важно! Установив на ПК пакет утилит, прогоняем через него файлы. Затем сравниваем полученный результат. Совпадение символов говорит о правильной копии – соответствующей оригиналу. Обнаруженные различия подразумевают повторное скачивание файла.
Алгоритм и электронно-цифровая подпись (ЭЦП)
Цифровая резолюция (подпись) – кодирование документа с использованием ключей закрытого и открытого типа. Другими словами, первоначальный документ сопровождается сообщением, закодированным закрытым ключом. Проверка подлинности электронной подписи осуществляется с применением открытого ключа. При обстоятельствах, когда в ходе сравнения хэш двух информационных наборов идентичен, документ, который получил адресат, признается оригинальным, а подпись истинной. В сухом остатке получаем высокую скорость обработки потока наборов данных, эффективную защиту виртуального факсимиле, так как подпись обеспечивается криптографической стойкостью. В качестве бонуса – хэш подразумевает использование ЭЦП под разнообразными типами информации, а не только текстовыми файлами.
Ревизия паролей
Очередная область применения хэш-функции, с которой сталкивается практически каждый пользователь. Подавляющее большинство серверов хранит пользовательские пароли в значении хэш. Что вполне обоснованно, так как, сберегая пароли пользователей в обычной текстовой форме, можно забыть о безопасности конфиденциальных, секретных данных. Столкнувшись с хэш-кодом, хакер даже время терять не будет, потому что, обратить вспять произвольный набор символов практически невозможно. Конечно же, если это не пароль в виде «12345» или что-то на подобии него. Доступ осуществляется путем сравнения хэш-кода вводимого юзером с тем, который хранится на сервере ресурса. Ревизию кодов может осуществлять простейшая хэш-функция.
Важно! В реальности программисты применяют многоярусный комплексный криптографический протокол с добавлением, в большинстве случаев, дополнительной меры безопасности – защищенного канала связи, чтобы виртуальные мошенники не перехватили пользовательский код до того, как он пройдет проверку на сервере.
Как появилось понятие хэш?
Сделаем небольшую паузу, чтобы интеллект окончательно не поплыл от потока сложных для простых пользователей терминов и информации. Расскажем об истории появления термина «хэш». А для простоты понимания выложим «инфу» в табличной форме.
Дата (год) | Хронология событий |
1953 | Известный математик и программист Дональд Кнут авторитетно считает, что именно в этот промежуток времени сотрудник IBM Ханс Питер Лун впервые предложил идею хеширования. |
1956 | Арнольд Думи явил миру такой принцип хеширования, какой знают его подавляющее большинство современных программистов. Именно эта «светлая голова» предложила считать хэш-кодом остаток деления на любое простое число. Кроме этого, исследователь видел идеальное хеширование инструментов для позитивной реализации «Проблемы словаря». |
1957 | Статья Уэсли Питерсона, опубликованная в «Journal of Research and Development», впервые серьезно затронула поиск информации в больших файлах, определив открытую адресацию и ухудшение производительности при ликвидации. |
1963 | Опубликован труд Вернера Бухгольца, где было представлено доскональное исследование хэш-функции. |
1967 | В труде «Принципы цифровых вычислительных систем» авторства Херберта Хеллермана впервые упомянута современная модель хеширования. |
1968 | Внушительный обзор Роберта Морриса, опубликованный в «Communications of the ACM», считается точкой отсчета появления в научном мире понятия хеширования и термина «хэш». |
Интересно! Еще в 1956 году советский программист Андрей Ершов называл процесс хеширования расстановкой, а коллизии хэш-функций – конфликтом. К сожалению, ни один из этих терминов не прижился.
Стандарты хеширования: популярные варианты
Итак, от экскурса в историю перейдем вновь к серьезной теме. Опять-таки, ради простоты восприятия предлагаем краткое описание популярных стандартов хеширования в табличном виде. Так проще оценить информацию и провести сравнение.
На этом, пожалуй, закончим экскурсию в мир сложных, но весьма полезных и востребованных протоколов хеширования.