Как вписать куб в сферу

Нахождение радиуса описанной вокруг куба сферы (шара)

В данной публикации мы рассмотрим, чему равняется радиус сферы (шара), описанной около куба, а также как его можно вычислить, если известна длина ребра куба.

Примечание: Напомним, что вокруг любого куба можно описать шар.

Для начала начертим рисунок.

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Радиус шара (R), описанного вокруг куба, равняется половине его диагонали, т.е.:

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Примечание: все диагонали куба равны.

Чтобы было понятнее, выполним диагональное сечение, т.е. отсечем часть шара вместе со вписанным в него кубом по диагонали куба (линия отреза проходит через точку O).

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Таким образом, мы получим прямоугольник с описанной вокруг окружностью, радиус которой равняется половине диагонали прямоугольника.

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Примечание: Диагонали прямоугольника равны между собой и одновременно являются диагоналями куба.

Формула расчета радиуса описанного шара через ребро куба

Если известна длина ребра куба (примем ее за “a”), радиус описанного вокруг него шара (R) вычисляется следующим образом:

Источник

Геометрические фигуры. Куб.

Куб или правильный гексаэдр – это правильный многогранник, у которого все грани это квадраты.

Куб является частным случаем параллелепипеда и призмы. 4 сечения куба имеют вид правильных

шестиугольников — это сечения через центр куба перпендикулярно 4-м главным диагоналям.

В кубе насчитывается шесть квадратов. Все вершины куба являются вершинами 3-х квадратов. То есть,

сумма плоских углов у каждой вершины = 270º.

Число сторон у грани – 4;

Общее число граней – 6;

Число рёбер примыкающих к вершине – 3;

Общее число вершин – 8;

Общее число рёбер – 12;

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Предположим, что а – длина стороны куба, а d — диагональ, тогда:

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Диагональ куба – это отрезок, который соединяет 2 вершины, которые симметричны относительно центра

Свойства куба.

перпендикулярно четырём его главным диагоналям.

совмещены с 4-мя вершинами куба и каждое из шести ребер тетраэдра принадлежат граням куба. В 1-м

случае каждая вершина тетраэдра принадлежит граням трехгранного угла, вершиной совпадающего с одной

из вершин куба. Во 2-м случае ребра тетраэдра, которые попарно скрещиваются принадлежат попарно

противоположным граням куба. Такой тетраэдр будет правильным, а его объём будет составлять треть от

6-ти гранях куба, следующие 24 ребра располагаются внутри куба. Каждая из 12 вершин икосаэдра

располагается на 6-ти гранях куба.

Элементы симметрии куба.

Ось симметрии куба может пролегать или сквозь середины ребер, которые

параллельны, не принадлежащих одной из граней, или сквозь точку

пересечения диагоналей противолежащих граней. Центром симметрии

куба будет точка пересечения диагоналей куба.

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Сквозь центр симметрии куба проходят 9 осей симметрии.

Плоскостей симметрии у куба тоже 9, они пролегают или

через противолежащие ребра (таких плоскостей 6), или

через середины противолежащих ребер (таких 3).

Источник

Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Проверяемые элементы содержания и виды деятельности: владение понятиями о стереометрических фигурах; знание их свойств; знание формул для вычисления площадей поверхностей и объемов тел; умение применять эти знания при решении задач.

Ориентировочное время выполнения учащимися: 10—15 минут.

• Элементы, площадь поверхности, объем стереометрических фигур.

Особенности экзаменационных заданий по стереометрии

Задания этого вида представляют собой стереометрические задания на установление взаимосвязи между основными элементами многогранников и круглых тел, а также на использование формул для вычисления их площадей поверхностей и объемов. Вычислительной трудности задания не представляют; решение, как правило, сводится к использованию одной-двух формул. Соответствующие формулы нужно знать наизусть.

Куб — правильный многогранник, каждая грань которого представляет собой квадрат. Куб является частный случаем параллелепипеда и призмы, поэтому для него выполнены все их свойства. Кроме того, если а — длина ребра куба, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— диагональ основания, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— диагональ куба, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— площадь полной поверхности, а V — объем куба, то справедливы формулы:

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферуКак вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферуКак вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Призма. Прямоугольный параллелепипед

Призмой (n-угольной призмой) называется многогранник, две грани которого — равные n-угольники, лежащие в параллельных плоскостях, а остальные n граней — параллелограммы.

Правильной призмой называется прямая призма, основание которой — правильный многоугольник.

Прямой призмой называется призма, боковое ребро которой перпендикулярно плоскости основания. Высота прямой призмы равна ее боковому ребру, а все боковые грани прямой призмы — прямоугольники.

Соотношения для прямой призмы

Пусть H — высота прямой призмы, AA1 — боковое ребро, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— периметр основания, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— площадь основания, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— площадь боковой поверхности, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— площадь полной поверхности, V — объем прямой призмы. Тогда имеют место следующие соотношения:

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Особенности правильной шестиугольной призмы

В основании правильной шестиугольной призмы лежит правильный шестиугольник. Напомним его свойства.

— Сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.

— Большая диагональ правильного шестиугольника является диаметром описанной вокруг него окружности и равна двум его сторонам.

— Меньшая диагональ правильного шестиугольника в Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферураз больше его стороны.

— Угол между сторонами правильного шестиугольника равен 120°.

— Меньшая диагональ правильного шестиугольника перпендикулярна его стороне.

— Треугольник, образованный стороной шестиугольника, его большей и меньшей диагоналями, прямоугольный, а его острые углы равны 30° и 60°.

Пусть вне плоскости многоугольника Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферузадана точка P. Тогда фигура, образованная треугольниками Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферуи многоугольником Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферувместе с их внутренними областями называется пирамидой (n-угольной пирамидой).

Пирамида называется правильной, если ее основание — правильный многоугольник, а основание ее высоты — центр этого многоугольника.

Соотношения для правильной пирамиды

Пусть H — высота правильной пирамиды, h — ее апофема, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— периметр основания пирамиды, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— площадь основания, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— площадь боковой поверхности, Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу— площадь полной поверхности, V — объем правильной пирамиды. Тогда имеют место следующие соотношения:

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Секущей плоскостью многогранника называется любая плоскость, по обе стороны от которой имеются точки данного многогранника. Секущая плоскость пересекает грани многогранника по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называется сечением многогранника.

Тетраэдр имеет четыре грани, поэтому его сечениями могут быть только треугольники и четырехугольники (рис. 1). Параллелепипед имеет шесть граней. Его сечениями могут быть треугольники, четырехугольники, пятиугольники и шестиугольники (рис. 2).

Теоремы, используемые при построении сечений

Теорема 1. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Поэтому секущая плоскость пересекает плоскости параллельных граней по параллельным прямым.

Теорема 2. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

Теорема 3. Если прямая l параллельна какой либо прямой m, проведённой в плоскости Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферуто она параллельна и самой плоскости Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Теорема 4. Если прямая, лежащая в плоскости сечения, не параллельна плоскости некоторой грани, то она пересекается со своей проекцией на эту грань.

Алгоритм построения сечений

Для построения сечений рекомендуем пользоваться следующим алгоритмом.

1. Если две точки секущей плоскости лежат в плоскости одной грани, то проводим через них прямую. Часть прямой, лежащая в плоскости грани — сторона сечения.

2. Если прямая a является общей прямой секущей плоскости и плоскости какой-либо грани, то находим точки пересечения прямой a с прямыми, содержащими ребра этой грани. Полученные точки — новые точки секущей плоскости, лежащие в плоскостях граней.

3. Если никакие две из данных точек не лежат в плоскости одной грани, то строим вспомогательное сечение, содержащее любые две данные точки, а затем выполняем шаги 1, 2.

Для контроля правильности построенного сечения, проверяйте, что:

— все вершины сечения лежат на рёбрах многогранника;

— все стороны сечения лежат в гранях многогранника;

— в каждой грани многогранника лежит не более одной стороны сечения.

Цилиндром называется фигура, полученная при вращении прямоугольника вокруг оси, содержащей его сторону.

Соотношения для цилиндра

Пусть h — высота цилиндра, r — радиус основания, Sбок — площадь боковой поверхности, Sполн — площадь полной поверхности, V — объем цилиндра. Тогда имеют место следующие соотношения:

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Конусом называется фигура, полученная при вращении прямоугольного треугольника вокруг оси, содержащей его катет.

Соотношения для конуса

Пусть h — высота конуса, r — радиус основания, l — образующая, Sбок — площадь боковой поверхности, Sполн — площадь полной поверхности, V — объем конуса. Тогда имеют место следующие соотношения:

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Сфера и шар

Шаром называется фигура, полученная при вращении полукруга вокруг оси, содержащей его диаметр. Сферой называется поверхность шара. Пусть R — радиус шара, S — площадь сферы, V — объем шара. Тогда имеют место следующие соотношения:

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферуКак вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Комбинации круглых тел. Вписанные сферы

Сфера называется вписанной в цилиндр, если она касается обоих оснований цилиндра и каждой его образующей.

Сфера называется вписанной в конус, если она касается основания конуса и каждой его образующей.

Сфера называется вписанной в усечённый конус, если она касается обоих оснований конуса и всех его образующих.

Теорема 1: В прямой круговой цилиндр можно вписать сферу тогда и только тогда, когда его высота равна диаметру основания. Причём центр сферы есть середина оси цилиндра.

Теорема 2: В любой прямой круговой конус можно вписать сферу. Причём центр сферы есть точка пересечения оси конуса с биссектрисой угла наклона образующей конуса к плоскости его основания.

Теорема 3. В усечённый конус можно вписать сферу тогда и только тогда, когда он прямой круговой, и длина его образующей равна сумме длин радиусов оснований. Причём центр сферы есть середина оси усечённого конуса.

Комбинации круглых тел. Описанные сферы

Сфера называется описанной около цилиндра, если окружности его оснований лежат на сфере.

Сфера называется описанной около конуса, если вершина конуса и его основание лежат на сфере.

Теорема 1: около цилиндра можно описать сферу тогда и только тогда, когда он прямой круговой. Причём центр сферы есть середина оси цилиндра.

Теорема 2: около конуса можно описать сферу тогда и только тогда, когда он круговой. Причём центр сферы есть точка пересечения прямой, перпендикулярной к плоскости основания и проходящей через центр его, и плоскости, перпендикулярной какой-либо его образующей конуса и проходящей середину этой образующей.

Следствие: сферу можно описать около любого прямого кругового конуса. В этом случае, центр сферы — точка пересечения прямой, содержащей высоту конуса с плоскостью, перпендикулярной какой-либо из его образующих и проходящей через ее середину.

Комбинации конуса и цилиндра

Цилиндр называется вписанным в конус, если одно его основание лежит на основании конуса, а второе совпадает с сечением конуса плоскостью, параллельной основанию. Конус в этом случае называется описанным вокруг цилиндра.

Цилиндр называется описанным вокруг конуса, если центр одного из оснований цилиндра является вершиной вершина конуса, а противоположное основание цилиндра совпадает с основанием конуса. Конус в этом случае называется вписанным в цилиндр.

Комбинации многогранников и круглых тел. Описанные сферы

Сфера называется описанной около многогранника, если все его вершины лежат на этой сфере. Многогранник называется в этом случае вписанным в сферу.

Возможность описать сферу около многогранника означает существование точки (центра сферы), равноудалённой ото всех вершин многогранника.

Теорема 1: если из центра описанной около многогранника сферы опустить перпендикуляр на какое-либо из его рёбер, то основание этого перпендикуляра разделит ребро на две равные части.

Теорема 2: если из центра описанной около многогранника сферы опустить перпендикуляр на какую-либо из его граней, то основание этого перпендикуляра попадёт в центр круга, описанного около соответствующей грани.

Теорема 3: если около многогранника описана сфера, то её центр лежит на пересечении перпендикуляров к каждой грани пирамиды, проведённых через центр окружности, описанной около соответствующей грани.

Теорема 4: если около многогранника описана сфера, то её центр является точкой пересечений всех плоскостей, проведённых через середины рёбер пирамиды перпендикулярно к этим рёбрам.

Комбинации многогранников и круглых тел. Вписанные сферы

Сфера называется вписанной в многогранник, если все его грани касаются этой сферы. Многогранник называется в этом случае описанным около сферы.

Теорема: если в многогранник с площадью поверхности S и объёмом V вписан шар радиуса r, то справедливо соотношение:

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Комбинации конуса, цилиндра и многогранников

В условиях задач встречаются также следующие понятия, не входящие в школьные учебники, которые уточняются непосредственно в условиях задач. Приведем наиболее употребительные из них.

Цилиндр вписан в призму: основания цилиндра вписаны в основания призмы.

Цилиндр описан вокруг призмы: основания цилиндра описаны вокруг оснований призмы.

Цилиндр вписан в пирамиду: одно из основание цилиндра вписано в сечение пирамиды плоскостью, параллельной основанию, а другое основание цилиндра принадлежит основанию пирамиды.

Цилиндр описан вокруг пирамиды: вершина пирамиды принадлежит одному из оснований цилиндра, а другое его основание описано вокруг основания пирамиды.

Конус вписан в призму: основание конуса вписано в основание призмы, а вершина конуса принадлежит противоположному основанию призмы.

Конус описан вокруг призмы: одно из оснований призмы вписано в сечение пирамиды плоскостью, параллельной основанию, а другое основание призмы вписано в основание конуса.

Конус вписан в пирамиду: их вершины совпадают, а основание конуса вписано в основание пирамиды. Вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой.

Конус описан вокруг пирамиды: их вершины совпадают, а основание конуса описано вокруг основания пирамиды.

Источник

Радиус вписанной сферы куба

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу

Свойства

Радиус вписанной сферы куба представляет собой половину ребра куба, так как диаметр такой сферы точно совпадает с самим ребром. Поэтому чтобы найти ребро куба через радиус вписанной сферы, нужно умножить последний на два. (рис.2.2) a=2r

Найти площадь стороны куба можно как площадь квадрата, стороной которого является ребро куба. Тогда, вместо того чтобы возводить во вторую степень ребро, нужно возвести удвоенный радиус вписанной в куб сферы. Площадь боковой поверхности куба и площадь полной поверхности куба будут равны четырем и шести таким площадям соответственно, так как они представлены эти количеством граней куба. S=a^2=4r^2 S_(б.п.)=4S=16r^2 S_(п.п.)=6S=24r^2

Чтобы вычислить объем, необходимо возвести в куб ребро a или удвоенный радиус вписанной сферы. Таким образом, мы получим, что объем куба через радиус сферы, вписанной в него, равен кубу этого радиуса, умноженному на 8. V=a^3=8r^3

Периметр куба, как сумма длин всех ребер по одной стороне, равен произведению длины одного ребра и двенадцать. Периметр, выраженный через радиус вписанной окружности, равен 24 таким радиусам. P=12a=24r

Диагональ стороны куба, то есть диагональ квадрата, вычисляется как произведение ребра куба на корень из двух, в данном случае она будет выглядеть как произведение радиуса вписанной сферы на 2 корня из двух. d=a√2=2√2 r

Чтобы найти диагональ куба через радиус вписанной сферы, воспользуемся готовой формулой для диагонали куба через ребро и подставим вместо него удвоенный радиус. (рис.2.1.) D=a√3=2√3 r

Радиус окружности, описанной вокруг куба, равен половине диагонали, как видно из рисунка. Так как диагональ куба равна удвоенному произведению радиуса и корня из трех, то разделив это выражение на два, коэффициенты сократятся, и останется только радиус, умноженный на корень из трех. (рис.2.3.) R=D/2=(2√3 r)/2=√3 r

Источник

Комбинация шара с другими телами

Разделы: Математика

Тема “Разные задачи на многогранники, цилиндр, конус и шар” является одной из самых сложных в курсе геометрии 11 класса. Перед тем, как решать геометрические задачи, обычно изучают соответствующие разделы теории, на которые ссылаются при решении задач. В учебнике С.Атанасяна и др. по данной теме (стр. 138) можно найти только определения многогранника, описанного около сферы, многогранника, вписанного в сферу, сферы, вписанной в многогранник, и сферы, описанной около многогранника. В методических рекомендациях к этому учебнику (см. книгу “Изучение геометрии в 10–11-х классах” С.М.Саакяна и В.Ф.Бутузова, стр.159) сказано, какие комбинации тел рассматриваются при решении задач № 629–646, и обращается внимание на то, что “при решении той или иной задачи прежде всего нужно добиться того, чтобы учащиеся хорошо представляли взаимное расположение указанных в условии тел”. Далее приводится решение задач №638(а) и №640.

Учитывая все выше сказанное, и то, что наиболее трудными для учащихся являются задачи на комбинацию шара с другими телами, необходимо систематизировать соответствующие теоретические положения и сообщить их учащимся.

1. Шар называется вписанным в многогранник, а многогранник описанным около шара, если поверхность шара касается всех граней многогранника.

2. Шар называется описанным около многогранника, а многогранник вписанным в шар, если поверхность шара проходит через все вершины многогранника.

3. Шар называется вписанным в цилиндр, усеченный конус (конус), а цилиндр, усеченный конус (конус) – описанным около шара, если поверхность шара касается оснований (основания) и всех образующих цилиндра, усеченного конуса (конуса).

(Из этого определения следует, что в любое осевое сечение этих тел может быть вписана окружность большого круга шара).

4. Шар называется описанным около цилиндра, усеченного конуса (конуса), если окружности оснований (окружность основания и вершина) принадлежат поверхности шара.

(Из этого определения следует, что около любого осевого сечения этих тел может быть описана окружность большего круга шара).

Общие замечания о положении центра шара.

1. Центр шара, вписанного в многогранник, лежит в точке пересечения биссекторных плоскостей всех двугранных углов многогранника. Он расположен только внутри многогранника.

2. Центр шара, описанного около многогранника, лежит в точке пересечения плоскостей, перпендикулярных ко всем ребрам многогранника и проходящих через их середины. Он может быть расположен внутри, на поверхности и вне многогранника.

Комбинация шара с призмой.

1. Шар, вписанный в прямую призму.

Теорема 1. Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности.

Следствие 1. Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание.

Следствие 2. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание.

2. Шар, описанный около призмы.

Теорема 2. Шар можно описать около призмы в том и только в том случае, если призма прямая и около ее основания можно описать окружность.

Следствие 1. Центр шара, описанного около прямой призмы, лежит на середине высоты призмы, проведенной через центр круга, описанного около основания.

Следствие 2. Шар, в частности, можно описать: около прямой треугольной призмы, около правильной призмы, около прямоугольного параллелепипеда, около прямой четырехугольной призмы, у которой сумма противоположных углов основания равна 180 градусов.

Из учебника Л.С.Атанасяна на комбинацию шара с призмой можно предложить задачи № 632, 633, 634, 637(а), 639(а,б).

Комбинация шара с пирамидой.

1. Шар, описанный около пирамиды.

Теорема 3. Около пирамиды можно описать шар в том и только в том случае, если около ее основания можно описать окружность.

Следствие 1. Центр шара, описанного около пирамиды лежит в точке пересечения прямой, перпендикулярной основанию пирамиды, проходящей через центр окружности, описанной около этого основания, и плоскости, перпендикулярной любому боковому ребру, проведенной через сере дину этого ребра.

Следствие 2. Если боковые ребра пирамиды равны между собой (или равно наклонены к плоскости основания), то около такой пирамиды можно описать шар.Центр этого шара в этом случае лежит в точке пересечения высоты пирамиды (или ее продолжения) с осью симметрии бокового ребра, лежащей в плоскости бокового ребра и высоты.

Следствие 3. Шар, в частности, можно описать: около треугольной пирамиды, около правильной пирамиды, около четырехугольной пирамиды, у которой сумма противоположных углов равна 180 градусов.

2. Шар, вписанный в пирамиду.

Теорема 4. Если боковые грани пирамиды одинаково наклонены к основанию, то в такую пирамиду можно вписать шар.

Следствие 1. Центр шара, вписанного в пирамиду, у которой боковые грани одинаково наклонены к основанию, лежит в точке пересечения высоты пирамиды с биссектрисой линейного угла любого двугранного угла при основании пирамиды, стороной которого служит высота боковой грани, проведенная из вершины пирамиды.

Следствие 2. В правильную пирамиду можно вписать шар.

Из учебника Л.С.Атанасяна на комбинацию шара с пирамидой можно предложить задачи № 635, 637(б), 638, 639(в),640, 641.

Комбинация шара с усеченной пирамидой.

1. Шар, описанный около правильной усеченной пирамиды.

Теорема 5. Около любой правильной усеченной пирамиды можно описать шар. (Это условие является достаточным, но не является необходимым)

2. Шар, вписанный в правильную усеченную пирамиду.

Теорема 6. В правильную усеченную пирамиду можно вписать шар в том и только в том случае, если апофема пирамиды равна сумме апофем оснований.

На комбинацию шара с усеченной пирамидой в учебнике Л.С.Атанасяна есть всего лишь одна задача (№ 636).

Комбинация шара с круглыми телами.

Теорема 7. Около цилиндра, усеченного конуса (прямых круговых), конуса можно описать шар.

Теорема 8. В цилиндр (прямой круговой) можно вписать шар в том и только в том случае, если цилиндр равносторонний.

Теорема 9. В любой конус (прямой круговой) можно вписать шар.

Теорема 10. В усеченный конус (прямой круговой) можно вписать шар в том и только в том случае, если его образующая равна сумме радиусов оснований.

Из учебника Л.С.Атанасяна на комбинацию шара с круглыми телами можно предложить задачи № 642, 643, 644, 645, 646.

Для более успешного изучения материала данной темы необходимо включать в ход уроков устные задачи:

1. Ребро куба равно а. Найти радиусы шаров: вписанного в куб и описанного около него. (r = a/2, R = aКак вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу3).

2. Можно ли описать сферу (шар) около: а) куба; б) прямоугольного параллелепипеда; в) наклонного параллелепипеда, в основании которого лежит прямоугольник; г) прямого параллелепипеда; д) наклонного параллелепипеда? (а) да; б) да; в) нет; г) нет; д) нет)

3. Справедливо ли утверждение, что около любой треугольной пирамиды можно описать сферу? (Да)

4. Можно ли описать сферу около любой четырехугольной пирамиды? (Нет, не около любой четырёхугольной пирамиды)

5. Какими свойствами должна обладать пирамида, чтобы около нее можно было описать сферу? (В её основании должен лежать многоугольник, около которого можно описать окружность)

6. В сферу вписана пирамида, боковое ребро которой перпендикулярно основанию. Как найти центр сферы? (Центр сферы – точка пересечения двух геометрических мест точек в пространстве. Первое – перпендикуляр, проведённый к плоскости основания пирамиды, через центр окружности, описанной около него. Второе – плоскость перпендикулярная данному боковому ребру и проведённая через его середину)

7. При каких условиях можно описать сферу около призмы, в основании которой – трапеция? (Во-первых, призма должна быть прямой, и, во-вторых, трапеция должна быть равнобедренной, чтобы около неё можно было описать окружность)

8. Каким условиям должна удовлетворять призма, чтобы около нее можно было описать сферу? (Призма должна быть прямой, и её основанием должен являться многоугольник, около которого можно описать окружность)

9. Около треугольной призмы описана сфера, центр которой лежит вне призмы. Какой треугольник является основанием призмы? (Тупоугольный треугольник)

10. Можно ли описать сферу около наклонной призмы? (Нет, нельзя)

11. При каком условии центр сферы, описанной около прямой треугольной призмы, будет находится на одной из боковых граней призмы? (В основании лежит прямоугольный треугольник)

13. Около правильной пирамиды описана сфера. Как расположен ее центр относительно элементов пирамиды? (Центр сферы находится на перпендикуляре, проведенном к плоскости основания через его центр)

14. При каком условии центр сферы, описанной около прямой треугольной призмы, лежит: а) внутри призмы; б) вне призмы? (В основании призмы: а) остроугольный треугольник; б) тупоугольный треугольник)

15. Около прямоугольного параллелепипеда, ребра которого равны 1 дм, 2 дм и 2 дм, описана сфера. Вычислите радиус сферы. (1,5 дм)

16. В какой усеченный конус можно вписать сферу? (В усечённый конус, в осевое сечение которого можно вписать окружность. Осевым сечением конуса является равнобедренная трапеция, сумма её оснований должна равняться сумме её боковых сторон. Другими словами, у конуса сумма радиусов оснований должна равняться образующей)

17. В усеченный конус вписана сфера. Под каким углом образующая конуса видна из центра сферы? (90 градусов)

18. Каким свойством должна обладать прямая призма, чтобы в нее можно было вписать сферу? (Во-первых, в основании прямой призмы должен лежать многоугольник, в который можно вписать окружность, и, во-вторых, высота призмы должна равняться диаметру вписанной в основание окружности)

19. Приведите пример пирамиды, в которую нельзя вписать сферу? (Например, четырёхугольная пирамида, в основании которой лежит прямоугольник или параллелограмм)

20. В основании прямой призмы лежит ромб. Можно ли в эту призму вписать сферу? (Нет, нельзя, так как около ромба в общем случае нельзя описать окружность)

21. При каком условии в прямую треугольную призму можно вписать сферу? (Если высота призмы в два раза больше радиуса окружности, вписанной в основание)

22. При каком условии в правильную четырехугольную усеченную пирамиду можно вписать сферу? (Если сечением данной пирамиды плоскостью, проходящей через середину стороны основания перпендикулярно ей, является равнобедренная трапеция, в которую можно вписать окружность)

23. В треугольную усеченную пирамиду вписана сфера. Какая точка пирамиды является центром сферы? (Центр вписанной в данную пирамиду сферы находится на пересечении трёх биссектральных плоскостей углов, образованных боковыми гранями пирамиды с основанием)

24. Можно ли описать сферу около цилиндра (прямого кругового)? (Да, можно)

25. Можно ли описать сферу около конуса, усеченного конуса (прямых круговых)? (Да, можно, в обоих случаях)

26. Во всякий ли цилиндр можно вписать сферу? Какими свойствами должен обладать цилиндр, чтобы в него можно было вписать сферу? (Нет, не во всякий: осевое сечение цилиндра должно быть квадратом)

27. Во всякий ли конус можно вписать сферу? Как определить положение центра сферы, вписанной в конус? (Да, во всякий. Центр вписанной сферы находится на пересечении высоты конуса и биссектрисы угла наклона образующей к плоскости основания)

Автор считает, что из трех уроков, которые отводятся по планированию на тему “Разные задачи на многогранники, цилиндр, конус и шар”, два урока целесообразно отвести на решение задач на комбинацию шара с другими телами. Теоремы, приведенные выше, из-за недостаточного количества времени на уроках доказывать не рекомендуется. Можно предложить учащимся, которые владеют достаточными для этого навыками, доказать их, указав (по усморению учителя) ход или план доказательства.

Автор надеется, что материал этой статьи поможет молодым коллегам при подготовке к урокам по данной теме.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Как вписать куб в сферу. Смотреть фото Как вписать куб в сферу. Смотреть картинку Как вписать куб в сферу. Картинка про Как вписать куб в сферу. Фото Как вписать куб в сферу