Как вписать многогранник в сферу
Многогранники, вписанные в сферу.
Презентация для учащихся 11 класса по теме «Комбинация тел» содержит краткую теорию и примеры решения задач на комбинации сферы и призмы, сферы и пирамиды. Будет полезна при подготовке к ЕГЭ.
Просмотр содержимого документа
«Многогранники, вписанные в сферу.»
Многогранники, вписанные в сферу
Многогранник называется вписанным в сферу, если все его вершины принадлежат этой сфере. Сама сфера при этом называется описанной около многогранника.
Теорема. Около пирамиды можно описать сферу тогда и только тогда, когда около основания этой пирамиды можно описать окружность.
В режиме слайдов ответы и решения появляются после кликанья мышкой
Многогранники, вписанные в сферу
где h – высота призмы, r – радиус окружности, описанной около основания призмы.
В режиме слайдов ответы и решения появляются после кликанья мышкой
Можно ли описать сферу около прямоугольного параллелепипеда?
Ответ: Да. Ее центром является точка пересечения диагоналей, а радиус равен половине диагонали параллелепипеда
Можно ли описать сферу около наклонного параллелепипеда, все грани которого ромбы?
Можно ли описать сферу около наклонной призмы?
Может ли центр сферы, описанной около призмы, находится вне призмы?
Ответ: Да, если в основании призмы – тупоугольный треугольник.
Может ли центр сферы, описанной около пирамиды, находится вне этой пирамиды?
Сфера, описанная около куба
В режиме слайдов ответы и решения появляются после кликанья мышкой
Найдите радиус сферы, описанной около единичного куба.
Найдите ребро куба, вписанного в единичную сферу.
Найдите радиус сферы, описанной около прямоугольного параллелепипеда, ребра которого, выходящие из одной вершины, равны 1, 2, 3.
Сфера, описанная около тетраэдра
В режиме слайдов ответы и решения появляются после кликанья мышкой
Найдите радиус сферы, описанной около единичного тетраэдра.
Решение. В тетраэдре SABC имеем:
В прямоугольном треугольнике OBE имеем:
Найдите ребро правильного тетраэдра, вписанного в единичную сферу.
Основанием пирамиды служит правильный треугольник, сторона которого равна 3. Одно из боковых ребер равно 2 и перпендикулярно плоскости основания. Найдите радиус описанной сферы.
OD = CD = По теореме
Решение. В тетраэдре SABC имеем:
В прямоугольном треугольнике OAE имеем:
Сфера, описанная около треугольной призмы
В режиме слайдов ответы и решения появляются после кликанья мышкой
Найдите радиус сферы, описанной около правильной призмы, все ребра которой равны 1.
Следовательно, R = AO =
Около правильной треугольной призмы, сторона основания которой равна 1, описана сфера радиуса 2. Найдите высоту призмы.
Решение. Имеем: AO = 2, OD =
Следовательно, h = AA 1 = 2 AO =
Около правильной треугольной призмы, высота которой равна 1, описана сфера радиуса 1. Найдите сторону основания призмы.
Найдите радиус сферы, описанной около прямой треугольной призмы, в основании которой прямоугольный треугольник с катетами, равными 1, и высота призмы равна 2.
Сфера, описанная около правильной шестиугольной призмы
В режиме слайдов ответы и решения появляются после кликанья мышкой
Найдите радиус сферы, описанной около правильной шестиугольной призмы, все ребра которой равны 1.
Решение. Имеем AG = 1, OG =
Сфера, описанная около правильной четырехугольной пирамиды
В режиме слайдов ответы и решения появляются после кликанья мышкой
Найдите радиус сферы, описанной около правильной четырехугольной пирамиды, все ребра которой равны 1.
Сфера, описанная около правильной шестиугольной пирамиды
В режиме слайдов ответы и решения появляются после кликанья мышкой
Сфера, описанная около октаэдра
В режиме слайдов ответы и решения появляются после кликанья мышкой
Найдите радиус сферы, описанной около единичного октаэдра.
Решение. Радиус R описанной сферы равен половине диагонали квадрата ABCD со стороной 1. Следовательно,
Сфера, описанная около икосаэдра
В режиме слайдов ответы и решения появляются после кликанья мышкой
Найдите радиус сферы, описанной около единичного икосаэдра.
Решение. В прямоугольнике ABCD AB = CD = 1, BC и AD – диагонали правильных пятиугольников со сторонами 1. Следовательно,
По теореме Пифагора AC =
Искомый радиус равен половине этой диагонали, т.е.
Сфера, описанная около додекаэдра
Найдите радиус сферы, описанной около единичного додекаэдра.
Решение. ABCDE – правильный пятиугольник со стороной
В прямоугольнике ACGF AF = CG = 1, AC и FG – диагонали пятиугольника ABCDE и, следовательно, AC = FG =
По теореме Пифагора
FC = Искомый радиус
равен половине этой диагонали, т.е.
Сфера, описанная около усеченного тетраэдра
На рисунке изображен усеченный тетраэдр, получаемый отсечением от углов правильного тетраэдра треугольных пирамид, гранями которого являются правильные шестиугольники и треугольники. Найдите радиус сферы, описанной около усеченного тетраэдра, ребра которого равны 1.
Сфера, описанная около усеченного куба
На рисунке изображен усеченный куб, получаемый отсечением от углов куба треугольных пирамид, гранями которого являются правильные восьмиугольники и треугольники. Найдите радиус сферы, описанной около усеченного куба, ребра которого равны 1.
Сфера, описанная около усеченного октаэдра
На рисунке изображен усеченный октаэдр, получаемый отсечением от углов октаэдра треугольных пирамид, гранями которого являются правильные шестиугольники и треугольники. Найдите радиус сферы, описанной около усеченного октаэдра, ребра которого равны 1.
Сфера, описанная около усеченного икосаэдра
На рисунке изображен усеченный икосаэдр, получаемый отсечением от углов икосаэдра пятиугольных пирамид, гранями которого являются правильные шестиугольники и пятиугольники. Найдите радиус сферы, описанной около усеченного икосаэдра, ребра которого равны 1.
Сфера, описанная около усеченного додекаэдра
На рисунке изображен усеченный додекаэдр, получаемый отсечением от углов додекаэдра треугольных пирамид, гранями которого являются правильные десятиугольники и треугольники. Найдите радиус сферы, описанной около усеченного додекаэдра, ребра которого равны 1.
Сфера, описанная около кубооктаэдра
Найдите радиус сферы, описанной около единичного кубооктаэдра
Решение. Напомним, что кубооктаэдр получается из куба отсечением правильных треугольных пирамид с вершинами в вершинах куба и боковыми ребрами, равными половине ребра куба. Если ребро октаэдра равно 1, то ребро соответствующего куба равно Радиус описанной сферы равен расстоянию от центра куба до середины его ребра, т.е. равен 1.
Сфера, описанная около икосододекаэдра
Сфера, описанная около усеченного кубооктаэдра
Сфера, описанная около усеченного икосододекаэдра
Комбинация шара с другими телами
Разделы: Математика
Тема “Разные задачи на многогранники, цилиндр, конус и шар” является одной из самых сложных в курсе геометрии 11 класса. Перед тем, как решать геометрические задачи, обычно изучают соответствующие разделы теории, на которые ссылаются при решении задач. В учебнике С.Атанасяна и др. по данной теме (стр. 138) можно найти только определения многогранника, описанного около сферы, многогранника, вписанного в сферу, сферы, вписанной в многогранник, и сферы, описанной около многогранника. В методических рекомендациях к этому учебнику (см. книгу “Изучение геометрии в 10–11-х классах” С.М.Саакяна и В.Ф.Бутузова, стр.159) сказано, какие комбинации тел рассматриваются при решении задач № 629–646, и обращается внимание на то, что “при решении той или иной задачи прежде всего нужно добиться того, чтобы учащиеся хорошо представляли взаимное расположение указанных в условии тел”. Далее приводится решение задач №638(а) и №640.
Учитывая все выше сказанное, и то, что наиболее трудными для учащихся являются задачи на комбинацию шара с другими телами, необходимо систематизировать соответствующие теоретические положения и сообщить их учащимся.
1. Шар называется вписанным в многогранник, а многогранник описанным около шара, если поверхность шара касается всех граней многогранника.
2. Шар называется описанным около многогранника, а многогранник вписанным в шар, если поверхность шара проходит через все вершины многогранника.
3. Шар называется вписанным в цилиндр, усеченный конус (конус), а цилиндр, усеченный конус (конус) – описанным около шара, если поверхность шара касается оснований (основания) и всех образующих цилиндра, усеченного конуса (конуса).
(Из этого определения следует, что в любое осевое сечение этих тел может быть вписана окружность большого круга шара).
4. Шар называется описанным около цилиндра, усеченного конуса (конуса), если окружности оснований (окружность основания и вершина) принадлежат поверхности шара.
(Из этого определения следует, что около любого осевого сечения этих тел может быть описана окружность большего круга шара).
Общие замечания о положении центра шара.
1. Центр шара, вписанного в многогранник, лежит в точке пересечения биссекторных плоскостей всех двугранных углов многогранника. Он расположен только внутри многогранника.
2. Центр шара, описанного около многогранника, лежит в точке пересечения плоскостей, перпендикулярных ко всем ребрам многогранника и проходящих через их середины. Он может быть расположен внутри, на поверхности и вне многогранника.
Комбинация шара с призмой.
1. Шар, вписанный в прямую призму.
Теорема 1. Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности.
Следствие 1. Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание.
Следствие 2. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание.
2. Шар, описанный около призмы.
Теорема 2. Шар можно описать около призмы в том и только в том случае, если призма прямая и около ее основания можно описать окружность.
Следствие 1. Центр шара, описанного около прямой призмы, лежит на середине высоты призмы, проведенной через центр круга, описанного около основания.
Следствие 2. Шар, в частности, можно описать: около прямой треугольной призмы, около правильной призмы, около прямоугольного параллелепипеда, около прямой четырехугольной призмы, у которой сумма противоположных углов основания равна 180 градусов.
Из учебника Л.С.Атанасяна на комбинацию шара с призмой можно предложить задачи № 632, 633, 634, 637(а), 639(а,б).
Комбинация шара с пирамидой.
1. Шар, описанный около пирамиды.
Теорема 3. Около пирамиды можно описать шар в том и только в том случае, если около ее основания можно описать окружность.
Следствие 1. Центр шара, описанного около пирамиды лежит в точке пересечения прямой, перпендикулярной основанию пирамиды, проходящей через центр окружности, описанной около этого основания, и плоскости, перпендикулярной любому боковому ребру, проведенной через сере дину этого ребра.
Следствие 2. Если боковые ребра пирамиды равны между собой (или равно наклонены к плоскости основания), то около такой пирамиды можно описать шар.Центр этого шара в этом случае лежит в точке пересечения высоты пирамиды (или ее продолжения) с осью симметрии бокового ребра, лежащей в плоскости бокового ребра и высоты.
Следствие 3. Шар, в частности, можно описать: около треугольной пирамиды, около правильной пирамиды, около четырехугольной пирамиды, у которой сумма противоположных углов равна 180 градусов.
2. Шар, вписанный в пирамиду.
Теорема 4. Если боковые грани пирамиды одинаково наклонены к основанию, то в такую пирамиду можно вписать шар.
Следствие 1. Центр шара, вписанного в пирамиду, у которой боковые грани одинаково наклонены к основанию, лежит в точке пересечения высоты пирамиды с биссектрисой линейного угла любого двугранного угла при основании пирамиды, стороной которого служит высота боковой грани, проведенная из вершины пирамиды.
Следствие 2. В правильную пирамиду можно вписать шар.
Из учебника Л.С.Атанасяна на комбинацию шара с пирамидой можно предложить задачи № 635, 637(б), 638, 639(в),640, 641.
Комбинация шара с усеченной пирамидой.
1. Шар, описанный около правильной усеченной пирамиды.
Теорема 5. Около любой правильной усеченной пирамиды можно описать шар. (Это условие является достаточным, но не является необходимым)
2. Шар, вписанный в правильную усеченную пирамиду.
Теорема 6. В правильную усеченную пирамиду можно вписать шар в том и только в том случае, если апофема пирамиды равна сумме апофем оснований.
На комбинацию шара с усеченной пирамидой в учебнике Л.С.Атанасяна есть всего лишь одна задача (№ 636).
Комбинация шара с круглыми телами.
Теорема 7. Около цилиндра, усеченного конуса (прямых круговых), конуса можно описать шар.
Теорема 8. В цилиндр (прямой круговой) можно вписать шар в том и только в том случае, если цилиндр равносторонний.
Теорема 9. В любой конус (прямой круговой) можно вписать шар.
Теорема 10. В усеченный конус (прямой круговой) можно вписать шар в том и только в том случае, если его образующая равна сумме радиусов оснований.
Из учебника Л.С.Атанасяна на комбинацию шара с круглыми телами можно предложить задачи № 642, 643, 644, 645, 646.
Для более успешного изучения материала данной темы необходимо включать в ход уроков устные задачи:
1. Ребро куба равно а. Найти радиусы шаров: вписанного в куб и описанного около него. (r = a/2, R = a3).
2. Можно ли описать сферу (шар) около: а) куба; б) прямоугольного параллелепипеда; в) наклонного параллелепипеда, в основании которого лежит прямоугольник; г) прямого параллелепипеда; д) наклонного параллелепипеда? (а) да; б) да; в) нет; г) нет; д) нет)
3. Справедливо ли утверждение, что около любой треугольной пирамиды можно описать сферу? (Да)
4. Можно ли описать сферу около любой четырехугольной пирамиды? (Нет, не около любой четырёхугольной пирамиды)
5. Какими свойствами должна обладать пирамида, чтобы около нее можно было описать сферу? (В её основании должен лежать многоугольник, около которого можно описать окружность)
6. В сферу вписана пирамида, боковое ребро которой перпендикулярно основанию. Как найти центр сферы? (Центр сферы – точка пересечения двух геометрических мест точек в пространстве. Первое – перпендикуляр, проведённый к плоскости основания пирамиды, через центр окружности, описанной около него. Второе – плоскость перпендикулярная данному боковому ребру и проведённая через его середину)
7. При каких условиях можно описать сферу около призмы, в основании которой – трапеция? (Во-первых, призма должна быть прямой, и, во-вторых, трапеция должна быть равнобедренной, чтобы около неё можно было описать окружность)
8. Каким условиям должна удовлетворять призма, чтобы около нее можно было описать сферу? (Призма должна быть прямой, и её основанием должен являться многоугольник, около которого можно описать окружность)
9. Около треугольной призмы описана сфера, центр которой лежит вне призмы. Какой треугольник является основанием призмы? (Тупоугольный треугольник)
10. Можно ли описать сферу около наклонной призмы? (Нет, нельзя)
11. При каком условии центр сферы, описанной около прямой треугольной призмы, будет находится на одной из боковых граней призмы? (В основании лежит прямоугольный треугольник)
13. Около правильной пирамиды описана сфера. Как расположен ее центр относительно элементов пирамиды? (Центр сферы находится на перпендикуляре, проведенном к плоскости основания через его центр)
14. При каком условии центр сферы, описанной около прямой треугольной призмы, лежит: а) внутри призмы; б) вне призмы? (В основании призмы: а) остроугольный треугольник; б) тупоугольный треугольник)
15. Около прямоугольного параллелепипеда, ребра которого равны 1 дм, 2 дм и 2 дм, описана сфера. Вычислите радиус сферы. (1,5 дм)
16. В какой усеченный конус можно вписать сферу? (В усечённый конус, в осевое сечение которого можно вписать окружность. Осевым сечением конуса является равнобедренная трапеция, сумма её оснований должна равняться сумме её боковых сторон. Другими словами, у конуса сумма радиусов оснований должна равняться образующей)
17. В усеченный конус вписана сфера. Под каким углом образующая конуса видна из центра сферы? (90 градусов)
18. Каким свойством должна обладать прямая призма, чтобы в нее можно было вписать сферу? (Во-первых, в основании прямой призмы должен лежать многоугольник, в который можно вписать окружность, и, во-вторых, высота призмы должна равняться диаметру вписанной в основание окружности)
19. Приведите пример пирамиды, в которую нельзя вписать сферу? (Например, четырёхугольная пирамида, в основании которой лежит прямоугольник или параллелограмм)
20. В основании прямой призмы лежит ромб. Можно ли в эту призму вписать сферу? (Нет, нельзя, так как около ромба в общем случае нельзя описать окружность)
21. При каком условии в прямую треугольную призму можно вписать сферу? (Если высота призмы в два раза больше радиуса окружности, вписанной в основание)
22. При каком условии в правильную четырехугольную усеченную пирамиду можно вписать сферу? (Если сечением данной пирамиды плоскостью, проходящей через середину стороны основания перпендикулярно ей, является равнобедренная трапеция, в которую можно вписать окружность)
23. В треугольную усеченную пирамиду вписана сфера. Какая точка пирамиды является центром сферы? (Центр вписанной в данную пирамиду сферы находится на пересечении трёх биссектральных плоскостей углов, образованных боковыми гранями пирамиды с основанием)
24. Можно ли описать сферу около цилиндра (прямого кругового)? (Да, можно)
25. Можно ли описать сферу около конуса, усеченного конуса (прямых круговых)? (Да, можно, в обоих случаях)
26. Во всякий ли цилиндр можно вписать сферу? Какими свойствами должен обладать цилиндр, чтобы в него можно было вписать сферу? (Нет, не во всякий: осевое сечение цилиндра должно быть квадратом)
27. Во всякий ли конус можно вписать сферу? Как определить положение центра сферы, вписанной в конус? (Да, во всякий. Центр вписанной сферы находится на пересечении высоты конуса и биссектрисы угла наклона образующей к плоскости основания)
Автор считает, что из трех уроков, которые отводятся по планированию на тему “Разные задачи на многогранники, цилиндр, конус и шар”, два урока целесообразно отвести на решение задач на комбинацию шара с другими телами. Теоремы, приведенные выше, из-за недостаточного количества времени на уроках доказывать не рекомендуется. Можно предложить учащимся, которые владеют достаточными для этого навыками, доказать их, указав (по усморению учителя) ход или план доказательства.
Автор надеется, что материал этой статьи поможет молодым коллегам при подготовке к урокам по данной теме.