Как выглядит клетка человека под микроскопом

25 макрофотографий, которые доказывают, что тело человека – это невероятная вселенная

25 макрофотографий, которые доказывают, что тело человека – это невероятная вселенная

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Известно, что масштабы наблюдаемой Вселенной поражают – 46 млрд световых лет. А как насчет микромира? Он тоже удивляет, а его микроразмеры атомов, ядер, нейтронов, бозонов и виртуальных частиц также не укладываются в голове. Например, размер протона составляет 10 −15 м.

Мы собрали для вас 25 макрофотографий, сделанных учеными и другими специалистами с помощью электронного микроскопа, которые откроют вам удивительный микромир человеческого организма.

1. Ресница человека под микроскопом

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

СТИВ ГШМЕЙССНЕР / SPL / East News

Увеличение: х350

На фото – ресница на веке. На поверхности ресницы видны сквамозные клетки, которые отслаиваются от кожи и прилипают к волосу.

Ресницы – это волосы, растущие от век. Стоит отметить, что ресницы выполняют защитную роль для глаз, представляя собой сенсоры, предупреждающие о том, что рядом с глазами находится какой-то объект, в результате чего в целях безопасности глаз рефлекторно закрывается для того, чтобы защитить себя от попадания инородных тел.

2. Внутренняя поверхность радужки глаза и ресничных отростков глаза под увеличением

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

РИЧАРД КЕССЕЛЬ И ДР. ГЕН ШИХ / SPL / East News

3. Клетка крови на кончике иглы. Это эритроциты – часть клеток крови, которые переносят в организме кислород (из легких в ткани)

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

СТИВ ГШМЕЙССНЕР / SPL/ East News

Также эритроциты являются обратными переносчиками диоксида углерода из тканей после их поглощения кислорода. Диоксид углерода выходит через легкие, когда мы выдыхаем после цикла вдоха.

Обратите внимание на дисковидную двояковогнутую форму эритроцита, диаметр которого составляет от 7 до 10 мкм. Благодаря своей эластичности обеспечивается их беспрепятственное движение по капиллярам. За счет своих размеров (формы) эритроциты могут переносить больше кислорода и диоксида углерода, осуществляя в организме цикл газообмена.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

4. Камень в почке под увеличением

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

СУСУМУ НИШИНАГА / SPL / East News

На фото можно увидеть поверхность камня в почке человека. Камни в почках, как правило, образуются в результате осадка минеральной соли оксалата кальция в моче. Из-за осаждения солей со временем образуются камни, которые могут причинять человеку боль (нередко сильную) и дискомфорт. В большинстве случаев камни выходят естественным путем. В некоторых случаях камни приходится удалять хирургическим путем. Иногда их дробят ультразвуком.

Источник

Строение клетки человека, ее свойства и функции в организме человека

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Клетки человека: Depositphotos

Каково строение клетки человека и что нам о нем известно? Ученые сумели рассмотреть эту крохотную деталь нашего организма во всех подробностях и хорошо представляют, как она работает и что умеет. Познакомимся с удивительной жизнью клеток, триллионы которых образуют организм человека.

Строение клетки человека

Клетка человека представляет собой элементарную живую систему, основную структурную и функциональную единицу организма, которая может самообновляться, саморегулироваться и самовоспроизводиться.

Организм человека содержит десятки триллионов клеток, которые вместе образуют ткани и органы. Известны разные виды клеток человека: мозг, сердце и печень, например, состоят из специфических клеток.

Но все же общее строение клеток очень похоже, и именно на нем остановимся подробнее. Из чего состоит клетка? Структура клетки человека представлена компонентами.

Цитоплазматическая мембрана

Рассматривать строение клетки начинают с мембраны, так как она ее основа. Об этом компоненте клеток известно следующее:

Мембрана выполняет защитную функцию, регулирует обмен веществ между клеткой и окружающей средой, а также поддерживает ее форму.

Цитоплазма клетки человека

Это жидкая среда клетки, в которой находятся все органоиды и разнообразные включения. Основной ее компонент — вода. Это среда для протекания всех химических процессов. Также цитоплазма объединяет всю клетку в единое целое и служит полем для взаимосвязи всех компонентов.

Органоиды

Каждая из этих мельчайших деталей наделена важной функцией и бесперебойно ее выполняет.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Органоиды клетки человека: Freepick

Главный органоид — это ядро. Оно состоит из:

С помощью мембраны ядро отделено от цитоплазмы. Внутри оно наполнено ядерным соком (кариоплазмой). Ядрышко необходимо для процесса синтеза белка. Самая сокровенная часть ядра — это хромосомы, ДНК с записью всей наследственной информации.

Стоит отметить, что количество хромосом разное у каждого вида и никак не связано со сложностью его организации. Так, человеческая клетка содержит 46 хромосом, клетка шимпанзе — 48, собаки — 78.

Клеточное ядро сохраняет наследственную информацию о клетке, передает ее дочерним клеткам во время деления, реализовывает наследственную информацию путем синтеза белков, которые характерны для данной клетки.

Кроме ядра, клетка организма содержит:

В отдельных группах клеток присутствуют органоиды специального назначения. К ним относятся:

Также клетки могут постоянно или временно содержать ряд включений:

Все это умещается в 3–4 микрометре (мкм) — таков средний размер человеческой клетки!

Клетка человека: свойства

Прежде чем рассмотреть функции клетки и ее свойства, обратим внимание на состав клетки человека.

Состав клетки человека

Разобраться в свойствах клетки поможет знание ее состава:

Свойства

Клетки человека наделены следующими свойствами:

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Процесс деления клеток человека: Freepick

Размножение

Одно из важнейших и ключевых свойств всех клеток — их способность к делению, благодаря которой организм растет, а старые клетки заменяются новыми.

Размножаются клетки в организме человека непрямым делением. В результате у дочерней клетки сохраняется хромосомный набор, идентичный материнскому. Именно хромосомы содержат всю информацию о наследственных свойствах данного организма и передают ее.

Процесс размножения состоит из нескольких стадий:

Таково базовое строение клетки человека. Это совершенно крохотный и удивительный микромир, который богат органоидами и различными веществами. В нем происходят сложнейшие процессы, благодаря которым мы живем.

Узнавайте обо всем первыми

Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.

Источник

Клетка под световым микроскопом

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопомКлетка – это базовый «кирпичик» всех живых организмов. Открытие клетки принадлежит Роберту Гуку, английскому естествоиспытателю и изобретателю. Он же и придумал сам термин «клетка». В 1665 год Гук исследовал строение обычной винной пробки и обнаружил в ней множество ячеек, напоминающих соты – так мир узнал о клетках. Клетку под световым микроскопом впоследствии наблюдало множество ученых – Антони ван Левенгук, Роберт Броун, Ян Пуркине, Марчеелло Мальпииги и другие. В свое время это было нетривиальной задачкой, сейчас же изучать клетки в световом или цифровом микроскопе может каждый!

Стоит сказать, что растительные и животные клетки отличаются друг от друга. Клеточное строение растений проще всего изучать на примере лука. Как это сделать, читайте в этой статье. Для исследования клеток животных можно взять кусочек мяса. Чтобы увидеть клетки человека под микроскопом, рекомендуем воспользоваться готовыми микропрепаратами. Например, с помощью набора Levenhuk N80 NG «Увидеть все!» можно исследовать кровеносную, покровную и нервную системы, детально рассмотреть образцы отдельных органов и мышц человека.

Для домашних научных экспериментов нам понадобится оптический или электронный (цифровой) микроскоп. Приобрести его можно в нашем интернет-магазине. Наши консультанты всегда готовы помочь с выбором подходящей модели. Подойдет любой микроскоп начального уровня, гнаться за большим увеличением не нужно. Но если у вас есть доступ к профессиональной оптике с кратностью до 2000х, лишним это не будет.

Клетка растения в электронном микроскопе

Давайте посмотрим на образец лука, который мы подготовили. Первое, что бросается в глаза, – прямоугольные области, отгороженные друг от друга стенками. Это и есть клетки. Клеточные стенки прочные и не дают клеткам деформироваться. Их плотность зависит от вида растения. Например, у апельсина клеточная стенка тонкая и легко рвется, а вот повредить ее у дуба или тополя уже сложно. Полужидкое содержимое клетки – это цитоплазма. А внутреннее пространство, заполненное клеточным соком – вакуоль. В центре клетки можно увидеть клеточное ядро. Если вместо лука взять лист любого растения, можно увидеть хлоропласты – зеленые вкрапления внутри клеток. Хлоропласты участвуют в фотосинтезе.

Клетка животного под микроскопом

Чтобы посмотреть, как выглядят клетки животных, возьмем кусочек свежего мяса. Необходимо сделать тончайший срез поперек волокон. Далее кладем его под объектив микроскопа. Мы увидим круглые и овальные клетки, заполненные мышечными волокнами. Основное отличие животных клеток от растительных – в них нет хлоропластов. Именно поэтому животные организмы вынуждены потреблять пищу извне.

Клетка человека под микроскопом

Для изучения человеческих клеток обратимся к готовому микропрепарату «Кровь человека». Он тоже входит в набор Levenhuk N80 NG «Увидеть все!». При взгляде в микроскоп мы увидим множество маленьких розоватых пятнышек – это эритроциты, или красные кровяные тельца. Их функция – переносить кислород от легких к разным органам. Если присмотреться получше, можно увидеть удивительное – внутри эритроцитов нет клеточного ядра! Да, в процессе эволюции оно исчезло, чтобы эритроцит мог переносить как можно больше кислорода. Но на этом наше исследование не закончено. Взглянем на клетки крови еще раз – под микроскопом можно увидеть и отдельные клетки с темно-синими ядрами. Это иммунные клетки. Их функция – защита организма от заболеваний, начиная от легкой простуды и заканчивая раковыми опухолями.

Клеточное устройство весьма интересно. Мы рекомендуем изучить все готовые микропрепараты из набора Levenhuk N80 NG «Увидеть все!». Микромир настолько разнообразен, что два растения под микроскопом не будут похожи друг на друга!

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.

Источник

Клетка под световым микроскопом

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Если говорить о строении клетки, то стоит помнить, что строение животной клетки и растительной имеют свои отличия. Для изучения строения клетки растений ученые используют лук. Более подробно о том, как проводится исследование, мы расскажем в другой статье. А вот изучать строение клеток животного происхождения лучше всего на кусочке мяса. Что касается человеческих клеток, то в этом случае ученые рекомендуют использовать уже готовые препараты. На сегодня существуют такие микроскопы (например Olympus BX 43), с помощью которых удается изучить не только кровеносную и лимфатическую систему, но и клетки нервной системы, кожи, мышц и прочее.

Исследование клеток в домашних условиях можно с помощью электронного или оптического микроскопа, которые доступны каждому в любом интернет магазине. У нас Вы можете не только приобрести микроскоп, но и получить совершенно бесплатную консультацию по его выбору, узнать все характеристики интересующей Вас модели. Для начала работы в домашних условиях идеальным решением будет микроскоп начального уровня. Но если у Вас есть возможность и опыт работы с микроскопами большого увеличения, то приобретение такого микроскопа будет не лишним.

Итак, детально остановимся на изучении клетки под электронным микроскопом. Как мы сказали уже выше, оптимальным препаратом для изучения будет клетка лука. Поместив препарат под микроскоп обращает на себя внимание то, видны отдельные прямоугольники, между которыми определяются стенки. Это и есть не что иное, как клетка. Благодаря тому, что стенки клеток у лука плотные и упругие, они не деформируются и не изменяют свою форму. Но есть и такие растения, у которых клеточные стенки настолько тонки и хрупкие, что легко приводит к ее повреждению. Это, например, наблюдается у апельсина. А вот клетки дуба или другого дерева разрушить намного сложнее.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

В каждой отдельной клетке видно содержимое, которое носит название цитоплазмы, а то пространство, что заполнено клеточным соком – это вакуоль. В центре каждой клетки видно клеточное ядро. Если для изучения используется клетка зеленого растения, то внутри ее видны отдельные хлоропласты, принимающие участие в фотосинтезе и отвечающие за цвет растения.

Клетки животного происхождения лучше всего изучать на поперечном срезе кусочка мяса. Поместив препарат под микроскоп каждый сможет увидеть клетки круглой или овальной формы, внутри которых содержаться волокна. Увидеть хлоропластов в таких клетках невозможно, так как они в них отсутствуют.

Для изучения человеческих клеток отлично подходит препарат из клеток крови. Его Вы можете найти в наборе с микроскопом, приобрести или приготовить самостоятельно. Поместив микропрепарат под световой микроскоп видны множественные мелкие пятна, которые и являются эритроцитами. Красные кровяные тельца в организме человека выполняют самую важную роль – доставляют кислород ко всем органам. Посмотрев более внимательно можно увидеть, что внутри клетки отсутствует ядро. Но помимо красных кровяных клеток в препарате крови можно увидеть и клетки, содержащие темно-синие ядра. Это так называемые иммунные клетки, которые защищают человеческий организм от всех заболеваний.

Помните, что каждая клетка имеет отличия от другой и не является идентичной и похожей на такую же.

Источник

Цвет, 3D и сверхвысокое разрешение: новая разработка в микроскопии

Заглавная иллюстрация из обсуждаемой статьи — коллаж из изображений, полученных авторами при помощи новой методики. По часовой стрелке, начиная с верхнего левого угла:

Автор
Редакторы

Недавно научный и околонаучный мир «взорвало» видео со сверхдетальным цветным трехмерным изображением межклеточных контактов в развивающихся нейронах. Такие контакты позволяют нейронам в процессе развития находить друг друга и организовываться в сети, благодаря которым мы испытываем радость, сочиняем стихи. или занимаемся наукой! В журнале Science ученые описали технологию получения таких изображений: как водится, в основу лег синтез. Исследователи соединили две самые передовые методики с помощью компьютерных технологий.

— Пусть они думают до утра. Пойдем к нам во двор.
У нас там все совсем другое. Будем гонять мяч,
настоящий, круглый, а не плоский.
И кошки у нас пушистые и мягкие.

— Я очень хочу играть в круглый мяч, — вздохнула
Анка. — Я очень хочу погладить пушистую кошку.
Но я не понимаю, что такое «круглый».
Наверное, я никогда не смогу увидеть круглое и пушистое!

Е. Велтистов. Приключения Электроника

Введение

Все, кто когда-нибудь смотрел в обычный световой микроскоп, представляют себе эту картину: клетки выглядят плоскими, их можно рассмотреть лишь в общих чертах. Не видно митохондрий и лизосом, знакомых из школьных учебников, и даже деление клетки выглядит как череда размытых пятен и нитей (рис. 1).

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 1. Клетка костного мозга в профазе (а) и анафазе (б) митоза. Фотографии сделаны под световым микроскопом. Клетки человека сами прозрачны, цвета придают красители, которыми окрашен препарат.

собственное фото автора статьи

Электронная микроскопия позволяет рассмотреть куда более мелкие структуры. но при этом изображение всегда черно-белое (рис. 2а и 2б), иногда попадаются лишь искусственно раскрашенные картинки (рис. 2в).

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 2а. Митохондрия в просвечивающем электронном микроскопе (ПЭМ, англ. TEM). Электронный луч проходит сквозь образец, давая плоское черно-белое изображение.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 2б. Домашняя пыль в сканирующем электронном микроскопе (СЭМ, англ. SEM). Изображения такого типа выглядят объемными, но такому микроскопу недоступна внутренняя часть объекта, он «видит» только его поверхность. И по-прежнему такие изображения черно-белые — не верьте тому, что увидите на рисунке 2в.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 2в. Еще один снимок пыли в сканирующем электронном микроскопе. Он выглядит цветным лишь потому, что его искусственно раскрасили. Цвета здесь продиктованы только воображением художника или ученого. Какие они были «на самом деле» — мы не знаем.

А авторы недавно вышедшей статьи в Science представили научному миру потрясающую детализацию в цвете и 3D-формате [1]. Примеры их изображений можно увидеть на заглавной иллюстрации. Кстати, вот то самое видео — на нем можно в полной мере насладиться 3D-HD-микромиром:

Видео 1. Зернистые клетки мозжечка мыши, изображение которых получено с помощью новой методики. Вслед за авторами статьи заглядываем внутрь клеток и рассматриваем структуру контакта между ними – в цвете! Каждый цвет соответствует определенному белку.

Разработать такую технологию было совсем не просто — на пути у исследователей стояли фундаментальные физические ограничения. Обмануть физику стало возможно путем соединения в одной методике сразу нескольких передовых разработок, за две из которых даже была получена Нобелевская премия: в 2014 [2] и 2017 году [3].

Скучный черно-белый мир

Но почему так сложно? Почему нельзя просто увеличить изображение в обычном микроскопе с помощью очень сильных линз, чтобы разглядеть все до молекулы? Это невозможно в силу законов распространения света: в световом микроскопе любые две точки на расстоянии менее 0,2 мкм будут сливаться в одну. Такое ограничение и называется дифракционным пределом (физика этого явления рассмотрена в статье «12 методов в картинках: микроскопия» [4]).

Если использовать поток электронов вместо луча фотонов, то дифракционный предел будет намного меньше: на этом и основана электронная микроскопия. Но и она не панацея: слишком высоки требования к подготовке образца. Для электронного луча нужен вакуум, а значит, в вакууме должен быть и образец. А в вакууме вода вскипает при комнатной температуре (снова неумолимая физика!). Это означало бы моментальное разрушение образца — ведь цитоплазма клеток и содержимое органелл состоит большей частью из воды.

Чтобы этого избежать, для электронной микроскопии образцы обезвоживают, помещают в смолу и окрашивают. тяжелыми металлами! Да, я забыл сказать, что любые красители из нашего «фотонного» мира в «электронном» свете будут абсолютно блеклыми или вовсе прозрачными. Поэтому остаются только тяжелые металлы. И, раз «краска» только одна, то и картинка получается монохромной. И вдобавок сильно искаженной обезвоживанием и тяжелыми металлами. Серый скучный безжизненный мир.

Чтобы избежать искажений, был придуман метод криоэлектронной микроскопии [3], [5], за который в 2017 году вручили Нобелевскую премию по химии. Чтобы внутриклеточная вода не испарилась, ее замораживают. А чтобы получившиеся при заморозке кристаллы льда не разорвали мембраны, заморозку проводят очень быстро — так резко, что молекулы воды не успевают «построиться». Каждая молекула «замирает» на своем месте, и получается твердое, но некристаллическое вещество. Такое агрегатное состояние в физике называют аморфным — это нечто среднее между жидкостью и твердым телом. А замороженную таким образом воду называют аморфным льдом. А так как самое известное аморфное вещество нашего «обыденного» мира — стекло, то второе название такого состояния — стеклообразный лед (забегая вперед: именно его имели ввиду авторы обсуждаемой статьи [1], говоря о vitreously frozen cells — «стеклообразно замороженных клетках»).

А еще «остекление» внутриклеточной воды используют для консервации эмбрионов — об этом читайте в статье «Витрификация — контролируемая пауза развития в стеклоподобном состоянии» [6].

Но, как ни замораживай, изображение останется серым. А в современной молекулярной биологии, наоборот, все больше нужны «цветные» методики: она все активнее использует флуоресцентные красители. Таких красителей существует огромное множество: от зеленого флуоресцентного белка [7], за открытие которого тоже была вручена Нобелевская премия по химии, до «флуоресцентных репортеров» [8]. А флуоресцентные красители требуют световой микроскопии и цветного изображения.

Мир цветной. но все же скучный

А что, если совместить в одном изображении два вида микроскопии — световую и электронную? Получится коррелятивная свето-электронная микроскопия, или КСЭМ (correlative light-electron microscory, CLEM). В таком случае одни и те же структуры вначале фотографируются в световом и электронном микроскопах, а затем изображения совмещаются с помощью компьютера. Здесь мы вступаем в «продвинутую» микроскопию, когда сами не смотрим в окуляр микроскопа — изображение формируется методами компьютерной обработки данных.

Но при всей своей красоте метод полностью проблемы не решает — он лишь окрашивает детализированные структуры размытой «радугой», отражающей распределение флуоресцентной метки (рис. 3) [9]. Это позволяет изучить молекулярные особенности на уровне области клетки, но не специфично «подсветить» микроструктуры. Мир по-прежнему серый. Просто на него пролили полупрозрачную краску.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 3. Коррелятивная свето-электронная микроскопия. На левом изображении — одноцветное фото элементов цитосклетета, на которое наложена цветовая «шкала» натяжения белка талина (сам белок при этом не виден в таком масштабе). На изображении справа внизу, где увеличение больше, цвета вновь исчезают. Таким образом, максимум, на что способна обычная КСЭМ, — изобразить в цветовой «кодировке» какую-либо величину, но она не придает изображению истинную цветность.

Тем не менее авторы статьи в Science взяли на вооружение именно идею коррелятивной микроскопии: совмещения двух видов микроскопии в одном изображении с помощью компьютера [1]. Просто «световое» изображение у них изначально было со сверхвысоким разрешением. Как же они его получили? С помощью тех же компьютеров!

Структурируем свет и зажигаем одиночные молекулы

Сфотографировать клетку с разрешением выше дифракционного предела нельзя. Но можно, используя различные ухищрения, «собрать» на экране компьютера одно изображение из множества снимков, получив гораздо большее разрешение. Такой подход называется микроскопией сверхвысокого разрешения, или СР-микроскопией (super-resolution microscopy, SR-microscopy). А конкретных методик довольно много — краткий их обзор представлен в статье «Лучше один раз увидеть, или Микроскопия сверхвысокого разрешения» [10]. Так что на выбор у авторов обсуждаемой статьи было несколько «прототипов».

Первый из них — микроскопия структурированного освещения (structured illumination microscopy, SIM). В ней образец окрашивается флуоресцентным красителем. Но возбуждающий свет фокусируется таким образом, чтобы в фокусе микроскопа получилась тонкая решетка из света. Она постоянно перемещается, и флуоресценция молекул, находящихся в фокусе, меняется. Объект не в фокусе продолжают светиться равномерно, что позволяет компьютерному алгоритму вычислить и «отсечь» его. Остается большой набор данных об изменении флуоресценции, по которому рассчитывается изображение с высоким разрешением (рис. 4). К сожалению, такой подход позволяет увеличить разрешение максимум в два раза [10]. Нет ли чего-нибудь еще?

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 4б. Телофаза митоза, визуализированная методом SIM. Актиновый цитоскелет зеленый, тубулиновый — оранжево-бежевый, хроматин голубой. Сравните с рисунком 1б (где изображена анафаза митоза) — SIM явно выигрывает по детализации и информативности!

Коллектив исследователей тоже не остановился на SIM и в качестве второй отправной точки воспользовался одномолекулярной микроскопией, или микроскопией локализации одной молекулы (single-molecule localization microscopy, SMLM) [1]. За ее создание в 2014 году вручили Нобелевскую премию [2].

В этой методике флуоресценция красителя запускается слабым лазерным лучом — таким слабым, что лишь малая часть молекул начинает флуоресцировать. Какие именно молекулы засветятся — зависит только от случая, поэтому такой подход в микроскопии сверхвысокого разрешения называется стохастическим. Интенсивность луча подбирается таким образом, чтобы среднее расстояние между одиночными «засветившимися» молекулами было равно дифракционному пределу. Благодаря этому, каждое сфотографированное микроскопом светящееся пятно представляет собой одиночную молекулу (рис. 5а).

Далее компьютер точно вычисляет координаты молекулы, образовавшей каждое пятно, с помощью так называемой функции рассеяния точки (рис. 5б). А тем временем на образец подается другой лазерный луч определенной длины волны, который гасит флуоресценцию молекул. Затем снова включается «зажигающий» лазер. За счет случайности множество молекул, «вспыхнувших» во второй раз, не будет тем же самым (рис. 5в). И после компьютерной обработки появятся новые светящиеся точки (рис. 5г).

Цикл повторяется много раз, и на последнем этапе компьютер складывает все картинки со «светящимися точками». В итоге получается изображение, сложенное отдельными точечными источниками флуоресценции, расстояние между которыми намного меньше 0,2 мкм (рис. 5д). А это и есть сверхвысокое разрешение.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 5а. Принцип действия одномолекулярной микроскопии. Представим, что у нас есть три флуоресцентных красителя. Синий метит мембраны эндоплазматического ретикулума, зеленый — мембраны митохондрий, красный — матрикс митохондрий. После слабого импульса возбуждающего лазера получились размытые пятна, каждое из которых соответствует одной молекуле флуорофора. Рисунок схематичный, масштаб не соблюден.

собственный рисунок автора статьи

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 5б. Принцип действия одномолекулярной микроскопии. Изображение подвергается компьютерной обработке — каждое пятно «сворачивается» в точку с помощью функции рассеяния. Положение точки соответствует положению светящейся молекулы.

собственный рисунок автора статьи

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 5в. Принцип действия одномолекулярной микроскопии. После второго возбуждающего импульса под микроскопом «вспыхнули» другие разноцветные пятна.

собственный рисунок автора статьи

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 5г. Принцип действия одномолекулярной микроскопии. Пятна вновь «превращаются» компьютером в точки.

собственный рисунок автора статьи

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 5д. Принцип действия одномолекулярной микроскопии. После многих повторений этого цикла компьютер объединяет все изображения с точками в одно. Готово! У нас есть изображение митохондрии с фрагментом ЭПР, составленное из множества флуоресцирующих точек. А так как расстояние между точками в итоге гораздо меньше дифракционного предела, то картинка получается в сверхвысоком разрешении, и на ней видны детали строения клетки.

собственный рисунок автора статьи

Помимо высокой детализации, еще одно преимущество микроскопии сверхвысокого разрешения (как SIM, так и SMLM) в том, что используемые функции позволяют «вычислить» на компьютере координаты каждой флуоресцирующей молекулы не только на плоскости, но и в пространстве. Поэтому у сверхразрешающей микроскопии есть 3D-модификации. Именно такой «разновидностью» SIM созданы изображения клеток в профазе и телофазе митоза на рисунках 4а и 4б. И именно такие методики использовали авторы статьи в Science [1]. Микромир наконец стал цветным и трехмерным. Что же к этому еще можно добавить?

Он живой и светится! А теперь сотрем его в пыль!

Так как в распоряжении ученых имеются методы с таким высоким разрешением, возникает резонный вопрос: а что, если вернуться к идее коррелятивной микроскопии, только теперь объединять изображения микроскопии высокого разрешения и электронной микроскопии? Именно это сделали авторы статьи в Science — и в этом основная новизна их методики [1]. Они соединили в одной технологии электронную микроскопию и световую 3D-микроскопию высокого разрешения.

Проблема в том, что классическая электронная микроскопия дает плоское изображение (сканирующая дает перспективное, но не может заглянуть внутрь объекта). Поэтому авторам статьи пришлось искать трехмерную методику электронной микроскопии.

К счастью, такая тоже существует и называется ФИЛ-СЭМ (англ. FIB-SEM) — сканирующая электронная микроскопия с фокусированным ионным лучом. К сожалению, она относится к деструктивным видам анализа — то есть при ее проведении образец разрушается.

Вначале образец бомбардируется направленным пучком ионов, снимающим с него верхний слой. Обнажившаяся поверхность подвергается обычной сканирующей электронной микроскопии и получается срез клетки. Затем ионным лучом «снимается» еще один слой, и сканируется следующий срез. Цикл повторяется много раз, и в итоге — снова компьютерная обработка: компьютер объединяет все полученные срезы в одну трехмерную модель клетки. Это все, что от нее осталось — к концу опыта ионный луч буквально стирает образец в пыль (рис. 6, 7).

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 6. Принцип микроскопии сверхвысокого разрешения ФИЛ-СЭМ. Клетка помещается в блок из смолы, «лишние» части которого удаляются. Затем фокусированный ионный луч (ФИЛ) снимает с образца слой за слоем, а каждый срез фотографируется сканирующим электронными микроскопом (СЭМ). Получаются черно-белые срезы клетки в большом количестве (на рисунке их приведено 5, но в реальной микроскопии гораздо больше). Затем срезы объединяются на компьютере в одно трехмерное изображение — получается объемная, но, к сожалению, одноцветная модель. Мир приобрел объем, но он пока что черно-белый.

рисунок автора статьи с использованием фото EONexperience

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 7а. Гранулярные клетки мозжечка мыши, визуализированные с помощью FIB-SEM авторами обсуждаемой статьи (кадр из видео во введении) [1]. Изображению при обработке приданы цвета, однако детали внутреннего строения клеток одноцветные — как и «полагается» при электронной микроскопии. Черными стрелками показана область межклеточного контакта (адгезии) между двумя нейронами, детальные изображения которой будут разбираться дальше.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 7б. Трехмерная модель клетки, созданная с помощью ФИЛ-СЭМ, в разрезе. Обратите внимание, что внутри она такая же черно-белая, как обычная электронная микрофотография. На этом рисунке уже не нейрон (хотя похож): это клетки линии COS-7 — потомки фибробластов (клеток соединительной ткани) почек обезьяны. Поэтому они также имеют отростчатую форму.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 7в. Снова трехмерные модели (ФИЛ-СЭМ) клеток COS-7 в разрезе. Сплошная серость внутри.

Разрушение образца ионным лучом при исследовании методом ФИЛ-СЭМ, само собой, лишает способности рассмотреть его методами высокого разрешения. Клетка, которую стерли в молекулярную пыль, не может выглядеть как живая и светиться. Поэтому исследователи сначала рассматривали образец методами СР-микроскопии, а потом использовали методику ФИЛ-СЭМ. Получались трехмерные модели, которые впоследствии с помощью компьютера объединялись в одну.

Такой подход — создание одного изображения из многих на основе технологии больших данных — резко сближает микроскопию с биоинформатикой, являющейся одной из любимых тем «Биомолекулы» (в частности, о биоинформатике написано в наших статьях «Я б в биоинформатики пошел, пусть меня научат!» [11], «12 методов в картинках: “сухая” биология» [12], и есть даже целая тема «“Сухая” биология»). Похоже, границы между областями науки сейчас стираются в невиданных масштабах, а методы информатики активно проникают во все области и помогают решать невообразимые доселе задачи.

В методику СР-микроскопии авторы тоже внесли усовершенствования. Обычно для замораживания образца в СР-микроскопии используется жидкий азот, где уверенно достигается температура лишь около 77 градусов выше абсолютного нуля температуры (77 K, или около −196 °C). Это адски низкие температуры, но ученые при подготовке образца достигли еще меньших! Они использовали жидкий гелий, который позволил заморозить образец до 8 градусов выше абсолютного нуля (−265 °C) и даже до более низких температур. Таким образом клетки были моментально заморожены до состояния аморфного льда, находившегося почти у самого предела холода.

При таких условиях физика (наконец-то!) сыграла на руку исследователям. В этом адском холоде среднее время пребывания флуоресцентного красителя в «погашенном» состоянии существенно выше, чем при −196 °C, что позволяет располагать молекулы флуорофора ближе друг к другу. Поэтому у авторов «светящиеся точки» на реконструируемом изображении были ближе, и само изображение получалось детальнее и контрастнее (рис. 8).

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 8. Те же клетки, что и на рисунках 7а и 7б, и на видео во введении, только изображение получено одномолекулярной микроскопией (SMLM). Зеленый флуорофор (ER3) окрашивает эндоплазматический ретикулум (ЭПР) — сеть канальцев внутри клетки. На рисунке хорошо видно, насколько он разветвлен и как плотно заполняет всю клетку. Ядра зеленые, потому что межмембранное пространство ядра — по сути, начало ЭПР. Фиолетовый флуорофор (TOMM20) окрашивает митохондрии, и большинство фиолетовых «колбасок» в клетках среди зеленых разветвлений ЭПР — это именно они. Но — сюрприз — исследователи обнаружили, что этот «митохондриальный» краситель окрасил не только их. Об этом — чуть ниже.

Следует отметить, что авторы также использовали два типа микроскопии сверхвысокого разрешения — SIM и SMLM. В общем, основательно подготовились к покорению дифракционного барьера. На последней стадии, как и в любой корреляционной микроскопии, трехмерные изображения клеток из ФИЛ-СЭМ и SMLM/SIM совмещались с помощью компьютерной техники. В итоге получилось трехмерное изображение, одновременно и детализированное, и цветное. Микромир наконец стал объемным и ярким (рис. 9).

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 9а. Корреляционная одномолекулярная-ФИЛ-СЭМ микроскопия клетки COS-7 заключается в компьютерном объединении трехмерных изображений, показанных на рисунках 7а–в и 8. Теперь «внутренности» клетки, в отличие от рисунков 7б и 7в, приобрели цвета, что позволяет их детально рассмотреть и понять структуру (цвета и красители те же, что на рисунке 8). Тонкая сеть ЭПР стала видна еще детальнее, хорошо видны митохондрии.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 9б. Потрясающий «инопланетный» ландшафт — это всего лишь срез модели, показанной на рисунке 9а. Цвета и флуорофоры те же, что и на рисунке 8.

Но что способна дать миру новая микроскопия, помимо объема и яркости? Что нового увидели исследователи в свой микроскоп? Спойлер: им удалось сделать сразу три небольших открытия в ультраструктуре клетки — и это только начало!

Пузырьки, трубочки и красители не на своем месте

Эукариотические клетки, в том числе клетки человека и животных, изобилуют различными мембранными структурами — везикулами и сетью ЭПР, и это не считая митохондрий и пластид. Примером того, как они пронизывают всю клетку, могут послужить рисунки 8, 9а и 9б. И именно их труднее всего рассмотреть под микроскопом. В «серой и безжизненной» электронной микроскопии они могут быть недостаточно контрастны, а при криоэлектронной томографии (метод аналогичен компьютерной томографии для человека, только здесь томография делается клетке в просвечивающем электронном микроскопе) могут быть пропущены, оказавшись между срезами. Особенно это касается везикул (пузырьков) небольшого объема — поэтому мы сейчас не так много знаем об их форме, размерах и разновидностях.

Новый метод микроскопии позволил рассмотреть эти структуры как никогда ранее детально. Оказалось, что мелкие трубочки ЭПР усеяны вздутиями-пузырьками, которые раньше увидеть было затруднительно. Но это еще не самое интересное.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 10. Так выглядит ER3-позитивная везикула в ядре — ярким зеленым пятном. Не очень четко, но загадочно: откуда она там взялась?

Краситель TOMM20, как оказалось, тоже окрашивал не только митохондрии, но и какие-то пузырьки в цитоплазме (рис. 11). Исследователи резонно предположили, что эти пузырьки — везикулы митохондриального происхождения (mitochondria-derived vesicles, MDVs). Об их функции пока мало что известно, но есть предположения, что они участвуют в «контроле качества» белков митохондрии, транспортируя поврежденные и ошибочно свернутые в эндосомы — к местам расщепления. Правда, неясно, почему другие белки они несут в пероксисомы. [13] Так или иначе, с новой методикой их стало гораздо легче изучать и рассматривать. Обсуждаемая статья напомнила, что в клетке больше, чем три вида везикул (эндосомы, лизосомы, пероксисомы), и мы еще не всё знаем о мире пузырьков и трубок, пронизывающих каждую клетку.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 11. В цитоплазме клетки обнаружены пузырьки, которые окрашиваются красителем для митохондрий. Вопрос — что они там делают? Возможно, они уносят из митохондрий поврежденные белки на утилизацию. Так сказать, вывоз митохондриального мусора.

Еще авторы показали, что и хорошо известные нам везикулы — вовсе не скучные шарики. Шариками являются лишь небольшие пузырьки — и то лишь за счет поверхностного натяжения. А при увеличении размера они могут принимать причудливые формы. Пероксисомы в виде чашек, блюдец и полых сфер с отверстием, вытянутые эндосомы с расширением (рис. 12). Пока можно лишь предполагать, зачем клетке весь этот «сервиз». Например, изменчивость формы может пригодиться для регуляции скорости реакций, которые проходят в этих пузырьках, но как именно это происходит? С помощью своей технологии исследователи сформулировали несколько загадок для научного мира.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 12. Варианты форм пероксисом и эндосом. Розовым обозначены пероксисомы, желтым — эндосомы, красным — эндоплазматический ретикулум, изумрудно-голубым — митохондрии, синим — неизвестные органеллы (да, исследователям и такие попались!).

Нейроны: идем на контакт!

С помощью новой методики исследователи рассмотрели некоторые детали зернистых нейронов мозжечка мыши и их клеток-предшественников. Зернистые клетки расположены в коре мозжечка, являясь участницами сложной нейронной сети для обработки сигналов о положении и равновесии и двигательного научения. Они являются самыми многочисленными в коре мозжечка.

В процессе созревания нейроны преодолевают огромные по меркам мозга расстояния, но безошибочно находят свое место, «подключаются» к нейронным сетям, учатся реагировать на входные сигналы, «взрослеют» и послушно умирают, если оказались лишними. Безошибочно найти свое место им помогают межклеточные контакты друг с другом, а процесс созревания сопряжен с изменением структуры хроматина в ядре. Эти две структуры и изучили исследователи.

Существует несколько видов межклеточных контактов. Здесь ученые рассматривали тот, который называется плотным соединением — участки мембран соседних клеток, крепко сшитых друг с другом определенными белками. Сюрпризом для ученых оказалось то, что мембраны нейронов сшиваются не на всем протяжении — плотные контакты образуют структуру, напоминающую паутину или швейцарский сыр [1], [14]. Такой причудливый рисунок прекрасно виден как с помощью методики крио-SIM, так и с помощью FIB-SEM, и становится еще более впечатляющим при совмещении изображений (рис. 13).

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 13. Слева — не полярное сияние, а справа — не сыр. Это все «сшивки» между мембранами соседних нейронов, изображенные в разном «свете»: слева SIM, где разными цветами помечены белки межклеточных контактов, а справа FIB-SEM.

Нейроны: «детский» и «взрослый» хроматин

Рассмотрев эту мембранную «вышивку» из белков межклеточного контакта, ученые заглянули в ядро этих же самых нейронов и их клеток-предшественников, незрелых форм. Новая технология предоставила потрясающую возможность рассмотреть в деталях хроматин клетки (современные представления об устройстве хроматина можно почерпнуть в статье «Новый взгляд на геном: не просто цепочка генов, а трехмерная сеть, интегрирующая функциональные домены ядра» [15]).

Можно предположить, что при созревании нейрона меняется набор генов, которые он «считывает» и делает по ним белки (это называется экспрессией генов). Одни гены «запаковываются» плотнее и делаются неактивными, а другие, наоборот, «разматываются» и начинают активно функционировать.

Вначале авторы получили трехмерное изображение хроматина нейронов методом ФИЛ-СЭМ. Но само по себе оно мало что дает: в таком варианте хроматин выглядит как серая каша (эухроматин) с комками (гетерохроматин). Единственное различие между нейронами-«малышами» и «взрослыми» нейронами, которое заметили авторы на таких изображениях, в том, что у «взрослого» хроматин более «жидкий»: эухроматина больше.

Но микроскопия сверхвысокого разрешения позволила авторам изучить распределение в этой «каше» двух важных белков хроматина — гетерохроматинового белка 1α (HP1α) и гистона H3.3 (который является ни чем иным, как вариантом гистона H3, составной части нуклеосомной «катушки»). Первый из них обычно обнаруживается в составе гетерохроматина (плотно упакованных неактивных частей ДНК), а второй — наоборот, присутствует в регионах, где с ДНК происходит активное «считывание».

Технология обеспечила потрясающе детальный моментальный снимок состояния ядра нейрона до и после дифференцировки.

Когда хроматин обрел цвет, оказалось, что он значительно различается у молодых и зрелых нейронов. В «черно-белом мире» два этих типа клеток не особо отличались друг от друга по количеству гетерохроматина в ядрах. Но «в цвете» стало заметно, что в процессе созревания нейрона количество гетерохроматина, содержащего HP1α, увеличивается почти вдвое (рис. 14, 15). Кроме того, этот гетерохроматин стал гораздо более компактным.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 14. Срез ядер нейронов при микроскопии сверхвысокого разрешения. Слева — ядро клетки-предшественника зернистых клеток мозжечка в форме сердца. Справа — ядро зрелой зернистой клетки мозжечка (округлое). Розовым окрашен гистон H3.3, зеленым — белок HP1α. Заметно различное распределение этих двух маркеров в молодых и зрелых клетках.

Как выглядит клетка человека под микроскопом. Смотреть фото Как выглядит клетка человека под микроскопом. Смотреть картинку Как выглядит клетка человека под микроскопом. Картинка про Как выглядит клетка человека под микроскопом. Фото Как выглядит клетка человека под микроскопом

Рисунок 15. Трехмерные модели ядер нейронов, полученные при коррелятивной микроскопии. Цветная масса внутри каждой из них представляет собой эу- или гетерохроматин, меченый одним из маркеров. Слева — ядра клеток-предшественников (в виде сердца), справа — округлые ядра зрелых клеток. Обратите внимание на:

Накопление HP1α в гетерохроматине — это еще классика жанра. Ведь, как я писал выше, HP1α — характерный для неактивного хроматина компонент. Но микроскопия сверхвысокого разрешения показала также. накопление гистона H3.3 в процессе созревания, что было неожиданным для исследователей. Этот гистон характерен для активно транскрибируемых («считываемых») участков ДНК. В гетерохроматине его до этого находили лишь в эмбриональных стволовых клетках, что понятно — они готовы к активации почти любого участка ДНК. Но в зрелых клетках, да еще в нейронах? Тем не менее он не только накапливается, но и, как классический HP1α-гетерохроматин, становится более компактным. Давая исследователям понять, что об укладке мы знаем еще далеко не все.

Заключение

Новый метод микроскопии оказался технически удачным: впервые мельчайшие детали строения и развития клеток предстали перед исследователями в цвете, в трехмерном виде, в высоком разрешении. Это то, чего так давно не хватало исследователям — увидеть внутренний мир клетки не плоским и скучным, а «круглым и пушистым».

Но, с другой стороны, увиденное пока принесло не столько ответы, сколько вопросы. Что за пузырьки, красящиеся митохондриальным красителем? Точно ли они происходят из митохондрий? Почему пероксисомы и эндосомы так различаются по форме, а в хроматине при созревании нейрона накапливаются неожиданные белки? Всего три дополнительных «мини-исследования» в статье показали, что наши знания о клетке пока крайне неполны. Это отмечают и сами исследователи:

Еще предстоит проделать так много экспериментов — изучить целый мир где-то там в клетках.

Харальд Хесс,
один из авторов статьи [1].

Между строк в статье [1] и пресс-релизе [14] читается удивление исследователей и желание поскорее во всем разобраться. Изучить цветной и объемный мир, о котором мы пока так мало знаем.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *