Как выглядит первый замечательный предел
Первый замечательный предел
Первым замечательным пределом именуют следующее равенство:
Часто используются также следствия из первого замечательного предела:
На данной странице решены одиннадцать примеров. Пример №1 посвящен доказательству формул (2)-(4). Примеры №2, №3, №4 и №5 содержат решения с подробными комментариями. Примеры №6-10 содержат решения практически без комментариев, ибо подробные пояснения были даны в предыдущих примерах. При решении используются некоторые тригонометрические формулы, которые можно найти тут.
Равенства а), б), в) часто используются наряду с первым замечательным пределом.
Вернемся к пределу:
Вернемся к рассматриваемому пределу:
Переходя в заданном пределе к синусам, будем иметь:
Используя указанную формулу, получим:
Аналогичную задачу можно посмотреть в решебнике Демидовича (№475)
В данном случае нам не придётся использовать первый замечательный предел. Обратите внимание: как в первом, так и во втором пределах присутствуют только тригонометрические функции и числа. Зачастую в примерах такого рода удаётся упростить выражение, расположенное под знаком предела. При этом после упомянутого упрощения и сокращения некоторых сомножителей неопределённость исчезает. Я привёл данный пример лишь с одной целью: показать, что наличие тригонометрических функций под знаком предела вовсе не обязательно означает применение первого замечательного предела.
Как видите, нам не пришлось применять первый замечательный предел. Конечно, при желании это можно сделать (см. примечание ниже), но необходимости в этом нет.
Каким будет решение с использованием первого замечательного предела? показать\скрыть
При использовании первого замечательного предела получим:
Второй замечательный предел
Данная статья: «Второй замечательный предел» посвящена раскрытию в пределах неопределенностей вида:
Так же такие неопределенности можно раскрывать с помощью логарифмирования показательно-степенной функции, но это уже другой метод решения, о котором будет освещено в другой статье.
Формула и следствия
Стоить заметить, что второй замечательный предел можно применять не всегда к показательно-степенной функции, а только в случаях когда основание стремится к единице. Для этого сначала в уме вычисляют предел основания, а затем уже делают выводы. Всё это будет рассмотрено в примерах решений.
Примеры решений
Рассмотрим примеры решений с использованием прямой формулы и её следствий. Так же разберем случаи, при которых формула не нужна. Достаточно записать только готовый ответ.
Получили основание равное единице, а это значит уже можно применить второй замечательный предел. Для этого подгоним основание функции под формулу путем вычитания и прибавления единицы:
Смотрим на второе следствие и записываем ответ:
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Уже теперь применяем формулу и получаем:
Подгоняем дробь под формулу 2-го замеч. предела:
Разберем случаи, когда задача похожа на второй замечательный предел, но решается без него.
Начинаем с проверки равен ли предел основания единице. Имеем:
Продолжаем вычисление предела:
Начинаем с проверки равен ли предел основания единице. Имеем:
Продолжаем вычисление предела:
В статье: «Второй замечательный предел: примеры решений» была разобрана формула, её следствия и приведены частые типы задач по этой теме.
Как решать пределы для чайников?
Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что «скучная теория» должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.
Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.
Примеры решений
Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!
Внимание «чайникам» 🙂 Чтобы вычислить предел любого типа и вида нужно подставить значение x, указанное под пределом, в функцию, стоящую под знаком предела. Давайте попробуем это сделать:
Продолжаем решать учитывая вышеприведенное преобразование:
Используя определение из примера 2 и подставляя в место х бесконечность получаем:
Чтобы устранить такую неопределенность нужно вынести за скобки икс в числителе и в знаменателе, далее их сократить. В полученное выражение подставить икс равное бесконечности. Пробуем.
Алгоритм вычисления лимитов
В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.
Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!
Первый замечательный предел
Рассмотрим следующий предел: (вместо родной буквы «хэ» я буду использовать греческую букву «альфа», это удобнее с точки зрения подачи материала).
Согласно нашему правилу нахождения пределов (см. статью Пределы. Примеры решений) пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен нулю), в знаменателе, очевидно, тоже ноль. Таким образом, мы сталкиваемся с неопределенностью вида , которую, к счастью, раскрывать не нужно. В курсе математического анализа, доказывается, что:
Данный математический факт носит название Первого замечательного предела.
Нередко в практических заданиях функции могут быть расположены по-другому, это ничего не меняет:
– тот же самый первый замечательный предел.
! Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде , то и решать его нужно в таком же виде, ничего не переставляя.
На практике в качестве параметра может выступать не только переменная
, но и элементарная функция, сложная функция. Важно лишь, чтобы она стремилась к нулю.
Примеры:
,
,
,
Здесь ,
,
,
, и всё гуд – первый замечательный предел применим.
А вот следующая запись – ересь:
Почему? Потому-что многочлен не стремится к нулю, он стремится к пятерке.
Кстати, вопрос на засыпку, а чему равен предел ? Ответ можно найти в конце урока.
На практике не все так гладко, почти никогда студенту не предложат решить халявный предел и получить лёгкий зачет. Все-таки «халявные» математические определения и формулы вроде
лучше помнить наизусть, это может оказать неоценимую помощь на зачете, когда вопрос будет решаться между «двойкой» и «тройкой», и преподаватель решит задать студенту какой-нибудь простой вопрос или предложить решить простейший пример («а может он (а) все-таки знает чего?!»).
Переходим к рассмотрению практических примеров:
Пример 1
Найти предел
Если мы замечаем в пределе синус, то это нас сразу должно наталкивать на мысль о возможности применения первого замечательного предела.
Сначала пробуем подставить 0 в выражение под знак предела (делаем это мысленно или на черновике):
Итак, у нас есть неопределенность вида , ее обязательно указываем в оформлении решения. Выражение под знаком предела у нас похоже на первый замечательный предел, но это не совсем он, под синусом находится
, а в знаменателе
.
В подобных случаях первый замечательный предел нам нужно организовать самостоятельно, используя искусственный прием. Ход рассуждений может быть таким: «под синусом у нас , значит, в знаменателе нам тоже нужно получить
».
А делается это очень просто:
То есть, знаменатель искусственно умножается в данном случае на 7 и делится на ту же семерку. Теперь запись у нас приняла знакомые очертания.
Когда задание оформляется от руки, то первый замечательный предел желательно пометить простым карандашом:
Что произошло? По сути, обведенное выражение у нас превратилось в единицу и исчезло в произведении:
Теперь только осталось избавиться от трехэтажности дроби:
Готово. Окончательный ответ:
Если не хочется использовать пометки карандашом, то решение можно оформить так:
“
Используем первый замечательный предел
“
Пример 2
Найти предел
Опять мы видим в пределе дробь и синус. Пробуем подставить в числитель и знаменатель ноль:
Действительно, у нас неопределенность и, значит, нужно попытаться организовать первый замечательный предел. На уроке Пределы. Примеры решений мы рассматривали правило, что когда у нас есть неопределенность
, то нужно разложить числитель и знаменатель на множители. Здесь – то же самое, степени мы представим в виде произведения (множителей):
Далее, по уже знакомой схеме организовываем первые замечательные пределы. Под синусами у нас , значит, в числителе тоже нужно получить
:
Аналогично предыдущему примеру, обводим карандашом замечательные пределы (здесь их два), и указываем, что они стремятся к единице:
Собственно, ответ готов:
В следующих примерах, я не буду заниматься художествами в Пэйнте, думаю, как правильно оформлять решение в тетради – Вам уже понятно.
Пример 3
Найти предел
Подставляем ноль в выражение под знаком передела:
Получена неопределенность , которую нужно раскрывать. Если в пределе есть тангенс, то почти всегда его превращают в синус и косинус по известной тригонометрической формуле
(кстати, с котангенсом делают примерно то же самое, см. методический материалГорячие тригонометрические формулы на странице Математические формулы, таблицы и справочные материалы).
Косинус нуля равен единице, и от него легко избавиться (не забываем пометить, что он стремится к единице):
Таким образом, если в пределе косинус является МНОЖИТЕЛЕМ, то его, грубо говоря, нужно превратить в единицу, которая исчезает в произведении.
Дальше по накатанной схеме, организуем первый замечательный предел:
Здесь все вышло проще, без всяких домножений и делений. Первый замечательный предел тоже превращается в единицу и исчезает в произведении:
В итоге получена бесконечность, бывает и такое.
Пример 4
Найти предел
Пробуем подставить ноль в числитель и знаменатель:
Получена неопределенность (косинус нуля, как мы помним, равен единице)
Используем тригонометрическую формулу . Возьмите на заметку! Пределы с применением этой формулы почему-то встречаются очень часто.
Постоянные множители вынесем за значок предела:
Организуем первый замечательный предел:
Здесь у нас только один замечательный предел, который превращается в единицу и исчезает в произведении:
Избавимся от трехэтажности:
Предел фактически решен, указываем, что оставшийся синус стремится к нулю:
Пример 5
Найти предел
Этот пример сложнее, попробуйте разобраться самостоятельно:
Как выглядит первый замечательный предел
Этом предел действительно замечательный, как в теоретических исследованиях, так и при решении некоторых практических задач.
Прежде чем перейти к примерам его использования, проанализируем его структуру.
Отметим три момента:
1) в числителе стоит синус;
2) в знаменателе стоит в точности аргумент этого синуса;
3) этот аргумент стремится к нулю.
Если все три указанных элемента выполнены, пределом будет единица.
В этом примере, в первую очередь, не хватает синуса, поэтому начинаем с использования тригонометрической формулы.
Поскольку предел произведения есть произведение пределов, очевидно, в данном случае, предел квадрата выражения равен квадрату предела этого выражения. Осталось воспользоваться приемом из предыдущего примера.
Прежде чем перейти ко второму замечательному пределу, приведем некоторые полезные следствия первого замечательного предела.
Второй замечательный предел.
Сначала проанализируем структуру формулы.
1) имеем неопределенность ;
Сначала получим в скобках единицу плюс бесконечно малую, разделив почленно числитель на знаменатель, после чего приведем к требуемому виду показатель за скобкой.
Вычисления показыввают, что выражение в скобках стремится к единице, тогда имеем неопределенность и необходимость использования второго замечательного предела.
Преобразовать выражение в скобках к требуемой единице с бесконечно малой можно, например, разделив числитель на знаменатель углом, но мы, зная приблизительный вид результирующего выражения, воспользуемся несколько искуственным, но распространенным приемом.
Прибавим и отнимем в числителе выражение, дополняющее имеющийся числитель до вида знаменателя, после чего делим почленно числитель на знаменатель.
Как и в случае первого замечательного предела, приедем полезные следствия второго замечательного предела.