Как выглядит реляционная база данных
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
Реляционная база данных
Содержание
История
Реляционные системы берут свое начало в математической теории множеств. Эдгар Кодд, сотрудник исследовательской лаборатории корпорации IBM в Сан-Хосе, по существу, создал и описал концепцию реляционных баз данных в своей основополагающей работе «Реляционная модель для крупных, совместно используемых банков данных» (A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, июнь 1970).
Нечеткость многих терминов, используемых в сфере обработки данных, заставила Кодда отказаться от них и придумать новые или дать более точные определения существующим. Так, он не мог использовать широко распространенный термин «запись», который в различных ситуациях может означать экземпляр записи, либо тип записей, запись в стиле Кобола (которая допускает повторяющиеся группы) или плоскую запись (которая их не допускает), логическую запись или физическую запись, хранимую запись или виртуальную запись и т.д. Вместо этого он использовал термин «кортеж длины n» или просто «кортеж», которому дал точное определение.
Кодд предложил модель, которая позволяет разработчикам разделять свои базы данных на отдельные, но взаимосвязанные таблицы, что увеличивает производительность, но при этом внешнее представление остается тем же, что и у исходной базы данных. С тех пор Кодд считается отцом-основателем отрасли реляционных баз данных. Кодд сформулировал 12 правил для реляционных баз данных, большинство которых касаются целостности и обновления данных, а также доступа к ним.
Правила Кодда
Правило 0: Основное правило (Foundation Rule):
Система, которая рекламируется или позиционируется как реляционная система управления базами данных, должна быть способна управлять базами данных, используя исключительно свои реляционные возможности.
Правило 1: Информационное правило (The Information Rule):
Вся информация в реляционной базе данных на логическом уровне должна быть явно представлена единственным способом: значениями в таблицах.
Правило 2: Гарантированный доступ к данным (Guaranteed Access Rule):
В реляционной базе данных каждое отдельное (атомарное) значение данных должно быть логически доступно с помощью комбинации имени таблицы, значения первичного ключа и имени столбца.
Правило 3: Систематическая поддержка отсутствующих значений (Systematic Treatment of Null Values):
Неизвестные, или отсутствующие значения NULL, отличные от любого известного значения, должны поддерживаться для всех типов данных при выполнении любых операций. Например, для числовых данных неизвестные значения не должны рассматриваться как нули, а для символьных данных — как пустые строки.
Правило 4: Доступ к словарю данных в терминах реляционной модели (Active On-Line Catalog Based on the Relational Model):
Словарь данных должен сохраняться в форме реляционных таблиц, и СУБД должна поддерживать доступ к нему при помощи стандартных языковых средств, тех же самых, которые используются для работы с реляционными таблицами, содержащими пользовательские данные.
Правило 5: Полнота подмножества языка (Comprehensive Data Sublanguage Rule):
Система управления реляционными базами данных должна поддерживать хотя бы один реляционный язык, который (а) имеет линейный синтаксис, (б) может использоваться как интерактивно, так и в прикладных программах, (в) поддерживает операции определения данных, определения представлений, манипулирования данными (интерактивные и программные), ограничители целостности, управления доступом и операции управления транзакциями (begin, commit и rollback).
Правило 6: Возможность изменения представлений (View Updating Rule):
Каждое представление должно поддерживать все операции манипулирования данными, которые поддерживают реляционные таблицы: операции выборки, вставки, изменения и удаления данных.
Правило 7: Наличие высокоуровневых операций управления данными (High-Level Insert, Update, and Delete):
Операции вставки, изменения и удаления данных должны поддерживаться не только по отношению к одной строке реляционной таблицы, но и по отношению к любому множеству строк.
Правило 8: Физическая независимость данных (Physical Data Independence):
Приложения не должны зависеть от используемых способов хранения данных на носителях, от аппаратного обеспечения компьютеров, на которых находится реляционная база данных.
Правило 9: Логическая независимость данных (Logical Data Independence):
Представление данных в приложении не должно зависеть от структуры реляционных таблиц. Если в процессе нормализации одна реляционная таблица разделяется на две, представление должно обеспечить объединение этих данных, чтобы изменение структуры реляционных таблиц не сказывалось на работе приложений.
Правило 10: Независимость контроля целостности (Integrity Independence):
Вся информация, необходимая для поддержания целостности, должна находиться в словаре данных. Язык для работы с данными должен выполнять проверку входных данных и автоматически поддерживать целостность данных.
Правило 11: Независимость от расположения (Distribution Independence):
База данных может быть распределённой, может находиться на нескольких компьютерах, и это не должно оказывать влияния на приложения. Перенос базы данных на другой компьютер не должен оказывать влияния на приложения.
Правило 12: Согласование языковых уровней (The Nonsubversion Rule):
Если используется низкоуровневый язык доступа к данным, он не должен игнорировать правила безопасности и правила целостности, которые поддерживаются языком более высокого уровня.
Сущность реляционной базы данных
Реляционная база данных представляет собой набор таблиц (сущностей). Таблицы состоят из колонок и строк (кортежей). Внутри таблиц могут быть определены ограничения, между таблицами существуют отношения. При помощи SQL можно выполнять запросы, которые возвращают наборы данных, получаемых из одной или нескольких таблиц. В рамках одного запроса данные получаются из нескольких таблиц путем их соединения (JOIN), чаще всего для соединения используются те же колонки, которые определяют отношения между таблицами.
Нормализация — это процесс структурирования модели данных, обеспечивающий связность и отсутствие избыточности в данных. Целью нормализации реляционной базы данных является устранение недостатков структуры базы данных, приводящих к избыточности, которая, в свою очередь, потенциально приводит к различным аномалиям и нарушениям целостности данных.Теоретики реляционных баз данных в процессе развития теории выявили и описали типичные примеры избыточности и способы их устранения. Реляционные хранилища обеспечивают наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости. Касаемо масштабируемости, реляционные БД хорошо масштабируются только в том случае, если располагаются на единственном сервере.
Особенностью реляционной базы данных является использование в ней реляционной модели данных и вытекающие из этого последствия:
В реляционной базе данных данные создаются, обновляются, удаляются и запрашиваются с использованием языка структурированных запросов (SQL). SQL-запросы могут извлекать данные как из одиночной таблица, так и из нескольких таблиц.Такие запросы могут включать агрегации и сложные фильтры. Реляционная БД обычно содержит встроенную логику, такую как триггеры, хранимые процедуры и функции.
Реляционная система управления базой данных (РСУБД)
Доступ к реляционным базам данных осуществляется через реляционные системы управления базами данных (РСУБД). Почти все системы баз данных, которые мы используем, являются реляционными, такие как Oracle, SQL Server, MySQL, Sybase, DB2, TeraData и так далее. Причины такого доминирования неочевидны. На протяжении всего существования реляционных БД они постоянно предлагали наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости в сфере управлении данными.
Например, простой SELECT запрос может иметь сотни потенциальных путей выполнения, которые оптимизатор оценит непосредственно во время выполнения запроса. Все это скрыто от пользователей, однако внутри РСУБД создает план выполнения, основывающийся на вещах вроде алгоритмов оценки стоимости и наилучшим образом отвечающий запросу. Однако чтобы обеспечить все эти особенности, реляционные хранилища невероятно сложны внутри.
Реляционная система управления базой данных содержит:
Особенности реляционных БД
БД используются для организации хранения данных. Структура реляционной базы данных полностью определяется перечнем названия полей с указанием их типов и свойств. Все записи имеют одинаковые поля, но в них показываются разные свойства объекта. Аналогом реляционной БД считается двумерная таблица. Характерные особенности файла БД:
Реляционная БД чаще всего не ограничивается одной таблицей. Обычно создаются несколько таблиц со связанной информацией. Это позволяет исполнять более сложные операции над данными. Таблицы реляционной БД обязаны соответствовать требованиям понятия нормализации отношений, то есть ограничениям на формирование, которые позволят избежать дублирования и обеспечат непротиворечивость хранимой информации. Пусть создана таблица «Прокат», содержащая следующие поля: Шифр Клиента, Ф. И. О., Вид устройства, Дата выдачи, Оплата, Срок возврата. Эта организация хранения информации имеет несколько недостатков:
Для устранения этих недостатков необходима нормализация с разделением данных на разные таблицы.
Связывание таблиц
Для любой таблицы реляционной БД задаётся первичный ключ (primary key) — поле или сочетание полей, которые определяют каждую запись. Внешний или вторичный ключ (foreign key) — это одно или несколько полей, ссылающихся на поле primary key другой таблицы.
Составной ключ называется так, потому что создаётся из нескольких полей. При образовании составных ключей не рекомендуется включать в них поля, значения которых точно определяют запись. Например, не следует образовывать ключ, в котором находятся вместе поля «номер паспорта» и «шифр клиента», потому что оба эти атрибута однозначно определяют запись. Поля с повторяющимися в таблице значениями тоже нельзя делать составной частью ключа. По значению ключа возможно найти только одну запись.
Ячейка — это наименьший структурный элемент, который задаёт определённое значение соответствующего поля. Таблицы связываются друг с другом, и поэтому данные могут выбираться сразу из нескольких таблиц. Связь создаётся, если в них присутствуют одинаковые поля. Типы связей:
Связи «один к одному» встречаются довольно редко. «Один ко многим» применяются чаще, например, кассир продаёт много билетов. «Многие ко многим» тоже встречаются часто. Например, студент изучает много предметов. Связи «многие ко многим» нельзя организовывать непосредственно. Для установления отношения необходимо сопоставить каждому primary key внешний ключ, который представляет собой primary key другой таблицы. Реляционные системы базируются на теории реляционной модели, которая включает в себя три аспекта:
Управление созданием и использованием БД осуществляется системами управления базами данных (СУБД).
Под их руководством:
Для проведения этих операций организуются запросы. Итогом выполнения запросов будут либо изменения в таблицах, либо получение таблицы данных. При этом поддерживается принцип безопасности информации. Для реляционной БД основным языком управления является SQL.
Стадии и пример проектирования хранилища
Приступая к созданию базы, разработчик составляет для объектов манипулирования и их связей представление в терминах реляционной БД (таблицы, поля, записи). Проектирование проходит несколько стадий:
Преимущества этой модели данных состоят в том, что информация отображается в удобной для пользователя форме, а для манипуляций используется развитой математический аппарат.
Примером реляционной базы данных может послужить проект оптимизации деятельности пункта проката. Требуется автоматизировать такие процедуры: учёт клиентов; регистрацию инвентаря, выданного в прокат; отслеживание даты выдачи, сроков возврата, оплаты; получение информации по этим позициям; формирование отчёта по задолженностям. Реляционная БД может быть задана в виде трёх связанных таблиц.
Используя имеющиеся данные, следует определить отношения и объекты этих отношений. Объектами будут являться клиенты и устройства. Отношения между ними состоят в том, что каждый клиент может брать в прокат одно или несколько устройств.
Атрибутами для сопоставления объектов друг другу должны выступать ячейки с уникальным содержимым. В таблицах есть по одному полю с уникальными данными. В № 1 «Клиент» — это шифр клиента, а в № 3 «Склад» — шифр устройства. Это и будут primary keys. Каждая строка таблицы «Прокат» будет связывать два внешних ключа между собой:
Проблемы модели
Преимущество реляционных хранилищ состоит в том, что они способны обеспечить наилучшее соотношение устойчивости, производительности, гибкости, совместимости и масштабируемости. Реляционные БД предоставляют лёгкий доступ к составляемым отчётам и обеспечивают высокую надёжность и целостность информации из-за отсутствия избыточных данных. Но сейчас, когда всё большее количество приложений работает с высокой нагрузкой, увеличивается значение фактора масштабируемости.
Реляционные БД легко масштабируются, только когда они расположены на одном сервере. Если потребуется увеличить количество серверов и разделить нагрузку между ними, то возрастёт сложность хранилищ, что значительно снизит возможность использовать их как платформу для мощных распределённых систем. Поэтому приходится применять другие типы БД, которые обладают лучшей масштабируемостью и отказываться от возможностей, предоставляемых реляционными хранилищами.
Реляционная БД — это совокупность связей, которые способны структурировать данные, что даёт возможность рационального хранения и эффективного использования информационных материалов.
Руководство по проектированию реляционных баз данных (1-3 часть из 15) [перевод]
Перевод цикла из 15 статей о проектировании баз данных.
Информация предназначена для новичков.
Помогло мне. Возможно, что поможет еще кому-то восполнить пробелы.
Руководство по проектированию баз данных.
1. Вступление.
Если вы собираетесь создавать собственные базы данных, то неплохо было бы придерживаться правил проектирования баз данных, так как это обеспечит долговременную целостность и простоту обслуживания ваших данных. Данное руководство расскажет вам что представляют из себя базы данных и как спроектировать базу данных, которая подчиняется правилам проектирования реляционных баз данных.
Базы данных – это программы, которые позволяют сохранять и получать большие объемы связанной информации. Базы данных состоят из таблиц, которые содержат информацию. Когда вы создаете базу данных необходимо подумать о том, какие таблицы вам нужно создать и какие связи существуют между информацией в таблицах. Иначе говоря, вам нужно подумать о проекте вашей базы данных. Хороший проект базы данных, как было сказано ранее, обеспечит целостность данных и простоту их обслуживания.
Структурированный язык запросов (SQL).
База данных создается для хранения в ней информации и получения этой информации при необходимости. Это значит, что мы должны иметь возможность помещать, вставлять (INSERT) информацию в базу данных и мы хотим иметь возможность делать выборку информации из базы данных (SELECT).
Язык запросов к базам данных был придуман для этих целей и был назван Структурированный язык запросов или SQL. Операции вставки данных (INSERT) и их выборки (SELECT) – части этого самого языка. Ниже приведен пример запроса на выборку данных и его результат.
SQL – большая тема для повествования и его рассмотрение выходит за рамки данного руководства. Данная статья строго сфокусирована на изложении процесса проектирования баз данных. Позднее, в отдельном руководстве, я расскажу об основах SQL.
Реляционная модель.
В этом руководстве я покажу вам как создавать реляционную модель данных. Реляционная модель – это модель, которая описывает как организовать данные в таблицах и как определить связи между этими таблицами.
Правила реляционной модели диктуют, как информация должна быть организована в таблицах и как таблицы связаны друг с другом. В конечном счете результат можно предоставить в виде диаграммы базы данных или, если точнее, диаграммы «сущность-связь», как на рисунке (Пример взят из MySQL Workbench).
Примеры.
В качестве примеров в руководстве я использовал ряд приложений.
РСУБД, которую я использовал для создания таблиц примеров – MySQL. MySQL – наиболее популярная РСУБД и она бесплатна.
Утилита для администрирования БД.
После установки MySQL вы получаете только интерфейс командной строки для взаимодействия с MySQL. Лично я предпочитаю графический интерфейс для управления моими базами данных. Я часто использую SQLyog. Это бесплатная утилита с графическим интерфейсом. Изображения таблиц в данном руководстве взяты оттуда.
Существует отличное бесплатное приложение MySQL Workbench. Оно позволяет спроектировать вашу базу данных графически. Изображения диаграмм в руководстве сделаны в этой программе.
Проектирование независимо от РСУБД.
Важно знать, что хотя в данном руководстве и приведены примеры для MySQL, проектирование баз данных независимо от РСУБД. Это значит, что информация применима к реляционным базам данных в общем, не только к MySQL. Вы можете применить знания из этого руководства к любым реляционным базам данных, подобным Mysql, Postgresql, Microsoft Access, Microsoft Sql or Oracle.
В следующей части я коротко расскажу об эволюции баз данных. Вы узнаете откуда взялись базы данных и реляционная модель данных.
2. История.
В 70-х – 80-х годах, когда компьютерные ученые все еще носили коричневые смокинги и очки с большими, квадратными оправами, данные хранились бесструктурно в файлах, которые представляли собой текстовый документ с данными, разделенными (обычно) запятыми или табуляциями.
Так выглядели профессионалы в сфере информационных технологий в 70-е. (Слева внизу находится Билл Гейтс).
Текстовые файлы и сегодня все еще используются для хранения малых объемов простой информации. Comma-Separated Values (CSV) — значения, разделённые запятыми, очень популярны и широко поддерживаются сегодня различным программным обеспечением и операционными системами. Microsoft Excel – один из примеров программ, которые могут работать с CSV–файлами. Данные, сохраненные в таком файле могут быть считаны компьютерной программой.
Выше приведен пример того, как такой файл мог бы выглядеть. Программа, производящая чтение данного файла, должна быть уведомлена о том, что данные разделены запятыми. Если программа хочет выбрать и вывести категорию, в которой находится урок ‘Database Design Tutorial’, то она должна строчка за строчкой производить чтение до тех пор, пока не будут найдены слова ‘Database Design Tutorial’ и затем ей нужно будет прочитать следующее за запятой слово для того, чтобы вывести категорию Software.
Таблицы баз данных.
Чтение файла строчка за строчкой не является очень эффективным. В реляционной базе данных данные хранятся в таблицах. Таблица ниже содержит те же самые данные, что и файл. Каждая строка или “запись” содержит один урок. Каждый столбец содержит какое-то свойство урока. В данном случае это заголовок (title) и его категория (category).
Компьютерная программа могла бы осуществить поиск в столбце tutorial_id данной таблицы по специфическому идентификатору tutorial_id для того, чтобы быстро найти соответствующие ему заголовок и категорию. Это намного быстрее, чем поиск по файлу строка за строкой, подобно тому, как это делает программа в текстовом файле.
Современные реляционные базы данных созданы так, чтобы позволять делать выборку данных из специфических строк, столбцов и множественных таблиц, за раз, очень быстро.
История реляционной модели.
Реляционная модель баз данных была изобретена в 70-х Эдгаром Коддом (Ted Codd), британским ученым. Он хотел преодолеть недостатки сетевой модели баз данных и иерархической модели. И он очень в этом преуспел. Реляционная модель баз данных сегодня всеобще принята и считается мощной моделью для эффективной организации данных.
Сегодня доступен широкий выбор систем управления базами данных: от небольших десктопных приложений до многофункциональных серверных систем с высокооптимизированными методами поиска. Вот некоторые из наиболее известных систем управления реляционными базами данных (РСУБД):
— Oracle – используется преимущественно для профессиональных, больших приложений.
— Microsoft SQL server – РСУБД компании Microsoft. Доступна только для операционной системы Windows.
— Mysql – очень популярная РСУБД с открытым исходным кодом. Широко используется как профессионалами, так и новичками. Что еще нужно?! Она бесплатна.
— IBM – имеет ряд РСУБД, наиболее известна DB2.
— Microsoft Access – РСУБД, которая используется в офисе и дома. На самом деле – это больше, чем просто база данных. MS Access позволяет создавать базы данных с пользовательским интерфейсом.
В следующей части я расскажу кое-что о характеристиках реляционных баз данных.
3. Характеристики реляционных баз данных.
Реляционные базы данных разработаны для быстрого сохранения и получения больших объемов информации. Ниже приведены некоторые характеристики реляционных баз данных и реляционной модели данных.
Использование ключей.
Каждая строка данных в таблице идентифицируется уникальным “ключом”, который называется первичным ключом. Зачастую, первичный ключ это автоматически увеличиваемое (автоинкрементное) число (1,2,3,4 и т.д). Данные в различных таблицах могут быть связаны вместе при использовании ключей. Значения первичного ключа одной таблицы могут быть добавлены в строки (записи) другой таблицы, тем самым, связывая эти записи вместе.
Используя структурированный язык запросов (SQL), данные из разных таблиц, которые связаны ключом, могут быть выбраны за один раз. Для примера вы можете создать запрос, который выберет все заказы из таблицы заказов (orders), которые принадлежат пользователю с идентификатором (id) 3 (Mike) из таблицы пользователей (users). О ключах мы поговорим далее, в следующих частях.
Столбец id в данной таблице является первичным ключом. Каждая запись имеет уникальный первичный ключ, часто число. Столбец usergroup (группы пользователей) является внешним ключом. Судя по ее названию, она видимо ссылается на таблицу, которая содержит группы пользователей.
Отсутствие избыточности данных.
В проекте базы данных, которая создана с учетом правил реляционной модели данных, каждый кусочек информации, например, имя пользователя, хранится только в одном месте. Это позволяет устранить необходимость работы с данными в нескольких местах. Дублирование данных называется избыточностью данных и этого следует избегать в хорошем проекте базы данных.
Ограничение ввода.
Используя реляционную базу данных вы можете определить какой вид данных позволено сохранять в столбце. Вы можете создать поле, которое содержит целые числа, десятичные числа, небольшие фрагменты текста, большие фрагменты текста, даты и т.д.
Когда вы создаете таблицу базы данных вы предоставляете тип данных для каждого столбца. К примеру, varchar – это тип данных для небольших фрагментов текста с максимальным количеством знаков, равным 255, а int – это числа.
Помимо типов данных РСУБД позволяет вам еще больше ограничить возможные для ввода данные. Например, ограничить длину или принудительно указать на уникальность значения записей в данном столбце. Последнее ограничение часто используется для полей, которые содержат регистрационные имена пользователей (логины), или адреса электронной почты.
Эти ограничения дают вам контроль над целостностью ваших данных и предотвращают ситуации, подобные следующим:
— ввод адреса (текста) в поле, в котором вы ожидаете увидеть число
— ввод индекса региона с длинной этого самого индекса в сотню символов
— создание пользователей с одним и тем же именем
— создание пользователей с одним и тем же адресом электронной почты
— ввод веса (числа) в поле дня рождения (дата)
Поддержание целостности данных.
Настраивая свойства полей, связывая таблицы между собой и настраивая ограничения, вы можете увеличить надежность ваших данных.
Назначение прав.
Большинство РСУБД предлагают настройку прав доступа, которая позволяет назначать определенные права определенным пользователям. Некоторые действия, которые могут быть позволены или запрещены пользователю: SELECT (выборка), INSERT (вставка), DELETE (удаление), ALTER (изменение), CREATE (создание) и т.д. Это операции, которые могут быть выполнены с помощью структурированного языка запросов (SQL).
Структурированный язык запросов (SQL).
Для того, чтобы выполнять определенные операции над базой данных, такие, как сохранение данных, их выборка, изменение, используется структурированный язык запросов (SQL). SQL относительно легок для понимания и позволяет в т.ч. и уложненные выборки, например, выборка связанных данных из нескольких таблиц с помощью оператора SQL JOIN. Как и упоминалось ранее, SQL в данном руководстве обсуждаться не будет. Я сосредоточусь на проектировании баз данных.
То, как вы спроектируете базу данных будет оказывать непосредственное влияние на запросы, которые вам будет необходимо выполнить, чтобы получить данные из базы данных. Это еще одна причина, почему вам необходимо задуматься о том, какой должна быть ваша база. С хорошо спроектированной базой данных ваши запросы могут быть чище и проще.
Переносимость.
Реляционная модель данных стандартна. Следуя правилам реляционной модели данных вы можете быть уверены, что ваши данные могут быть перенесены в другую РСУБД относительно просто.
Как говорилось ранее, проектирование базы данных – это вопрос идентификации данных, их связи и помещение результатов решения данного вопроса на бумагу (или в компьютерную программу). Проектирование базы данных независимо от РСУБД, которую вы собираетесь использовать для ее создания.
В следующей части подробнее рассмотрим первичные ключи.