Как выглядят две пересекающиеся прямые
Пересекающиеся прямые
Если две прямые имеют общую точку, то говорят, что эти прямые пересекаются. Такие прямые называют пересекающимися прямыми:
Точка пересечения — это точка, общая для двух или более геометрических фигур.
Перпендикуляр и наклонная
При пересечении вертикальной и горизонтальной прямой линии образуется четыре прямых угла. Такие линии, относительно друг к другу, называются перпендикулярными линиями или просто перпендикулярами:
Даже если прямые не являются вертикальной и горизонтальной линиями, но при пересечении образуют четыре прямых угла, то они всё равно являются перпендикулярными:
Если прямая линия пересекает другую не под прямым углом, то такая линия называется наклонной к прямой, которую она пересекает. При этом образуется четыре угла: два из них будут острыми и два тупыми:
Образованные острые углы равны и относительно друг друга будут называться вертикальными углами. То же самое можно сказать и об образованных тупых углах — они равные и вертикальные.
Пересекающиеся прямые
Пересекающиеся прямые — это в евклидовой геометрии пересечение двух прямых может быть пустым множеством, точкой или прямой. Различение этих случаев и поиск точки пересечения используется, например, в компьютерной графике, при планировании движения и для обнаружения столкновений.
Содержание:
Понятие пересекающихся прямых
Определение. Если две прямые имеют только одну общую точку, то такие прямые называют пересекающимися.
На рисунке 2.291 прямые пересекаются в точке О.
Можно доказать такую теорему.
Теорема 1. Через две пересекающиеся прямые можно провести плоскость, и только одну.
Несколько прямых могут пересекаться не в одной точке, а, например, попарно. На рисунке 2.292 изображено пересечение трех прямых, каждые две из которых пересекаются только в одной точке. При этом образуется треугольник и вся эта фигура всегда лежит в одной плоскости.
Четыре прямые, каждые две из которых имеют только одну общую точку, образуют четырехугольник (рис. 2.293).
На рисунках 2.294, 2.295 изображены куб и тетраэдр, у которых продолжены их ребра. Мы видим, что в каждой вершине куба и тетраэдра пересекаются три прямые.
Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Пересечение прямых. Точка пересечения двух прямых
Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.
Точка пересечения двух прямых на плоскости
Если система уравнений:
Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:
Вычтем из первого уравнения второе
Из первого уравнения найдем значение x
Подставим значение x во второе уравнение и найдем значение y
Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:
В первое уравнение подставим значения x и y из второго и третьего уравнений.
Подставим значение t во второе и третье уравнение
Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:
Из второго уравнения выразим y через x
Подставим y в первое уравнение
Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.
Решим также эту задачу используя систему уравнений:
Вычтем из первого уравнения второе
Ответ. Прямые не пересекаются (прямые параллельны).
Решение: Подставим координаты точки N в уравнения прямых.
Точка пересечения двух прямых в пространстве
Если система уравнений:
Решение: Составим систему уравнений
К шестому уравнению добавим пятое уравнение
Подставим значение b в четвертое и пятое уравнения
x = a + 1 y = a + 1 z = a + 1 a = 0 a = 0 b = 1 => x = 0 + 1 = 1 y = 0 + 1 = 1 z = 0 + 1 = 1 a = 0 a = 0 b = 1
Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).
Решение: Составим систему уравнений заменив во втором уравнении параметр t на a
Подставим значение t из шестого уравнения в остальные уравнения
Пересекающиеся прямые
Так как проекция прямой есть прямая, то проекцией пересекающихся прямых будут их пересекающиеся проекции:
Чтобы определить на эпюре (комплексном чертеже), пересекаются ли данные прямые в пространстве, достаточно провести линию связи из одной точки пересечения проекций к другой. Если проекции точки пересечения прямых будут лежать на одной линии связи, то прямые пересекаются. Чтобы построить на эпюре (комплексном чертеже), пересекающиеся прямые в пространстве, достаточно провести линию связи из одной точки пересечения проекций прямых к другой. Проекцию точки пересечения прямых на другой плоскости проекций находим в пересечении линии проекционной связи, с проекцией одной из пересекающихся прямых, через нее проводим проекцию другой прямой. Если одна из прямых параллельна профильной плоскости проекций, то для определения положения точки пересечения прямых в пространстве необходимо построить третью (профильную) проекцию.
Построить проекции прямой d, пересекающей заданные прямые a, b и c
Продолжив проекции прямых a и b находим M` =a` ∩ b` и M»=a» ∩ b» проекции точки M, которые совпадают а поэтому находятся на одной линии проекционной связи и следовательно a и b пересекающиеся прямые. Через точку M пересечения прямых a, b и прямую c проводим прямую d(d`, d»): M=a ∩ b; N`= c` ∩ d` ^ N»= c» ∩ d»; N ∈ d ^ M ∈ d
Как выглядят две пересекающиеся прямые
Пересекающиеся прямые – это прямые, лежащие в одной плоскости и имеющие одну общую точку, которую называют точкой пересечения прямых.
Так как проекция прямой есть прямая, то проекцией пересекающихся прямых будут их пересекающиеся проекции:
Чтобы определить на эпюре (комплексном чертеже), пересекаются ли данные прямые в пространстве, достаточно провести линию связи из одной точки пересечения проекций к другой. Если проекции точки пересечения прямых будут лежать на одной линии связи, то прямые пересекаются. Чтобы построить на эпюре (комплексном чертеже), пересекающиеся прямые в пространстве, достаточно провести линию связи из одной точки пересечения проекций прямых к другой. Проекцию точки пересечения прямых на другой плоскости проекций находим в пересечении линии проекционной связи, с проекцией одной из пересекающихся прямых, через нее проводим проекцию другой прямой. Если одна из прямых параллельна профильной плоскости проекций, то для определения положения точки пересечения прямых в пространстве необходимо построить третью (профильную) проекцию.
Построить проекции прямой d, пересекающей заданные прямые a, b и c
Продолжив проекции прямых a и b находим M` =a` ∩ b` и M»=a» ∩ b» проекции точки M, которые совпадают а поэтому находятся на одной линии проекционной связи и следовательно a и b пересекающиеся прямые. Через точку M пересечения прямых a, b и прямую c проводим прямую d(d`, d»): M=a ∩ b; N`= c` ∩ d` ^ N»= c» ∩ d»; N ∈ d ^ M ∈ d
Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.
Точка пересечения двух прямых на плоскости
Если система уравнений:
Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:
Вычтем из первого уравнения второе
Из первого уравнения найдем значение x
Подставим значение x во второе уравнение и найдем значение y
Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:
y = 2 x – 1 x = 2 t + 1 y = t
В первое уравнение подставим значения x и y из второго и третьего уравнений.
t = 2·(2 t + 1) – 1 x = 2 t + 1 y = t => t = 4 t + 1 x = 2 t + 1 y = t =>
-3 t = 1 x = 2 t + 1 y = t => t = – 1 3 x = 2 t + 1 y = t
Подставим значение t во второе и третье уравнение
t = – 1 3 x = 2·(- 1 3 ) + 1 = – 2 3 + 1 = 1 3 y = – 1 3
Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:
2 x + 3 y = 0 x – 2 3 = y 4
Из второго уравнения выразим y через x
2 x + 3 y = 0 y = 4· x – 2 3
Подставим y в первое уравнение
2 x + 3·4· x – 2 3 = 0 y = 4· x – 2 3 => 2 x + 4·( x – 2) = 0 y = 4· x – 2 3 =>
2 x + 4 x – 8 = 0 y = 4· x – 2 3 => 6 x = 8 y = 4· x – 2 3 =>
Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.
Решим также эту задачу используя систему уравнений:
y = 2 x – 1 y = 2 x + 1
Вычтем из первого уравнения второе
Ответ. Прямые не пересекаются (прямые параллельны).
Решение: Подставим координаты точки N в уравнения прямых.
Ответ. Так как оба уравнения превратились в тождества, то точка N – точка пересечения этих прямых.
Точка пересечения двух прямых в пространстве
Если система уравнений:
Решение: Составим систему уравнений
К шестому уравнению добавим пятое уравнение
Подставим значение b в четвертое и пятое уравнения
x = a + 1 y = a + 1 z = a + 1 a = 0 a = 0 b = 1 => x = 0 + 1 = 1 y = 0 + 1 = 1 z = 0 + 1 = 1 a = 0 a = 0 b = 1
Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).
Решение: Составим систему уравнений заменив во втором уравнении параметр t на a
x = 2 t – 3 y = t z = – t + 2 x = a + 1 y = 3 a – 2 z = 3
Подставим значение t из шестого уравнения в остальные уравнения
Теперь рассмотрим случай, когда прямые проходят через точку пересечения M прямых a и b.
Возьмем произвольную точку N, которая не лежит в плоскости P и проведем прямую через точки N и M.
Прямая NM не принадлежит плоскости P.
Итак, основной вывод.
Прямые, которые пересекают две пересекающиеся прямые и не проходят через их точку пересечения всегда лежат с этими прямыми в одной плоскости.
Те прямые, которые проходят через точку пересечения пересекающихся прямых не всегда лежат с ними в одной плоскости.