Как вынести число под корень

Извлечение корня

Извлечь из данного числа корень какой-нибудь степени значит найти такое число, которое при возведении в эту степень, будет равно данному числу.

Из правил знаков при возведении в степень следует, что:

3 √ +27 = +3, так как (+3) 3 = 27;

√ +9 = ±3, так как (+3) 2 = +9 и (-3) 2 = +9;

4 √ +256 = ±4, так как (+4) 4 = +256 и (-4) 4 = +256.

Невозможные выражения иначе называют мнимыми.

Извлечение корня из произведения, степени и дроби

Чтобы извлечь корень из произведения, надо извлечь его из каждого множителя отдельно.

Так же можно сказать, что корень произведения равен произведению корней всех его множителей:

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Чтобы извлечь корень из степени, следует показатель степени разделить на показатель корня:

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Чтобы извлечь корень из дроби, следует извлечь его отдельно из числителя и из знаменателя:

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Вынесение множителя из-под знака корня

Когда нельзя извлечь корень из всего подкоренного числа или выражения, то подкоренное число или выражение раскладывают на множители и извлекают корень только из тех множителей, из которых это возможно сделать.

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Внесение множителя под корень

Если нужно внести множитель под знак корня, то его следует возвести в степень, равную показателю корня.

Источник

Разложение квадратного корня на множители: внесение и вынесение

На первый взгляд может показаться, что процедура разложения квадратного корня на множители сложная и неприступная. Но это не так. В этой статье мы расскажем вам, как подступиться к квадратному корню и множителям, а также легко и просто разложить квадратный корень, воспользовавшись двумя проверенными методами.

Разложение корня на множители

Для начала определим цель процедуры разложения квадратного корня на множители. Цель — упростить квадратный корень и записать его в удобном для вычислений виде.

Разложение квадратного корня на множители — нахождение двух или нескольких чисел, которые, при условии перемножения их друг на друга, дадут число равное исходному. Например: 4×4 = 16.

Если вы найдете множители, то сможете легко упростить выражение с квадратным корнем или вовсе его упразднить:

Разделите подкоренное число на 2, если оно четное.

Подкоренное число всегда следует делить на простые числа, поскольку любое значение простого числа можно разложить на простые множители. Если у вас нечетное число, то попробуйте разделить его на 3. Не делится на 3? Делите дальше на 5, 7, 9 и т.д.

Запишите выражение в виде корня произведения двух чисел.

Продолжите раскладывать числа, пока под корнем не останется произведение двух одинаковых чисел и других чисел.

Возьмем наш пример ( 2 × 49 ) :

Упростите выражение с квадратным корнем.

В тот момент, когда под корнем оказалось два одинаковых числа, останавливайтесь с разложением чисел на множители. Конечно, если вы использовали все возможности по максимуму.

Запомните: существуют корни, которые можно упрощать многократно.

В таком случае, числа, которые мы выносим из-под корня, и числа, которые стоят перед ним, перемножаются.

180 = ( 2 × 90 ) 180 = ( 2 × 2 × 45 ) 180 = 2 45

но 45 можно разложить на множители и еще раз упростить корень.

180 = 2 ( 3 × 15 ) 180 = 2 ( 3 × 3 × 5 ) 180 = 2 × 3 5 180 = 6 5

Когда невозможно получить два одинаковых числа под знаком корня, это значит, что упростить такой корень нельзя.

Если после разложения подкоренного выражения на произведение простых чисел, у вас не получилось получить два одинаковых числа, то такой корень упростить нельзя.

Как видим, все три множителя — простые числа, которые нельзя разложить на множители. Среди них нет одинаковых чисел, поэтому не представляется возможным вынести целое число из-под корня. Упростить 70 нельзя.

Полный квадрат

Запомните несколько квадратов простых чисел.

Квадрат числа получается, если умножить его на самого себя, т.е. при возведении в квадрат. Если вы запомните десяток квадратов простых чисел, то это очень упростить вам жизнь в дальнейшем упрощении корней.

1 2 = 1 2 2 = 4 3 2 = 9 4 2 = 16 5 2 = 25 6 2 = 36 7 2 = 49 8 2 = 64 9 2 = 81 10 2 = 100

В случае если под знаком корня квадратного корня находится полный квадрат, то стоит убрать знак корня и записать квадратный корень данного полного квадрата.

1 = 1 4 = 2 9 = 3 16 = 4 25 = 5 36 = 6 49 = 7 64 = 8 81 = 9 100 = 10

Попробуйте разложить число под знаком корня на произведения полного квадрата и другого числа.

Если вы видите, что подкоренное выражение раскладывается на произведение полного квадрата и какого-либо числа, то, запомнив несколько примеров, вы существенно сэкономите время и нервы:

Попробуйте разложить подкоренное число на произведение нескольких полных квадратов: вынесите их из-под знака корня и перемножьте.

72 = ( 9 × 8 ) 72 = ( 9 × 4 × 2 ) 72 = 9 × 4 × 2 72 = 3 × 2 × 2 72 = 6 2

Источник

Как вынести из-под корня

Вынесение множителя из-под знака корня — это извлечение корня из одного из множителей (числа или буквы), которые находятся под корнем.

Говорят: «Число « 25 » вынесли из-под знака корня».

Рассмотрим подробнее пример вынесения множителя из-под знака корня.

Вынесите множитель из-под знака корня:

Извлечь квадратный корень из « √ 5 » целым числом не получится, поэтому нам остается только извлечь квадратный корень из « √ 16 ».

Обязательно выучите таблицу квадратов чисел от « 1 » до « 15 » и таблицу часто используемых квадратных корней.

Вспомним, чему равен квадрат числа четыре?

Решение примера выше записываем следующим образом.

√ 16 · 5 = √ 16 · √ 5 = 4 · √ 5

Действие выше называют вынесением множителя из-под знака корня. Говорят: «Число « 16 » вынесли из-под знака корня, получив число « 4 ».

Примеры правильного и неправильного вынесения из-под знака корня:

Как вынести множитель из корня с одним числом

Рассмотрим пример, когда под корнем только одно число и по условию задания требуется вынести множитель из-под знака корня.

№ 524 (1) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

Извлечь целое число из квадратного корня « √ 8 » нельзя, так как нет такого целого числа, которое в квадрате давало бы « 8 ».

Обязательно выучите таблицу квадратов чисел от « 1 » до « 15 » и таблицу часто используемых квадратных корней.

Подумаем, на какие множители можно разложить число « 8 », чтобы была возможность вынести один из множителей из-под знака корня. Вспоминаем таблицу умножения.

Число « 8 » — это произведение
« 8 = 4 · 2 ». Теперь можем вынести « 4 » из-под знака корня.

√ 8 = √ 4 · 2 = √ 4 · √ 2 = 2 √ 2

Разберем другие примеры вынесения множителя из-под знака квадратного корня

№ 524 (4) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

Зададим себе вопрос: «На какие множители нужно разложить « 54 », чтобы была возможность вынести один из множителей из-под знака квадратного корня?».

Видим число « 9 ». Подходит, так как « √ 9 = 3 ».

Завершим решение примера вынесением из-под знака корня числа « 9 ».

Извлечь « √ 6 » целым числом невозможно. Поэтому ответ оставляем в таком виде.

№ 524 (5) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

В примерах с числами, которые делятся на « 10, 100, 1000… » и так далее, стоит сразу попробовать разложить число на « 10, 100, 1000… » и второй множитель.

То есть число « 490 » можно разложить на « 490 = 49 · 10 ». Из « 49 » можно извлечь квадратный корень.

Теперь можно вынести « 49 » из-под знака корня.

√ 490 = √ 49 · 10 = 7 √ 10

№ 524 (6) Мерзляк 8 класс

№ 524 (8) Мерзляк 8 класс

√ 108 = √ 54 · 2 = √ 9 · 6 · 2 =

= 3 √ 6 · 2 = 3 √ 12 = 3 √ 4 · 3 =

№ 526 (6) Мерзляк 8 класс

0,4 · √ 250 = 0,4 · √ 25 · 10 =

Завершим пример, умножив десятичную дробь « 0,4 » на « 5 » по правилу умножения десятичной дроби на число.

0,4 · √ 250 = 0,4 · √ 25 · 10 =

№ 526 (8) Мерзляк 8 класс

Умножим дробь «

4
9

» на число « 3 », которое вынесли из-под знака квадратного корня. Используем правило умножения обыкновенной дроби на число.

4
9

· √ 63 =

4
9

· √ 9 · 7 =

4
9

· 3 √ 7 =

=

4 · 3
9

· √ 7 =

4 · 3
9 3

· √ 7 =

4
9

· √ 63 =

4
9

· √ 9 · 7 =

4
9

· 3 √ 7 =

=

4 · 3
9

· √ 7 =

4 · 3
9 3

· √ 7 =

4
3

· √ 7 =

Как вынести десятичную дробь из-под знака корня

В уроке «Как извлечь квадратный корень из дроби» мы разбирали, каким образом извлечь квадратный корень из десятичной дроби. Например, извлечение квадратного корня из десятичной дроби « √ 0,25 ».

Тот же самый метод используется при вынесении десятичной дроби из-под знака корня.

№ 524 (10) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

Разложим десятичную дробь на произведение множителей, чтобы потом была возможность вынести один из множителей из-под знака корня.

Подберем десятичную дробь, на которую делится « 0,48 », из которой потом можно извлечь квадратный корень.

Например, « 0,16 ». Десятичная дробь « 0,48 » делится на « 0,16 » нацело.

Извлечь квадратный корень из « √ 0,16 » по правилу нахождения квадратного корня из десятичной дроби.

Завершим пример вынесением « 0,16 » из-под знака корня.

Примеры вынесения десятичной дроби из-под знака квадратного корня

№ 524 (9) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

№ 526 (7) Мерзляк 8 класс

Вынесите множитель из-под знака корня:

−2 · √ 0,18 = −2 · √ 0,09 · 2 =

Как вынести букву из-под знака корня

При вынесении из-под знака квадратного корня множителя в степени (буквы или числа) степень делится на « 2 ».

Рассмотрим примеры вынесения буквы в степени из-под корня.

№ 347 (2, 4) Колягин (Алимов) 8 класс

Вынести множитель из-под знака корня (буквами обозначены положительные числа).

2) √ 2x 2 = x

2
2

√ 2 = x √ 2

4) √ 3a 6 = a

6
2

√ 3 = a 3 √ 3

В более сложных примерах требуется вынести и числовой множитель, и букву в степени из-под корня.

№ 348 (2) Колягин (Алимов) 8 класс

Вынести множитель из-под знака корня (буквами обозначены положительные числа).

Вначале отдельно вынесем буквенный множитель из-под корня.

Теперь разложим число « 75 » на множители, один из которых можно вынести из-под знака квадратного корня.

Число « 75 » явно делится на « 5 ». Проверим, можно ли число « 75 » разложить на квадрат числа « 5 2 = 25 ».

Завершим пример, вынеся число « 25 » из-под знака корня.

√ 75a 2 = a

2
2

· √ 75 = a √ 75 =

№ 549 (2) Мерзляк 8 класс

Не всегда удается сразу вынести букву в степени из-под знака корня. В данном примере степень « 9 » не делится нацело на « 2 ».

Вспомним из урока «Свойства степени» правило произведение степеней с одинаковым основанием.

Свойство работает и в обратную сторону.

Вернемся к нашему примеру. Разложим « y 9 » на множители со степенями так, чтобы одна из степеней нацело делилась на « 2 ». Представим степень « 9 » как сумму чисел « 9 = 6 + 3 ».

Используем свойство произведения степеней с одинаковым основанием в обратную сторону и разложим « у » на множители.

Источник

Как вынести множитель из-под знака корня: теория, примеры, решения

В данном материале мы продолжим рассказывать о том, как преобразовывать рациональные выражения, а конкретно о том, как правильно выносить множитель из-под знака корня. В первом пункте объясним, зачем нужно такое преобразование, далее покажем, как именно оно делается и сформулируем общее для всех случаев правило. Далее покажем, какие существуют методы, чтобы привести подкоренное выражение к удобному для преобразования виду, и разберем примеры решений задач.

Что такое вынесение множителя из-под знака корня

Чтобы лучше понять суть подобного преобразования, нужно сначала сформулировать, что такое вообще вынесение множителя из-под знака корня. Сформулируем определение:

Вынесение множителя из-под знака корня представляет собой замену выражения B n · C n на произведение B · C n с условием, что n – нечетное число, или же на произведение B · C – где n – четное число, а B и C – другие числа и выражения.

Мы выяснили, что такое вынесение множителя из-под знака корня. Теперь перейдем к доказательствам, т.е. поясним, почему произведение, полученное в итоге данного преобразования, равнозначно исходному выражению.

Почему возможно заменить корень на произведение

Когда мы разбирали преобразование иррациональных выражений, у нас получились некоторые важные результаты, которые мы собрали в таблицу. Здесь нам будут нужны только два из них:

Используя эти результаты и зная основные свойства модуля, мы можем вывести следующее:

Эти выражения лежат в основе преобразований, которые мы проводим, вынося множитель из-под знака корня.

Следовательно, можно вывести две формулы:

С помощью данных формул можно выполнить вынесение из-под корня сразу нескольких множителей.

Основное правило вынесения множителя из-под корня

Для вынесения множителя из-под корня в выражении A n нужно предварительно привести корень к виду B n · C n и после этого перейти к произведению B · C n (при нечетном показателе) или к B · C n (при четном показателе, при необходимости раскрываем модули).

Таким образом, схема решения подобных задач выглядит следующим образом:

Если нам надо вынести несколько множителей, то действуем так:

Теперь можно переходить к решению задач.

Задачи на вынесение множителя из-под знака корня

Решение

Мы видим, что подкоренные выражения во всех трех случаях уже имеют нужный нам вид. Поскольку в первых двух примерах показателем корня является четное число, а в третьем – нечетное, записываем следующее:

Решение:

При помощи схемы, приведенной во втором пункте статьи, мы можем вынести из-под корня сразу три множителя.

Можно сделать преобразование в несколько шагов, вынося множителя по одному, но так будет гораздо дольше.

Разберем более подробно тот случай, когда подкоренное выражение требует предварительного преобразования. Здесь есть несколько моментов, которые нужно дополнительно пояснить.

Предварительное преобразование подкоренного выражения

Решение

А как быть в случае, если множитель, который нужно вынести, не указан? Тогда у нас есть определенная свобода выбора, и мы можем использовать несколько подходов к решению задачи.

Допустим, нам дано выражение, под корнем у которого стоит степень или произведение нескольких степеней. В таком случае, зная основные свойства степени, мы можем преобразовать выражение в удобный для нас вид с очевидно указанными множителями для вынесения.

Решение

2 7 · 5 4 = 2 4 · 2 3 · 5 4 = 2 4 · 40 4 = 2 · 40 4 = 2 · 40 4

В последнем примере также нужно начать с преобразования подкоренного выражения. Сразу отметим, что итоговый вид будет таким:

2 22 + 2 5 · 4 + 2 = 2 5 · 4 · 2 2 = ( 2 5 ) 4 · 2 2

2 22 · 5 4 = ( 2 5 ) 4 · 2 2 · 5 4 = ( 2 5 ) 4 · 20 4 = = 2 5 · 20 4 = 32 · 20 4

Если выражение под корнем не является степенью или произведением степеней, надо попробовать представить его в таком виде. Чаще всего встречаются следующие случаи.

Подкоренное выражение – натуральное составное число. Тогда мы сразу можем увидеть нужные множители, которые надо вынести из-под знака корня, предварительно разложив данное число на простые множители.

3 2 · 5 = 3 · 5 = 3 · 5

3 2 · 15 = 3 · 15 = 3 · 15

3456 1728 864 432 216 108 54 27 9 3 1 2 2 2 2 2 2 2 3 3 3

Теперь разберем, как решать примеры, у которых подкоренное выражение представлено в виде обыкновенной дроби. В этом случае следует числитель и знаменатель разложить на простые множители и посмотреть, можно ли вынести какие-то из них за знак корня. Если у нас есть десятичная дробь или смешанное число, предварительно заменяем их обыкновенными дробями, после чего переходим от корня отношения к отношению корней.

Решение

Для начала перейдем от десятичной дроби к обыкновенной и разложим ее числитель и знаменатель на простые множители.

Используя свойства степени, перепишем выражение в следующем виде:

Подставим получившееся выражение в исходное и получим:

К такому же ответу можно прийти и с помощью других преобразований:

Иными словами, для обнаружения множителя, который можно вынести за знак корня, можно преобразовывать подкоренное выражение любыми допустимыми способами.

Решение

2 · 2 + 1 2 = 2 · 2 + 1 = = 2 · 2 + 1 = 2 + 2

Теперь посмотрим, как вынести из-под знака корня выражение, содержащее переменные. В целом можно сказать, что для этого используются те же методы, что и при работе с числами.

Решение

Выполним сокращение показателей корня и степени на два. Обратимся к таблице результатов из статьи о преобразовании иррациональных выражений, о которой мы говорили выше. Возьмем из нее следующий результат: выражение A m n · m можно заменить на A n при условии, что m и n – натуральные числа. Следовательно,

Решение

Теперь видим множители, подлежащие вынесению из-под корня: x 3 · ( x + y ) 2 = x 2 · x · ( x + y ) 2 = x · x + y · x

Это все, что мы хотели бы вам рассказать о вынесении множителя за знак корня. В следующей статье мы разберем обратное действие – внесение множителя под корень.

Источник

Что такое квадратный корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Что такое квадратный корень

Определение арифметического квадратного корня ясности не добавляет, но заучить его стоит:

Арифметическим квадратным корнем из неотрицательного числа a называется такое неотрицательное число, квадрат которого равен a.

Определение квадратного корня также можно представить в виде формул:
√a = x
x 2 = a
x ≥ 0
a ≥ 0

Из определения следует, что a не может быть отрицательным числом. То есть то, что стоит под корнем — обязательно положительное число.

Чтобы разобраться, почему именно так и никак иначе, давайте рассмотрим пример.

Попробуем найти корень из √-16

Здесь логично предположить, что 4, но давайте проверим: 4*4 = 16 — не сходится.

Получается, что ни одно число не может дать отрицательный результат при возведении его в квадрат.

Числа, стоящие под знаком корня, должны быть положительными.

Исходя из определения, значение корня также не должно быть отрицательным.

Разница между квадратным корнем и арифметическим квадратным уравнением

Прежде всего, чтобы разграничить эти два понятия, запомните:

Это два нетождественных друг другу выражения.

Из выражения x 2 = 16 следует, что:

Если две вертикальные палочки возле x вводят вас в замешательство, почитайте нашу статью о модуле числа.

В то же самое время, из выражения x = √16 следует, что x = 4.

Если ситуация все еще кажется запутанной и нелогичной, просто запомните, что отрицательное число может быть решением только в квадратном уравнении. Если в решении «минус» — есть два варианта:

Если вы извлекаете квадратный корень из числа, то можете быть уверены, вас ждет «положительный» результат.

Давайте рассмотрим пример, чтобы окончательно выяснить разницу между квадратным корнем и квадратным уравнением.

Даны два выражения:

Первое выражение — квадратное уравнение.

Второе выражение — арифметический квадратный корень.

Мы видим, что результатом решения первого выражения стали два числа — отрицательное и положительное. А во втором случае — только положительное.

Запись иррациональных чисел с помощью квадратного корня

Иррациональное число — это число, которое нельзя представить в виде обыкновенной дроби.

Чаще всего, иррациональные числа можно встретить в виде корней, логарифмов, степеней и т.д.

Примеры иррациональных чисел:

Чтобы упростить запись иррациональных чисел, математики ввели понятие квадратного корня. Давайте разберем пару примеров, чтобы увидеть квадратный корень в деле.

Дано уравнение: x 2 = 2.

Сразу сталкиваемся с проблемой, поскольку очевидно, что ни одно целое число не подходит.

Переберем числа, чтобы удостовериться в этом:

1 * 1 = 1,
2 * 2 = 4,
3 * 3 = 9.

Отрицательные числа дают такой же результат. Значит результатом решения не могут быть целые числа.

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Извлечение корней

Решать примеры с квадратными корнями намного легче, если запомнить как можно больше квадратов чисел. Для этого воспользуйтесь таблицей — сохраните ее себе и используйте для решения задачек.

Таблица квадратов

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Вот несколько примеров извлечения корней, чтобы научиться пользоваться таблицей:

Ищем в таблице число 289, двигаемся от него влево и вверх, чтобы определить цифры, образующие нужное нам число.

Ищем в таблице число 3025.
Влево — 5, вверх — 5.

Ищем в таблице число 7396.

Ищем в таблице число 9025.

Ищем в таблице число 1600.

Извлечением корня называется нахождение его значение.

Свойства арифметического квадратного корня

У арифметического квадратного корня есть 3 свойства — их нужно запомнить, чтобы проще решать примеры.

Давайте потренируемся и порешаем примеры на все три операции с корнями. Не забывайте обращаться к таблице квадратов. Попробуйте решить примеры самостоятельно, а для проверки обращайтесь к ответам.

Умножение арифметических корней

Для умножения арифметических корней используйте формулу:

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Примеры:

Внимательно посмотрите на второе выражение и запомните, как записываются такие примеры.

Если нет возможности извлечь корни из чисел, то поступаем так:

Деление арифметических корней

Для деления арифметических корней используйте формулу:

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Примеры:

Выполняя деление, не забывайте сокращать множители. При делении арифметических корней, используйте правила преобразования обыкновенных дробей.

Возведение арифметических корней в степень

Для возведения арифметического корня в степень используйте формулу:

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Примеры:

Эти две формулы нужно запомнить:

Повторите свойства степеней или запишитесь на курсы по математике, чтобы без труда решать такие примеры.

Внесение множителя под знак корня

Вы уже умеете по-всякому крутить и вертеть квадратными корнями: умножать, делить, возводить в степень. Богатый арсенал, не правда ли? Осталось овладеть еще парой приемов и можно без страха браться за любую задачку.

А теперь давайте разберемся, как вносить множитель под знак корня.

Число семь умножено на квадратный корень из числа девять.

Извлечем квадратный корень и умножим его на 7.

В данном выражение число 7 — множитель. Давайте внесем его под знак корня.

Запомните, что вносить множитель под знак корня обязательно нужно так, чтобы значение исходного выражения осталось неизменным. Иными словами, после наших манипуляций с корнем, значение выражения должно по-прежнему оставаться 21.

Вы помните, что (√a) 2 = a

Тогда число 7 должно быть возведено во вторую степень. В этом случае значение выражения останется тем же.

7√9 = √7 2 * 9 = √49 * 9 = √49 * √9 = 7 * 3 = 21.

Формула внесения множителя под знак корня:

Потренируемся вносить множители. Попробуйте решить примеры самостоятельно, сверяясь с ответами.

Вынесение множителя из-под знака корня

С тем, как вносить множитель под корень мы, кажется, разобрались. Но алгебра — такая алгебра, поэтому теперь неплохо бы и вынести множитель из-под знака корня.

Дано выражение в виде квадратного корня из произведения.

Вы уже наверняка без труда извлекаете квадратный корень из чего угодно, поэтому знаете, что делать.

Извлекаем корень из всех имеющихся множителей.

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

В данном выражении квадратный корень мы можем извлечь только из 4, поэтому:

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Таким образом множитель выносится из-под знака корня.

Давайте разберем примеры. Попробуйте вынести множители из-под знака корня самостоятельно, сверяясь с ответами.

Раскладываем подкоренное выражение на множители 28 = 7*4.

Сравнение квадратных корней

Мы почти досконально разобрали арифметический квадратный корень, научились умножать, делить и возводить его в степень. Теперь вы без труда можете вносить множители под знак корня и выносить их оттуда. Осталось научиться сравнивать корни и стать непобедимым теоретиком.

Итак, чтобы понять, как сравнить два квадратных корня, нужно запомнить пару правил.

Если:

Потренируйтесь в сравнении корней. Сверяете свои результаты с ответами.

Ответ: преобразовываем выражение 9√5.

9√5 = √81 * √5 = √81*5 = √405

Ответ: преобразовываем выражение 7√12.

7√12 = √49 * √12 = √49*12 = √588

Это значит, что 7√12 > √20.

Как видите, ничего сложного в сравнении арифметических квадратных корней нет.

Самое главное — выучить формулы и сверяться с таблицей квадратов, если значения корня слишком большие для легкого вычисления в уме.

Не бойтесь пользоваться вспомогательными материалами. Математика просто создана для того, чтобы окружить себя подсказками и намеками.

Когда вы почувствуете, что уже достаточно натренировались в решении примеров с квадратными корнями, можете позволить себе время от времени прибегать к помощи онлайн-калькуляторов. Они помогут решать примеры быстрее и быть эффективнее.

Таких калькуляторов в интернете много, вот один из них.

Извлечение квадратного корня из большого числа

Вы уже наверняка познакомились и подружились с таблицей квадратов. Она — ваша правая рука. С ее помощью вы реактивно решаете примеры и, возможно, даже подумываете запомнить ее наизусть.

Но, как вы можете заметить, таблица заканчивается на числе 9801. А это, согласитесь, не самое крупное число из тех, что могут вам попасться в примере.

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Чтобы извлечь корень из большого числа, которое отсутствует в таблице квадратов, нужно:

Извлечь корень из большого числа можно разными способами — вот один из них.

Извлечем корень из √2116.

Наша задача в том, чтобы определить между какими десятками стоит число 2116.

Мы видим что, 2116 больше 1600, но меньше 2500.

41, 42, 43, 44, 45, 46, 47, 48, 49.

Запомните лайфхак по вычислению всего на свете, что нужно возвести в квадрат.

Не секрет, что на последнем месте в любом числе может стоять только одна цифра от 1 до 0.

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как пользоваться таблицей

4 2 = 16 ⇒ 6

5 2 = 25 ⇒ 5

6 2 = 36 ⇒ 6

7 2 = 49 ⇒ 9

8 2 = 64 ⇒ 4

9 2 = 81 ⇒ 1

Мы знаем, что число 41, возведенное в квадрат, даст число, на конце которого — цифра 1.

Число, 42, возведенное в квадрат, даст число, на конце которого — цифра 4.

Число 43, возведенное в квадрат, даст число, на конце которого — 9.

Такая закономерность позволяет нам без записи «перебрать» все возможные варианты, исключая те, которые не дают нужную нам цифру 6 на конце.

Далее вычисляем: 44 * 44 = 1936.

Если такой способ показался не до конца понятным — можно потратить чуть больше времени и разложить число на множители. Если решить все правильно, получим такой же результат.

Еще пример. Извлечем корень из числа √11664

Разложим число 11664 на множители:

Запишем выражение в следующем виде:

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Извлечь квадратный корень из большого числа гораздо проще с помощью калькулятора. Но знать парочку таких способов «на экстренный случай» точно не повредит. Например, для контрольной или ЕГЭ.

Чтобы закрепить все теоретические знания, давайте ещё немного поупражняемся в решении примеров на арифметические квадратные корни.

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

Как вынести число под корень. Смотреть фото Как вынести число под корень. Смотреть картинку Как вынести число под корень. Картинка про Как вынести число под корень. Фото Как вынести число под корень

109004, Москва, ул. Александра Солженицына, 23а, строение 1, подъезд 10

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *