Как выполнить деление комплексных чисел
Деление комплексных чисел
Вы будете перенаправлены на Автор24
Деление на число и деление заданных комплексных чисел выполняются для чисел, представленных в любой форме записи.
Для деления заданных комплексных чисел на действительное число воспользуемся определением и получим:
Готовые работы на аналогичную тему
\[z_ <1>\cdot z_ <2>=\frac
Выполнить деление заданных комплексных чисел:
Для деления заданных комплексных чисел воспользуемся определением и получим:
Равенство, указанное в определении 3, достаточно сложно для запоминания, поэтому на практике при делении заданных комплексных чисел, представленных в алгебраической форме, используют алгоритм, который описан в примечании 5.
Чтобы выполнить операцию деления заданных комплексных чисел, представленных в алгебраической форме необходимо:
Выполнить деление комплексных чисел:
Для деления комплексных чисел воспользуемся алгоритмом, приведенным в примечании 5, и получим:
Выполнить деление комплексных чисел:
Для деления комплексных чисел воспользуемся определением и получим:
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 13 11 2021
Арифметика комплексных чисел
Поскольку комплексные числа – это корректные математические объекты, как и скалярные числа, их можно складывать, вычитать, умножать, делить, возводить в квадрат, инвертировать и т.д., как и любые другие числа.
Некоторые научные калькуляторы запрограммированы на выполнение таких операций непосредственно с двумя или более комплексными числами, но эти операции также можно выполнять «вручную». В данном разделе показано, как выполняются основные операции.
Настоятельно рекомендуется вооружиться научным калькулятором, способным легко выполнять арифметические операции над комплексными числами. Это сделает ваше изучение цепей переменного тока намного более приятным, чем, если бы вы были вынуждены проделывать все вычисления дольше вручную.
Сложение и вычитание комплексных чисел в алгебраической форме
Складывать и вычитать комплексные числа в алгебраической форме очень просто. В случае сложения просто сложите действительные составляющие комплексных чисел, чтобы определить действительную составляющую суммы, и сложите мнимые составляющие комплексных чисел, чтобы определить мнимую составляющую суммы:
Рисунок 1 – Сложение комплексных чисел в алгебраической форме
При вычитании комплексных чисел в алгебраической форме просто вычтите действительную составляющую второго комплексного числа из действительной составляющей первого, чтобы получить действительную составляющую разности, и вычтите мнимую составляющую второго комплексного числа из мнимой составляющей первого числа, чтобы получить мнимую составляющую разности:
Рисунок 2 – Вычитание комплексных чисел в алгебраической форме
Умножение и деление комплексных чисел в полярной форме
Для обычного умножения и деления предпочтительнее использовать полярную форму записи комплексных чисел. При умножении комплексных чисел в полярной форме просто умножьте друг на друга амплитуды комплексных чисел, чтобы определить амплитуду произведения, и сложите углы комплексных чисел, чтобы определить угол произведения:
Рисунок 3 – Умножение комплексных чисел в полярной форме
Делить комплексные числа в полярной форме также легко: просто разделите амплитуду первого комплексного числа на амплитуду второго комплексного числа, чтобы получить амплитуду частного, и вычтите угол второго комплексного числа из угла первого комплексного числа, чтобы получить угол частного:
Рисунок 4 – Деление комплексных чисел в полярной форме
Чтобы получить обратное значение, или «инвертировать» (1/x) комплексное число, просто разделите число (в полярной форме) на скалярное значение 1, которое является не чем иным, как комплексным числом без мнимой составляющей (угол = 0):
Рисунок 5 – Получение обратного значения, или «инвертирования» (1/x), комплексного числа
Это основные операции, которые вам необходимо знать, чтобы манипулировать комплексными числами при анализе цепей переменного тока. Однако операции с комплексными числами никоим образом не ограничиваются только сложением, вычитанием, умножением, делением и инвертированием.
Практически любая арифметическая операция, которая может быть выполнена со скалярными числами, может быть применена и к комплексным числам, включая возведение в степень, извлечение корня, решение систем уравнений с комплексными коэффициентами и даже тригонометрические функции (хотя это включает в себя совершенно новую часть тригонометрии, называемую гиперболическими функциями, что выходит за рамки данного обсуждения).
Если вы знакомы с основными арифметическими операциями сложения, вычитания, умножения, деления и инвертирования, у вас не будет проблем с анализом цепей переменного тока.
Алгебраические операции с комплексными числами
Содержание:
Действия над комплексными числами, заданными в алгебраической форме
Алгебраическая форма комплексного числа
Как отмечалось ранее, комплексное число можно задавать в виде или
. Последующее изучение комплексных чисел показывает, что комплексные числа можно задавать и другими способами.
Комплексное число, заданное в виде , называется комплексным числом в алгебраической форме.
Рассмотрим действия над комплексными числами, заданными в алгебраической форме.
Сложение комплексных чисел
Следовательно, чтобы сложить два комплексных числа, нужно сложить их действительные части, что дает действительную часть суммы, и сложить мнимые части, что дает мнимую часть суммы.
Сумма комплексно-сопряжённых чисел всегда является действительным числом.
Следовательно,
Свойства суммы комплексных чисел
1. Сложение комплексных чисел является коммутативным, то есть для любых комплексных чисел справедливо равенство
2. Сложение комплексных чисел является ассоциативным, то есть для любых комплексных чисел справедливо равенство
Возможно вам будут полезны данные страницы:
Вычитание комплексных чисел
Определение. Разностью двух комплексных чисел называется такое число, которое в сумме с вычитаемым дает уменьшаемое.
Вычитание комплексных чисел является всегда возможным.
Теорема Для любых комплексных чисел всегда существует разность
, определяемая однозначно.
Докажем, что существует такое число , которое удовлетворяет условию
, то есть что
или
. На основании равенства комплексных чисел приходим к системе уравнений
Эта система уравнений имеет решение, и к тому же лишь одно, а именно:
что и нужно было доказать.
Разность комплексно-сопряжённых чисел всегда является мнимым числом.
Умножение комплексных чисел
Определение. Произведением двух комплексных чисел и
называется комплексное число, определяемое формулой
Произведение комплексно-сопряжённых чисел всегда является действительным числом.
Свойства произведения комплексных чисел
1. Умножение комплексных чисел является коммутативным, то есть для любых комплексных чисел справедливо равенство
2. Умножение комплексных чисел является ассоциативным, то есть для любых комплексных чисел справедливо равенство
3. Умножение комплексных чисел является дистрибутивным относительно сложения, то есть для любых комплексных чисел справедливо равенство
Деление комплексных чисел
Определение. Частным от деления комплексных чисел называется такое комплексное число, которое в произведении с делителем дает делимое, если делитель отличается от нуля.
Докажем, что всегда существует частное от деления двух комплексных чисел, если знаменатель отличается от нуля.
Теорема Частное определяется однозначно для любых комплексных чисел
если
Пусть . Докажем, что существуют такие числа х и у, которые удовлетворяют уравнению
Выполнив умножение, получим:
Исходя из равенства комплексных чисел, имеем систему уравнений
Решив эту систему уравнений, находим
Следовательно, система уравнений имеет решение, и к тому же единственное. Тогда
ЗАМЕЧАНИЕ. Деление комплексных чисел в алгебраической форме удобно выполнять следующим образом. Числитель и знаменатель следует умножить на число, комплексно-сопряженное знаменателю, после чего в числителе и знаменателе выполнить умножение комплексных чисел по правилу умножения многочленов. Полученный результат записать в алгебраической форме.
Примеры с решением
Пример задачи с решением 2.1
Решение:
Использовав формулы (2.1), (2.2), (2.5), (2.6), получим:
Ответ:
Пример задачи с решением 2.2
Найти значение выражения
Решение:
Воспользовавшись правилом умножения многочленов, имеем
Ответ:
Пример задачи с решением 2.3
Решение:
Воспользуемся правилом умножения многочленов:
4) По формуле (2.8) имеем:
Ответ:
Пример задачи с решением 2.4
Решение:
Деление комплексных чисел можно выполнять по формуле (2.13), но проще это сделать, умножив числитель и знаменатель на число, комплексносопряжённое знаменателю.
Ответ:
На странице -> решение задач по электротехнике собраны решения задач и заданий с решёнными примерами по всем темам теоретических основ электротехники (ТОЭ).
Услуги:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Деление комплексных чисел
Пример 4:
Даны комплексные числа ,
. Найти частное
.
Составим частное:
Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю выражение.
Вспоминаем формулу и смотрим на наш знаменатель:
. В знаменателе уже есть
, поэтому сопряженным выражением в данном случае является
, то есть
Согласно правилу, знаменатель нужно умножить на , и, чтобы ничего не изменилось, домножить числитель на то же самое число
:
Далее в числителе нужно раскрыть скобки (перемножить два числа по правилу, рассмотренному в предыдущем пункте). А в знаменателе воспользоваться формулой (помним, что
и не путаемся в знаках. ).
Распишу подробно:
Пример подобран «хороший», если взять два произвольных числа, то в результате деления почти всегда получатся дроби, что-нибудь вроде .
Примеры решения задач
Решение
координат, получив векторы, конечными точками которых являются заданные точки.
2) Выполнить действия сложения, вычитания, умножения, деления над комплексными числами в алгебраической форме.
Решение
Предварительно преобразуем второе число, используя значения степеней мнимой единицы. i 18 =i 16+2 =i 16 i 2 =1i 2 =-1, i 15 =i 12+3 =i 12 i 3 =i 3 =-i, Z2=-2+5i
Выполним действия над числами:
3) Представить число в тригонометрической форме Z=
Найдем модуль и аргумент комплексного числа
Раздел 4. Элементы теории вероятностей и математической статистики
Изучить по учебной литературе вопросы:
1. Случайные события, их виды. Вероятность случайного события, способы ее получения.
2. Комбинаторика. Применение элементов комбинаторики к вычислению вероятности.
3. Действия над случайными событиями, вычисление вероятностей результатов действий.
4. Случайные величины, их виды. Закон распределения случайной величины
5. Ряд и функция распределения дискретной случайной величины.
6. Математическое ожидание дискретной случайной величины.
7. Дисперсия дискретной случайной величины.
Случайные события и их вероятности.
Математическая статистика.
Применение комбинаторики к подсчету вероятности.
Пример 1:
В партии из N деталей имеется n бракованных. Какова вероятность того, что среди наудачу отобранных k деталей окажется s бракованных?
Решение.
Количество всех элементарных исходов равно . Для подсчета числа благоприятных случаев рассуждаем так: из n бракованных можно выбрать s деталей
способами, а из N – nнебракованных можно выбрать
k – s небракованных деталей способами; по правилу произведения число благоприятных случаев равно
. Искомая вероятность равна:
p = (1)
Замечание:
Всякое k-членное подмножество n-членного множества называется сочетанием из n элементов по k.
Число различных сочетаний из n элементов по k обозначается .
=
, (2)
n! =1 2
3
4
…
n
Пример 2:
В партии из 12 деталей имеется 7 стандартных. Найти вероятность того, что среди шести взятых наугад деталей 4 стандартных.
Решение.
Искомую вероятность найдем по формуле (1) для случая
N =12, n =7, k = 6, s = 4.
p = =
=
=
.
Пример 3:
Имеется набор разноцветных шариков, среди которых 5 синих, 3 красных и 2 зеленых. Наугад извлекают 4 шарика. Найти вероятность того, что среди извлеченных шариков 2 синих, 1 красный и 1 зеленый.
Решение
Для определения вероятности случайного события будем использовать классическую формулу , в которой n – число всех возможных исходов, m- число исходов, благоприятных появлению события. В задаче значения этих величин следует находить при помощи сочетаний.
Пример 4:
Из карточек разрезной азбуки составлено слово «панорама». Карточки перемешали и наудачу по одной извлекают 5 карточек, выкладывая их в порядке извлечения. Найти вероятность того, что окажется составленным слово «роман».
Решение
В этой задаче можно воспользоваться произведением зависимых случайных событий
А – получение слова «роман»; В1 – извлечение первой карточки с буквой «р»;
Пример 5:
В трех ящиках имеется по 6 одинаковых изделий, среди которых соответственно 2,
1, 3 бракованных. Наугад из каждого ящика извлекают по одному изделию. Найти вероятность того, что среди них окажутся два качественных и одно бракованное изделия.
Решение
Для решения задачи рассмотрим события: А – извлечение двух качественных и одного бракованного изделий, В1 – извлечение качественного изделия из первого ящика;
В2 – извлечение качественного изделия из второго ящика; В3– извлечение качественного изделия из третьего ящика; извлечение бракованного изделия для каждого ящика является событиями Составим событие А и вычислим его вероятность
Пример 6:
Вычислить математическое ожидание и дисперсию случайной величины, составить функцию распределения, начертить многоугольник распределения и график функции распределения. Имеется заданный ряд распределения дискретной случайной величины
хi | -1 | ||
pi | 0,5 | 0,3 | 0,2 |
Для вычисления математического ожидания воспользуемся формулой
Для вычисления дисперсии воспользуемся двумя соотношениями, одно из которых соответствует определению дисперсии, другое – ее свойству.
D(X)= 8,9 – 1,3 2 =7,21 (значения должны совпадать)
Для построения многоугольника распределения нужно на координатной плоскости построить точки (xi ;pi) и последовательно их соединить отрезками.
Для построения функции распределения воспользуемся схемой:
В примере получим
Используя значения заданного примера получим графики: