Как выполнить проверку обратной матрицы
Как найти обратную матрицу?
Продолжаем разговор о действиях с матрицами. А именно – в ходе изучения данной лекции вы научитесь находить обратную матрицу. Научитесь. Даже если с математикой туго.
Что такое обратная матрица? Здесь можно провести аналогию с обратными числами: рассмотрим, например, оптимистичное число 5 и обратное ему число . Произведение данных чисел равно единице:
. С матрицами всё похоже! Произведение матрицы
на обратную ей матрицу
равно
– единичной матрице, которая является матричным аналогом числовой единицы. Однако обо всём по порядку – сначала решим важный практический вопрос, а именно, научимся эту самую обратную матрицу находить.
Что необходимо знать и уметь для нахождения обратной матрицы? Вы должны уметь решать определители. Вы должны понимать, что такое матрица и уметь выполнять некоторые действия с ними.
Есть? Тогда поехали дальше. А хотя… ехать могут все, если что-то не знаете, я буду ставить нужную ссылку по ходу объяснений.
Существует два основных метода нахождения обратной матрицы:
с помощью алгебраических дополнений и с помощью элементарных преобразований.
Сегодня мы изучим первый, более простой способ.
Начнем с самого ужасного и непонятного. Рассмотрим квадратную матрицу . Обратную матрицу
можно найти по следующей формуле:
, где
– определитель матрицы
,
– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы
.
Понятие обратной матрицы существует только для квадратных матриц, матриц «два на два», «три на три» и т.д.
Обозначения: Как вы уже, наверное, заметили, обратная матрица обозначается надстрочным индексом
Начнем с простейшего случая – матрицы «два на два». Чаще всего, конечно, требуется найти обратную матрицу для матрицы «три на три», но, тем не менее, настоятельно рекомендую изучить более простое задание, для того чтобы усвоить общий принцип решения.
Найти обратную матрицу для матрицы
Решаем. Последовательность действий удобно разложить по пунктам.
1) Сначала находим определитель матрицы.
Если с пониманием сего действа плоховато, ознакомьтесь с материалом Как вычислить определитель?
Важно! В том случае, если определитель матрицы равен НУЛЮ – обратной матрицы НЕ СУЩЕСТВУЕТ.
В рассматриваемом примере, как выяснилось, , а значит, всё в порядке.
2) Находим матрицу миноров .
Для решения нашей задачи не обязательно знать, что такое минор, однако, желательно ознакомиться со статьей Как вычислить определитель.
Матрица миноров имеет такие же размеры, как и матрица , то есть в данном случае
.
Дело за малым, осталось найти четыре числа и поставить их вместо звездочек.
Возвращаемся к нашей матрице
Сначала рассмотрим левый верхний элемент:
Как найти его минор?
А делается это так: МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:
Оставшееся число и является минором данного элемента, которое записываем в нашу матрицу миноров:
Рассматриваем следующий элемент матрицы :
Мысленно вычеркиваем строку и столбец, в котором стоит данный элемент:
То, что осталось, и есть минор данного элемента, который записываем в нашу матрицу:
Аналогично рассматриваем элементы второй строки и находим их миноры:
Готово.
– матрица миноров соответствующих элементов матрицы
.
3) Находим матрицу алгебраических дополнений .
Это просто. В матрице миноров нужно ПОМЕНЯТЬ ЗНАКИ у двух чисел:
Именно у этих чисел, которые я обвел в кружок!
– матрица алгебраических дополнений соответствующих элементов матрицы
.
4) Находим транспонированную матрицу алгебраических дополнений .
Что такое транспонирование матрицы, и с чем это едят, смотрите в лекции Действия с матрицами.
– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы
.
5) Ответ.
Вспоминаем нашу формулу
Всё найдено!
Таким образом, обратная матрица:
Ответ лучше оставить в таком виде. НЕ НУЖНО делить каждый элемент матрицы на 2, так как получатся дробные числа. Более подробно данный нюанс рассмотрен в той же статье Действия с матрицами.
Как проверить решение?
Необходимо выполнить матричное умножение либо
Проверка:
Получена уже упомянутая единичная матрица – это матрица с единицами на главной диагонали и нулями в остальных местах.
Таким образом, обратная матрица найдена правильно.
Если провести действие , то в результате тоже получится единичная матрица. Это один из немногих случаев, когда умножение матриц перестановочно, более подробную информацию можно найти в статье Свойства операций над матрицами. Матричные выражения. Также заметьте, что в ходе проверки константа (дробь) выносится вперёд и обрабатывается в самом конце – после матричного умножения. Это стандартный приём.
Переходим к более распространенному на практике случаю – матрице «три на три»:
Найти обратную матрицу для матрицы
Алгоритм точно такой же, как и для случая «два на два».
Обратную матрицу найдем по формуле: , где
– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы
.
1) Находим определитель матрицы.
Здесь определитель раскрыт по первой строке.
Также не забываем, что , а значит, всё нормально – обратная матрица существует.
2) Находим матрицу миноров .
Матрица миноров имеет размерность «три на три» , и нам нужно найти девять чисел.
Я подробно рассмотрю парочку миноров:
Рассмотрим следующий элемент матрицы:
МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:
Оставшиеся четыре числа записываем в определитель «два на два»
Этот определитель «два на два» и является минором данного элемента. Его нужно вычислить:
Всё, минор найден, записываем его в нашу матрицу миноров:
Как вы, наверное, догадались, необходимо вычислить девять определителей «два на два». Процесс, конечно, муторный, но случай не самый тяжелый, бывает хуже.
Ну и для закрепления – нахождение еще одного минора в картинках:
Остальные миноры попробуйте вычислить самостоятельно.
Окончательный результат:
– матрица миноров соответствующих элементов матрицы
.
То, что все миноры получились отрицательными – чистая случайность.
3) Находим матрицу алгебраических дополнений .
В матрице миноров необходимо СМЕНИТЬ ЗНАКИ строго у следующих элементов:
В данном случае:
– матрица алгебраических дополнений соответствующих элементов матрицы
.
4) Находим транспонированную матрицу алгебраических дополнений .
– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы
.
5) Ответ:
Проверка:
Таким образом, обратная матрица найдена правильно.
Как оформить решение на чистовик? Примерный образец чистового оформления задания можно найти на странице Правило Крамера. Метод обратной матрицы в параграфе, где идет речь о матричном методе решения системы линейных уравнений. По существу, основная часть упомянутой задачи – и есть поиск обратной матрицы.
Нахождение обратной матрицы для матрицы «четыре на четыре» не рассматриваем, так как такое задание может дать только преподаватель-садист (чтобы студент вычислил один определитель «четыре на четыре» и 16 определителей «три на три»). В моей практике встретился только один такой случай, и заказчик контрольной работы заплатил за мои мучения довольно дорого =).
В ряде учебников, методичек можно встретить несколько другой подход к нахождению обратной матрицы, однако я рекомендую пользоваться именно вышеизложенным алгоритмом решения. Почему? Потому что вероятность запутаться в вычислениях и знаках – гораздо меньше.
Иногда обратную матрицу требуется найти методом Гаусса-Жордана, но второй способ доступен для студентов с приличной техникой элементарных преобразований.
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам
Нахождение обратной матрицы.
В этой статье разберемся с понятием обратной матрицы, ее свойствами и способами нахождения. Подробно остановимся на решении примеров, в которых требуется построить обратную матрицу для заданной.
Навигация по странице.
Понятие обратной матрицы вводится лишь для квадратных матриц, определитель которых отличен от нуля, то есть для невырожденных квадратных матриц.
Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.
Как же находить обратную матрицу для данной?
Во-первых, нам потребуются понятия транспонированной матрицы, минора матрицы и алгебраического дополнения элемента матрицы.
Иными словами, минор получается из квадратной матрицы А порядка n на n вычеркиванием элементов i-ой строки и j-ого столбца.
Для примера запишем, минор 2-ого порядка, который получаетсся из матрицы выбором элементов ее второй, третьей строк и первого, третьего столбцов
. Также покажем минор, который получается из матрицы
вычеркиванием второй строки и третьего столбца
. Проиллюстрируем построение этих миноров:
и
.
Алгебраическое дополнение элемента обозначается как
. Таким обрзом,
.
Например, для матрицы алгебраическое дополнение элемента
есть
.
Во-вторых, нам пригодятся два свойства определителя, которые мы разобрали в разделе вычисление определителя матрицы:
На основании этих свойств определителя, определения операции умножения матрицы на число и понятия обратной матрицы справедливо равенство , где
— транспонированная матрица, элементами которой являются алгебраические дополнения
.
Составим алгоритм нахождения обратной матрицы с использованием равенства .
Разберем алгоритм нахождения обратной матрицы на примере.
Дана матрица . Найдите обратную матрицу.
Определитель отличен от нуля, так что матрица А обратима.
Найдем матрицу из алгебраических дополнений:
Поэтому
Выполним транспонирование матрицы из алгебраических дополнений:
Теперь находим обратную матрицу как :
Проверяем полученный результат:
Равенства выполняются, следовательно, обратная матрица найдена верно.
Свойства обратной матрицы.
Понятие обратной матрицы, равенство , определения операций над матрицами и свойства определителя матрицы позволяют обосновать следующие свойства обратной матрицы:
Нахождение обратной матрицы методом Гаусса-Жордана.
Сначала преобразуем матрицу так, чтобы элемент стал равен единице, а все остальные элементы первого столбца стали нулевыми.
С первым столбцом разобрались, переходим ко второму.
Преобразуем матрицу А так, чтобы элемент стал равен единице, а все остальные элементы второго столбца, начиная с
, стали нулевыми.
Со вторым столбцом закончили, переходим к третьему и проводим аналогичные преобразования.
Так продолжаем процесс, пока все элементы главной диагонали матрицы А не станут равными единице, а все элементы ниже главной диагонали не станут равными нулю.
С этого момента начинаем обратный ход метода Гаусса-Жордана. Теперь преобразуем матрицу А так, чтобы все элементы n-ого столбца, кроме , стали нулевыми. Для этого к элементам (n-1)-ой строки прибавляем соответствующие элементы n-ой строки, умноженные на
. К элементам (n-2)-ой строки – соответствующие элементы n-ой строки, умноженные на
. И продолжаем такой процесс до первой строки включительно. Так все элементы n-ого столбца матрицы А (кроме
), станут нулевыми.
Преобразуем матрицу А так, чтобы все элементы (n-1)-ого столбца до , стали нулевыми. Для этого к элементам (n-2)-ой строки прибавляем соответствующие элементы (n-1)-ой строки, умноженные на
. К элементам (n-3)-ой строки – соответствующие элементы (n-1)-ой строки, умноженные на
. И продолжаем такой процесс до первой строки включительно. Так все элементы (n-1)-ого столбца матрицы А (кроме
), станут нулевыми.
Действуя дальше схожим образом, мы получим единичную матрицу.
Приведите матрицу к единичной с помощью преобразований Гаусса – Жордана.
Так как , а
, то переставим местами первую и вторую строки матрицы, получим матрицу
.
Умножим все элементы первой строки матрицы на :
.
Переходим ко второму столбцу.
Элемент полученной матрицы уже равен единице, поэтому нет необходимости производить умножение элементов второй строки на
. К элементам третьей строки прибавляем соответствующие элементы второй строки, умноженные на
:
Переходим к третьему столбцу.
Умножим элементы третьей строки на :
.
Единицы на главной диагонали матрицы получены, так что приступаем к обратному ходу.
В последнем столбце необходимые нулевые элементы получены, переходим к предпоследнему (ко второму) столбцу.
К элементам первой строки прибавим соответствующие элементы второй строки, умноженные на :
.
Так проведены все преобразования матрицы и получена единичная матрица.
Пришло время применить метод Гаусса – Жордана к нахождению обратной матрицы.
Найдите обратную матрицу для методом Гаусса – Жордана.
Так как , а
, то переставим первую и вторую строки местами:
Умножим элементы первой строки матрицы на одну вторую, чтобы элемент стал равен единице:
Так в первом столбце матрицы А мы получили нужные нулевые элементы. Переходим ко второму столбцу. Добьемся того, чтобы элемент стал равен единице. Для этого умножим элементы второй строки матрицы на
, не забываем выполнять такие же преобразования с матрицей в правой части:
Так второй столбец матрицы А преобразован к нужному виду. Переходим к третьему столбцу. Так как элемент нулевой, то меняем местами третью и четвертую строки:
Умножаем элементы третьей строки на :
Третий столбец матрицы А принял нужный вид (элемент нулевой, поэтому не пришлось к элементам четвертой строки прибавлять соответствующие элементы третьей строки, умноженные на
). Осталось умножить четвертую строку на
чтобы все элементы главной диагонали стали равны единице:
Получаем нули в предпоследнем столбце прибавлением к элементам второй и первой строк соответствующие элементы третьей строки, умноженные на и 0 соответственно:
Осталось последнее преобразование. К элементам первой строки прибавляем элементы второй строки, умноженные на :
Итак, матрица А преобразованиями Гаусса – Жордана приведена к единичной матрице, а единичная матрица с помощью таких же преобразований приведена к обратной матрице. Таким образом, в правой части получена обратная матрица. Можете провести проверку, выполнив умножение матрицы А на обратную матрицу.
.
Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.
Этот метод основан на решении n систем линейных неоднородных алгебраических уравнений с n неизвестными. Неизвестными переменными в этих системах уравнений являются элементы обратной матрицы.
Приравнивая соответствующие элементы по столбцам, получим n систем линейных уравнений
Решаем их любым способом и из найденных значений составляем обратную матрицу.
Разберем этот метод на примере.
Дана матрица . Найдите обратную матрицу.
Примем . Равенство
дает нам три системы линейных неоднородных алгебраических уравнений:
Не будем расписывать решение этих систем, при необходимости обращайтесь к разделу решение систем линейных алгебраических уравнений.
Мы рассмотрели понятие обратной матрицы, ее свойства и три метода ее нахождения.