Как выполняется вычитание двоичных чисел
Двоичная система счисления
Содержание:
Вспомним материал по системам счисления. В нём говорилось, что наиболее удобной системой счисления для компьютерных систем является двоичная система. Дадим определение этой системе:
Двоичной системой счисления называется позиционная система счисления, у которой основанием является число 2.
Для записи любого числа в двоичной системе счисления используются всего лишь 2 цифры: 0 и 1.
Общая форма записи двоичных чисел
Для целых двоичных чисел можно записать:
Данная форма записи числа «подсказывает» правило перевода натуральных двоичных чисел в десятичную систему счисления: требуется вычислить сумму степеней двойки, соответствующих единицам в свёрнутой форме записи двоичного числа.
Правила сложения двоичных чисел
Основные правила сложения однобитовых чисел
Отсюда видно, что и, как и в десятичной системе счисления, числа, представленные в двоичной системе счисления, складывают поразрядно. Если разряд переполняется, единица переносится в следующий разряд.
Пример сложения двоичных чисел
Правила вычитания двоичных чисел
Но как быть с 0-1=? Вычитание двоичных чисел немного отличается от вычитания десятичных чисел. Для этого используется несколько способов.
Вычитание методом заимствования
Запишите двоичные числа друг под другом – меньшее число под большим. Если меньшее число имеет меньше цифр, выровняйте его по правому краю (так, как вы записываете десятичные числа при их вычитании).
Некоторые задачи на вычитание двоичных чисел ничем не отличаются от вычитания десятичных чисел. Запишите числа друг под другом и, начиная справа, найдите результат вычитания каждой пары чисел.
Вот несколько простых примеров:
Вычтите цифры в оставшихся столбцах. Теперь это легко сделать (работайте со столбцами, двигаясь, справа налево):
Вычитание методом дополнения
Запишите двоичные числа друг под другом так, как вы записываете десятичные числа при их вычитании. Этот метод используется компьютерами для вычитания двоичных чисел, так как он основан на более эффективном алгоритме.
Однако простому человеку, привыкшему вычитать десятичные числа, этот метод может показаться более сложным (если вы программист, обязательно познакомьтесь с этим методом вычитания двоичных чисел).
Если значность чисел разная, к числу с меньшей значностью слева припишите соответствующее количество 0.
В вычитаемом числе поменяйте цифры: каждую 1 поменяйте на 0, а каждый 0 на 1.
0111012 → 1000102.
К полученному вычитаемому прибавьте единицу.
1000102+ 12 = 1000112
Теперь вместо вычитания сложите два двоичных числа.
Проверьте ответ. Быстрый способ – откройте двоичный онлайн калькулятор и введите в него вашу задачу. Два других метода подразумевают проверку ответа вручную.
1) Переведем числа в двоичную систему счисления:
Допустим, что из числа 1011012 нужно вычесть 110112
2) Обозначим как A число 1011012 и как B число 110112.
3) Запишем числа A и B столбиком, одно под другим, начиная с младших разрядов (нумерация разрядов начинается с нуля).
Системы счисления. Арифметические действия в двоичной системе счисления
Цель: научить учащихся выполнять арифметические действиями в двоичной системе счисления.
Задачи:
образовательные:
— повторение и закрепление знаний учащихся о системах счисления;
— формировать у школьников умение выполнять правильно арифметические действия в двоичной системе счисления;
развивающие:
— развивать логическое мышление учащихся;
— развивать познавательный интерес учеников.
Содержание нового материала: правила сложения, умножения, вычитания и деления в двоичной системе счисления.
Ход урока.
Изучение нового материала.
Правила сложения:
0+0=0
0+1=1
1+0=1
1+1=10
Обратить внимание учащихся на то, что при сложении двух единиц в двоичной системе счисления в записи получается 0, а единица переносится в следующий разряд. При сложении трех единиц получается в записи 1, и единица переносится в следующий разряд. (1+1+1=11).
Пример 1.
101+10=111
Пример 2.
10011+11=1110
Учащиеся самостоятельно решают следующие примеры:
1001+11=1100
110+110=1100
Правила умножения:
0*0=0
0*1=0
1*0=0
1*1=1
Пример 1.
101*11=1111
Пример 2.
1011*101=110111
Учащиеся самостоятельно решают следующие примеры:
1001*101=101101
1001*11=11011
Правила вычитания:
0-0=0
1-0=1
1-1=0
0-1=-1
Обратить внимание учащихся на то, что «минус» в последнем правиле обозначает – «занять разряд (1)».
Пример 1.
10110-111=1111
Объяснение:
Вычитание выполняется так же, как в математике. Если цифра в уменьшаемом меньше цифры вычитаемого, то для данного вычитания необходимо занять разряд (1), т.к. 10-1=1. Если слева от такого вычитания стоит 0, то мы не можем занять разряд. В этом случае разряд занимаем в уменьшаемом у близстоящей слева от данного вычитания единицы. При этом все нули, у которых мы не могли занять разряд, необходимо поменять на единицу, т.к. 0-1=-1. Желательно все изменения в цифрах записывать сверху данного вычитания. Дальнейшее вычитание выполнять с получившимися сверху цифрами.
Пример 2.
100000-11=11101
Учащиеся самостоятельно решают следующие примеры:
100010-100=
101011-10111=
Правило деления:
Деление выполняется по правилам математики, не забывая, что мы выполняем действия в двоичной системе счисления.
Пример 1.
101101:1001=101
Двоичный калькулятор онлайн
Данный калькулятор может производить следующие действия над двоичными числами:
Сложение двоичных чисел
Сложение двух двоичных чисел производится столбиком поразрядно. Начиная с младшего разряда (справа на лево), как и при сложении столбиком десятичных чисел. Но так как цифр всего две (0 и 1), их сложение происходит по следующим правилам:
Пример
Для примера сложим 1011 и 101:
+ | 1 | 0 | 1 | 1 |
1 | 0 | 1 | ||
1 | 0 | 0 | 0 | 0 |
Вычитание двоичных чисел
Вычитание двоичных чисел производится аналогично сложению – столбиком, но по следующим правилам:
Пример
Для примера вычтем из числа 1011 число 101:
− | 1 | 0 | 1 | 1 |
1 | 0 | 1 | ||
1 | 1 | 0 |
Умножение двоичных чисел
Умножение двоичных чисел производится в столбик аналогично умножению в десятичной системе, но по следующим правилам:
Пример
Для примера перемножим числа 1011 и 101:
× | 1 | 0 | 1 | 1 | |
1 | 0 | 1 | |||
+ | 1 | 0 | 1 | 1 | |
0 | 0 | 0 | 0 | ||
1 | 0 | 1 | 1 | ||
1 | 1 | 0 | 1 | 1 | 1 |
Деление двоичных чисел
Внешне деление двоичных чисел похоже на деление десятичных чисел, но тут есть свои нюансы: такое деление производится вычитанием делителя со сдвигом вправо, если остаток больше нуля. Чтобы понять этот процесс рассмотрим пример:
Вычитание двоичных чисел
Сложение двоичных чисел
Двоичные числа складываются по правилам, приведенным в таблице:
Пример:
Сложить два числа 11110010 и 10101010
Вычитание двоичных чисел
Если разрядность вычитаемого меньше, чем разрядность уменьшаемого, то к вычитаемому надо сначала слева дописать недостающие нули, чтобы разрядности чисел были одинаковыми, а потом получать его обратный код.
Еще один интересный способ выполнения вычитания связан с понятием дополнительного кода, который позволяет свести вычитание к сложению. Получается число в дополнительном коде исключительно просто, берём число, заменяем нули на единицы, единицы наоборот заменяем на нули и к младшему разряду добавляем единицу. Например, 10010, в дополнительном коде будет 011011.
Правило вычитания через дополнительный код утверждает, что вычитание можно заменить на сложение если вычитаемое заменить на число в дополнительном коде.
Дополнительный код числа 10110 будет такой
01001 + 00001 = 01010. Тогда исходный пример можно заменить сложением так 100010 + 01010 = 101100 Далее необходимо отбросить одну единицу в старшем разряде. Если это сделать то, получим 001100. Отбросим незначащие нули и получим 1100, то есть пример решён правильно.
Дополнительный код (представление числа)
Материал из Википедии — свободной энциклопедии
Это версия страницы, ожидающая проверки. Последняя подтверждённая версия датируется 21 января 2010.
Дополнительный код (англ. two’s complement, иногда twos-complement) — наиболее распространённый способ представления отрицательных целых чисел в компьютерах. Он позволяет заменить операцию вычитания на операцию сложения и сделать операции сложения и вычитания одинаковыми для знаковых и беззнаковых чисел, чем упрощает архитектуру ЭВМ. Дополнительный код отрицательного числа можно получить инвертированием модуля двоичного числа (первое дополнение) и прибавлением к инверсии единицы (второе дополнение). Либо вычитанием числа из нуля.
Дополнительный код (дополнение до 2) двоичного числа получается добавлением 1 к младшему значащему разряду его дополнения до 1. [1]
Дополнение до 2 двоичного числа определяется как величина полученная вычитанием числа из наибольшей степени двух (из 2 N для N-битного дополнения до 2). [2]
Двоичная арифметика
Всего получено оценок: 190.
Всего получено оценок: 190.
Операции сложения, вычитания, умножения и деления в двоичной системе – это двоичная арифметика. Некоторые примеры двоичной арифметики рассмотрены в данной статье.
Двоичная арифметика
Все арифметические действия, которые применимы к двоичным числам, выполняются аналогично как в десятичной системе. Удобнее всего двоичные числа складывать, вычитать, умножать и делить столбиком.
Числа записываются друг под другом с учетом разрядов. При необходимости производится перенос в старший разряд или заем из старшего разряда.
При сложении двоичных чисел следует помнить, что в числовом двоичном ряду после 1 идет 10. Это означает, что 1 + 1 = 10, а 11 + 1= 100.
Изучению двоичной системы много времени посвятил В. Лейбниц. По его просьбе была отчеканена медаль в честь двоичной системы, на которой отображались простейшие арифметические действия с двоичными числами.
Сложение
Вычисление суммы двоичных чисел производится следующим образом: числа записываются в столбик. Затем производится поразрядное суммирование цифр, начиная с младшего разряда, как в десятичной системе. Если сумма цифр текущего разряда превышает его размер, то происходит перенос единицы в старший разряд.
Правила сложения двоичных чисел:
Например, сумма двоичных чисел 1000111 + 110011 = 1111010