Как выполняется вычитание комплексных чисел
Сложение и вычитание комплексных чисел
Вы будете перенаправлены на Автор24
Операции сложения и вычитания выполняются для чисел, представленных в алгебраической форме.
Другими словами, суммой двух заданных комплексных чисел является комплексное число, действительная и мнимая части которого определяется как сумма соответственно действительных и мнимых частей исходных слагаемых.
Сумму любого количества заданных комплексных чисел можно найти путем суммирования действительных частей и суммирования мнимых частей слагаемых.
Для операции суммы комплексных чисел справедливо следующее правило: (от перестановки слагаемых сумма не меняется).
Сумму двух заданных комплексных чисел можно найти с помощью комплексной плоскости по правилу «параллелограмма» (правило параллелограмма сложения векторов).
Иллюстрация примера сложения комплексных чисел с использованием комплексной плоскости приведена на рис.1-2.
Для сложения комплексных чисел воспользуемся определением и получим:
Готовые работы на аналогичную тему
Для сложения комплексных чисел воспользуемся определением. Для вычисления модуля комплексного числа воспользуемся формулой:
\[z_ <1>+z_ <2>=(\sqrt <3>+0\cdot i)+(0+\sqrt <5>\cdot i)=(\sqrt <3>+0)+(0+\sqrt <5>)i=\sqrt <3>+\sqrt <5>\cdot i\]
Модуль разности двух заданных комплексных чисел равен расстоянию между точками, которые изображают эти числа на комплексной плоскости:
Для нахождения разности комплексных чисел воспользуемся определением и получим:
Найти модуль разности двух заданных комплексных чисел:
Воспользуемся формулой из примечания 4.
На комплексной плоскости операцию вычитания можно реализовать как вычитание векторов комплексных чисел по правилу параллелограмма (рис. 3), используя следующий алгоритм:
На комплексной плоскости операцию вычитания можно реализовать, используя другой алгоритм:
Для построения воспользуемся примечаниями 4 и 6.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 13 11 2021
Комплексные числа
Алгебраическая форма записи комплексных чисел
Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.
Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Комплексно сопряженные числа
Модуль комплексного числа
Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле
Для произвольного комплексного числа z справедливо равенство:
а для произвольных комплексных чисел z1 и z2 справедливы неравенства:
Деление комплексных чисел, записанных в алгебраической форме
Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле
Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:
Деление на нуль запрещено.
Изображение комплексных чисел радиус-векторами координатной плоскости
Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.
При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.
Аргумент комплексного числа
Считается, что комплексное число нуль аргумента не имеет.
Тогда оказывается справедливым равенство:
(3) |
(4) |
а аргумент определяется в соответствии со следующей Таблицей 1.
Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.
Таблица 1. – Формулы для определения аргумента числа z = x + i y
Расположение числа z | Знаки x и y | Главное значение аргумента | Аргумент | Примеры |
Положительная вещественная полуось | ||||
Положительная мнимая полуось | ||||
Второй квадрант | ||||
Отрицательная вещественная полуось | Положительная вещественная полуось | |||
Знаки x и y | ||||
Главное значение аргумента | 0 | |||
Аргумент | φ = 2kπ | |||
Примеры |
значение
аргумента
значение
аргумента
значение
аргумента
x z
квадрант
x z
мнимая
полуось
y z
квадрант
Положительная вещественная полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Положительная мнимая полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Отрицательная вещественная полуось
Отрицательная мнимая полуось
x z = x + i y может быть записано в виде
Формула Эйлера. Экспоненциальная форма записи комплексного числа
В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :
Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде
Из формулы (7) вытекают, в частности, следующие равенства:
а из формул (4) и (6) следует, что модуль комплексного числа
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.
Действительно, умножение и деление двух произвольных комплексных чисел и
записанных в экспоненциальной форме, осуществляется по формулам
Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.
Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле
Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.
Извлечение корня натуральной степени из комплексного числа
Пусть — произвольное комплексное число, отличное от нуля.
Для того, чтобы решить уравнение (8), перепишем его в виде
следствием которых являются равенства
(9) |
Из формул (9) вытекает, что уравнение (8) имеет n различных корней
(10) |
то по формуле (10) получаем:
Арифметика комплексных чисел
Поскольку комплексные числа – это корректные математические объекты, как и скалярные числа, их можно складывать, вычитать, умножать, делить, возводить в квадрат, инвертировать и т.д., как и любые другие числа.
Некоторые научные калькуляторы запрограммированы на выполнение таких операций непосредственно с двумя или более комплексными числами, но эти операции также можно выполнять «вручную». В данном разделе показано, как выполняются основные операции.
Настоятельно рекомендуется вооружиться научным калькулятором, способным легко выполнять арифметические операции над комплексными числами. Это сделает ваше изучение цепей переменного тока намного более приятным, чем, если бы вы были вынуждены проделывать все вычисления дольше вручную.
Сложение и вычитание комплексных чисел в алгебраической форме
Складывать и вычитать комплексные числа в алгебраической форме очень просто. В случае сложения просто сложите действительные составляющие комплексных чисел, чтобы определить действительную составляющую суммы, и сложите мнимые составляющие комплексных чисел, чтобы определить мнимую составляющую суммы:
Рисунок 1 – Сложение комплексных чисел в алгебраической форме
При вычитании комплексных чисел в алгебраической форме просто вычтите действительную составляющую второго комплексного числа из действительной составляющей первого, чтобы получить действительную составляющую разности, и вычтите мнимую составляющую второго комплексного числа из мнимой составляющей первого числа, чтобы получить мнимую составляющую разности:
Рисунок 2 – Вычитание комплексных чисел в алгебраической форме
Умножение и деление комплексных чисел в полярной форме
Для обычного умножения и деления предпочтительнее использовать полярную форму записи комплексных чисел. При умножении комплексных чисел в полярной форме просто умножьте друг на друга амплитуды комплексных чисел, чтобы определить амплитуду произведения, и сложите углы комплексных чисел, чтобы определить угол произведения:
Рисунок 3 – Умножение комплексных чисел в полярной форме
Делить комплексные числа в полярной форме также легко: просто разделите амплитуду первого комплексного числа на амплитуду второго комплексного числа, чтобы получить амплитуду частного, и вычтите угол второго комплексного числа из угла первого комплексного числа, чтобы получить угол частного:
Рисунок 4 – Деление комплексных чисел в полярной форме
Чтобы получить обратное значение, или «инвертировать» (1/x) комплексное число, просто разделите число (в полярной форме) на скалярное значение 1, которое является не чем иным, как комплексным числом без мнимой составляющей (угол = 0):
Рисунок 5 – Получение обратного значения, или «инвертирования» (1/x), комплексного числа
Это основные операции, которые вам необходимо знать, чтобы манипулировать комплексными числами при анализе цепей переменного тока. Однако операции с комплексными числами никоим образом не ограничиваются только сложением, вычитанием, умножением, делением и инвертированием.
Практически любая арифметическая операция, которая может быть выполнена со скалярными числами, может быть применена и к комплексным числам, включая возведение в степень, извлечение корня, решение систем уравнений с комплексными коэффициентами и даже тригонометрические функции (хотя это включает в себя совершенно новую часть тригонометрии, называемую гиперболическими функциями, что выходит за рамки данного обсуждения).
Если вы знакомы с основными арифметическими операциями сложения, вычитания, умножения, деления и инвертирования, у вас не будет проблем с анализом цепей переменного тока.
Комплексные числа
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Вычислить сумму и разность заданных комплексных чисел:
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Аналогично выполним вычитание чисел:
Выполнить умножение и деление комплексных чисел:
Так, теперь разделим первое число на второе:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
Для возведения в квадрат достаточно умножить число само на себя:
Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Вычисляем значение модуля:
Найдем чем равен аргумент:
$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$
Записываем в тригонометрическом виде:
Преобразуем в алгебраическую форму для наглядности:
Представим число в тригонометрической форме. Найдем модуль и аргумент:
Используем знакомую формулу Муавра для вычисления корней любой степени:
Действия над комплексными числами
Вы будете перенаправлены на Автор24
Над комплексными числами можно выполнять следующие действия:
Операции сложения и вычитания выполняются для чисел, представленных в алгебраической форме.
Умножение, деление и возведение в степень выполняются для чисел, представленных в любой форме записи.
Извлечение корня выполняется для чисел, представленных в тригонометрической форме.
При необходимости извлечения корня из комплексного числа, записанного в показательной форме, необходимо предварительно привести его к тригонометрической форме представления.
Готовые работы на аналогичную тему
Сумма комплексных чисел
Разность комплексных чисел
Для исходных чисел получаем:
Для исходных чисел получаем:
Произведение комплексных чисел
\[z_ <1>\cdot z_ <2>=r_ <1>\cdot r_ <2>\cdot [\cos (\varphi _ <1>+\varphi _ <2>)+i\sin (\varphi _ <1>+\varphi _ <2>)].\]
Выполнить умножение комплексных чисел представленных в алгебраической форме:
Для исходных чисел, учитывая определение, получаем:
\[1\cdot 2+3\cdot 2i+1\cdot (-2i)+3i\cdot (-2i)=2+6i-2i-6i^ <2>=2+4i+6=8+4i\]
Выполнить умножение комплексных чисел представленных в тригонометрической форме:
Для исходных чисел получаем:
\[\begin
Частное комплексных чисел
\[z_ <1>\div z_ <2>=\frac
Чтобы выполнить операцию деления комплексных чисел, представленных в алгебраической форме, необходимо:
Выполнить деление комплексных чисел, представленных в алгебраической форме:
Для исходных чисел получаем:
Выполнить деление комплексных чисел представленных в тригонометрической форме:
Для исходных чисел получаем:
\[\begin
Степерь комплексного числа
\[z^
Данная формула называется формулой Муавра.
По формуле Муавра получим:
\[z^ <3>=3^ <3>\cdot \left(\cos \left(3\cdot \frac<\pi > <4>\right)+i\cdot \sin \left(3\cdot \frac<\pi > <4>\right)\right)=27\cdot \left(\cos \frac <3\pi > <4>+i\cdot \sin \frac<3\pi > <4>\right).\]
По формуле Муавра получим:
\[z^ <100>=1^ <100>\cdot \left(\cos \left(100\cdot \frac<\pi > <2>\right)+i\cdot \sin \left(100\cdot \frac<\pi > <2>\right)\right)=1\cdot \left(\cos 50\pi +i\cdot \sin 50\pi \right)=1\cdot \left(\cos 0+i\cdot \sin 0\right).\]
Корень комплексного числа
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 13 11 2021
5>- Америка ищет таланты золотая кнопка что это такое
- Акт о зачете встречных однородных требований вайлдберриз что это