Как выполняют монтаж обмоток электромагнита
Обмотка электромагнита
РЕСПУБЛИН (51)5 Н 01 F- 7 06
К ABTOPCHOMV СВИДЕТЕЛЬСТВУ
llQ ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ1
ПРИ ГКНТ СССР (21) 4667611/07 (22) 27.03.89 (46) 23.12.91. Бюл. ¹ 47 (71) Ворошиловградский машиностроительный институт (72) М. В. Загирняк, В. Н. Острейко и Б. И. Невзлин (53) 621.3.045.18 (088.8) (56) Патент США № 4516104, кл. H 01 F 27/30, 1984.
Авторское свидетельство СССР № 1229827, кл. Н 01 F 5/08,,1984. (54) ОБМОТКА ЭЛЕКТРОМАГНИТА (57) Изобретение относится к электротехнике и может быть использовано в электромагнитах. Цель изобретения — упрощение
2 технологии и снижение материалоемкости.
Обмотка выполнена из ферромагнитных колец с разрезами 2. Кольца покрыты изоляцией 3 с одной стороны исключая сегмент 4, примыкающий к разрезу, и уложены друг на друга соосно изоляцией 3 вверх. На каждый сегмент 4 уложен дополнительный ферромагнитный сегмент толщиной, несколько большей, чем толщина изоляции 3. Каждое кольцо 1 повернуто относительно предыдущего на суммарную ширину выреза 2 и сегмента 4. Обмотка частично выполняет функции сердечника, что позволяет х меныпить материалоемкость конструкции. Обмотка не имеет неразъемных соединений, что улучшает технологичность. 1 з. и. ф-лы, 2 ил.
Устройство относится к электротехнике, и может быть использовано для создания электромагнитных устройств с повышенной эффективностью использования обмоточного пространства, например, электромагнитных железоотделителей, предназначенных для извлечения ферромагнитных предметов из угля, песка и других немагнитных сред.
Целью изобретения является упрощение технологии изготовления обмотки и снижение материалоемкости.
На фиг. i показан ви»; «а фиг. 2 — обмотка в сборе.
Кольцо 1 с вырезом 2 с одной стороны покрыто изоляцией 3 по всей поверхности, исключая сегмент 4. В обмотке кольца 1 уложены друг на друга соосно изоляцией 3 вверх, на каждый неизолированный сегмент 4 уложен сегмент 5, выполненный из того же материала, что и кольцо 1, и имеющий толщину, несколько большую, чем толщина изоляции 3. Каждое кольцо 1 повернуто относительно предыдущего на суммарную ширину выреза 2 и сегмента 4. Сегменты 4 и 5 имеют ширину в средней части не менее Bvx толщин кольца.
Обмотка работает следующим образом.
К опрессованной и помещенной на сердечник (не показан) обмотке подводят электрический ток, например. путем механического контакта с нижним кольцом 1 и верхним сегментом 5. Электрический ток, проходя последовательно по нижнему кольцу 1, сегменту 5, второму снизу кольцу 1, следующему сегменту 5 и т. д., создает магнитодвижущую силу. Созданной этой МДС магнитный поток проходит по кольцам 1 и сегментам 5, что значительно снижает магнитное сопротивление оомотки и повышает эффективность электромагнита. При этом появляется возможность уменьшить размеры сердечника и материалоемкость электромагнита.
Обмотку собирают без при менения неразъемных соединений (пайка, сварка и т.п.), что значительно упрощает технологию изготовления.
1. Обмотка электромагнита из ферро20 ма гнитного электропроводного материала, витки которой состоят из расположенных соосно колец с нанесенной на них изоляцией, отличающаяся тем, что, с целью упрощения технологии и снижения материалоемкости, кольца выполнены разрезными, изоляция нанесена на верхнюю поверхность кольца кроме сегментного участка кольца, примыкающего к разрезу, на каждом неизолированном сегментном участке кольца установлен дополнительный ферромагнитный сег30 мент с тем же радиальным разрезом, что и кольцо, и имеющий толщину, равную толщине изоляции с положительным допуском, причем каждое вышележащее кольцо повернуто относительно нижележащего на суммарную величину сегмента и разреза.
2. Обмотка по и. 1, отличающаяся тем, что неизолированный сегментный участок кольца имеет ширину в средней части не менее Изобретение относится к электротехнике и касается электрического контактора с встроенным съемным модулем
Электромагниты и их применение
Электромагнит создает магнитное поле с помощью обмотки, обтекаемой электрическим током. Для того чтобы усилить это поле и направить магнитный поток по определенному пути, в большинстве электромагнитов имеется магнитопровод, выполняемый из магнитномягкой стали.
Электромагниты являются неотъемлемой частью электрических машин, многих устройств промышленной автоматики, аппаратуры регулирования и защиты разнообразных электротехнических установок. Развивающейся областью применения электромагнитов является медицинская аппаратура. Наконец, гигантские электромагниты для ускорения элементарных частиц применяются в синхрофазотронах.
Особой областью применения электромагнитов являются электромагнитные механизмы. В них электромагниты используются в качестве привода для осуществления необходимого поступательного перемещения рабочего органа или поворота его в пределах ограниченного угла, или для создания удерживающей силы.
Примером подобных электромагнитов являются тяговые электромагниты, предназначенные для совершения определенной работы при перемещении тех или иных рабочих органов; электромагнитные замки; электромагнитные муфты сцепления и торможения и тормозные электромагниты; электромагниты, приводящие в действие контактные устройства в реле, контакторах, пускателях, автоматических выключателях; подъемные электромагниты, электромагниты вибраторов и т. п.
В ряде устройств наряду с электромагнитами или взамен их используются постоянные магниты (например, магнитные плиты металлорежущих станков, тормозные устройства, магнитные замки и т. п.).
Электромагниты весьма разнообразны по конструктивным выполнениям, которые различаются по своим характеристикам и параметрам, поэтому классификация облегчает изучение процессов, происходящих при их работе.
В зависимости от способа создания магнитного потока и характера действующей намагничивающей силы электромагниты подразделяются на три группы: электромагниты постоянного тока нейтральные, электромагниты постоянного тока поляризованные и электромагниты переменного тока.
В нейтральных электромагнитах постоянного тока рабочий магнитный поток создается с помощью обмотки постоянного тока. Действие электромагнита зависит только от величины этого потока и не зависит от его направления, а следовательно, от направления тока в обмотке электромагнита. При отсутствии тока магнитный поток и сила притяжения, действующая на якорь, практически равны нулю.
Поляризованные электромагниты постоянного тока характеризуются наличием двух независимых магнитных потоков:(поляризующего и рабочего. Поляризующий магнитный поток в большинстве случаев создается с помощью постоянных магнитов. Иногда для этой цели используют электромагниты. Рабочий поток возникает под действием намагничивающей силы рабочей или управляющей обмотки. Если ток в них отсутствует, на якорь действует сила притяжения, создаваемая поляризующим магнитным потоком. Действие поляризованного электромагнита зависит как от величины, так и от направления рабочего потока, т. е. от направления тока в рабочей обмотке.
Электромагниты переменного тока
В электромагнитах переменного тока питание обмотки осуществляется от источника переменного тока. Магнитный поток, создаваемый обмоткой, по которой проходит переменный ток, периодически изменяется по величине и направлению (переменный магнитный поток), в результате чего сила электромагнитного притяжения пульсирует от нуля до максимума с удвоенной частотой по отношению к частоте питающего тока.
Однако для тяговых электромагнитов снижение электромагнитной силы ниже определенного уровня недопустимо, так как это приводит к вибрации якоря, а в отдельных случаях к прямому нарушению нормальной работы. Поэтому в тяговых электромагнитах, работающих при переменном магнитном потоке, приходится прибегать к мерам для уменьшения глубины пульсации силы (например, применять экранирующий виток, охватывающий часть полюса электромагнита).
Кроме перечисленных разновидностей, в настоящее время большое распространение получили электромагниты с выпрямлением тока, которые по питанию могут быть отнесены к электромагнитам переменного тока, а по своим характеристикам приближаются к электромагнитам постоянного тока. Поскольку все же имеются некоторые специфические особенности их работы.
В зависимости от способа включения обмотки различают электромагниты с последовательными и параллельными обмотками.
По характеру работы обмотки электромагниты разделяются на работающие в длительном, прерывистом и кратковременном режимах.
По скорости действия электромагниты могут быть с нормальной скоростью действия, быстродействующие и замедленно действующие. Это разделение является несколько условным и свидетельствует главным образом о том, приняты ли специальные меры для получения необходимой скорости действия.
Все перечисленные выше признаки накладывают свой отпечаток на особенности конструктивных выполнений электромагнитов.
Вместе с тем при всем разнообразии встречающихся на практике электромагнитов они состоят из основных частей одинакового назначения. К ним относятся катушка с расположенной на ней намагничивающей обмоткой (может быть несколько катушек и несколько обмоток), неподвижная часть магнитопровода, выполняемого из ферромагнитного материала (ярмо и сердечник) и подвижная часть магнитопровода (якорь). В некоторых случаях неподвижная часть магнитопровода состоит из нескольких деталей (основания, корпуса, фланцев и т. д.). а)
Якорь отделяется от остальных частей магнитопровода воздушными промежутками и представляет собой часть электромагнита, которая, воспринимая электромагнитное усилие, передает его соответствующим деталям приводимого в действие механизма.
Количество и форма воздушных промежутков, отделяющих подвижную часть магнитопровода от неподвижной, зависят от конструкции электромагнита. Воздушные промежутки, в которых возникает полезная сила, называются рабочими; воздушные промежутки, в которых не возникает усилия в направлении возможного перемещения якоря, являются-паразитными.
Поверхности подвижной или неподвижной части магнитопровода, ограничивающие рабочий воздушный промежуток, называют полюсами.
В зависимости от расположения якоря относительно остальных частей электромагнита различают электромагниты с внешним притягивающимся якорем, электромагниты со втягивающимся якорем и электромагниты с внешним поперечно движущимся якорем.
Характерной особенностью электромагнитов с внешним притягивающимся якорем является внешнее расположение якоря относительно обмотки. На него действует главным образом рабочий поток, проходящий от якоря к торцу шляпки сердечника. Характер перемещения якоря может быть вращательным (например, клапанный электромагнит) или поступательным. Потоки рассеяния (замыкающиеся помимо рабочего зазора) у таких электромагнитов практически не создают тягового усилия, и поэтому их стремятся уменьшить. Электромагниты этой группы способны развивать достаточно большое усилие, но обычно применяются при сравнительно небольших рабочих ходах якоря.
Особенностью электромагнитов со втягивающимся якорем являются частичное расположение якоря в своем начальном положении внутри катушки и дальнейшее перемещение его в катушку в процессе работы. Потоки рассеяния у таких электромагнитов, особенно при больших воздушных зазорах, создают определенное тяговое усилие, в результате чего они являются полезными, особенно при сравнительно больших ходах якоря. Такие электромагниты могут выполняться со стопом или без него, причем форма поверхностей, образующих рабочий зазор, может быть различной в зависимости от того, какую тяговую характеристику нужно получить.
Наибольшее распространение получили электромагниты с плоскими и усеченно коническими полюсами, а также электромагниты без стопа. В качестве направляющей для якоря чаще всего применяется трубка из немагнитного материала, создающая паразитный зазор между якорем и верхней, неподвижной, частью магнитопровода.
Электромагниты со втягивающимся якорем могут развивать усилия и иметь ход якоря, изменяющиеся в очень большом диапазоне, что обусловливает их широкое распространение.
В электромагнитах с внешним поперечно движущимся якорем якорь перемещается поперек магнитных силовых линий, поворачиваясь на некоторый ограниченный угол. Такие электромагниты обычно развивают сравнительно небольшие усилия, но они позволяют путем соответствующего согласования форм полюсов и якоря получать изменения тяговой характеристики и высокий коэффициент возврата.
В каждой из трех перечисленных групп электромагнитов в свою очередь имеется ряд конструктивных разновидностей, связанных как с характером протекающего по обмотке тока, так и с необходимостью обеспечения заданных характеристик и параметров электромагнитов.
§ 39. Электромагниты и их применение
Каждый из вас, конечно, встречался с явлением магнетизма. Почему же магнит — кусок железной руды — притягивает гвозди, булавки и другие стальные предметы? Из физики вы знаете, что это происходит потому, что в пространстве вокруг магнита имеется особое силовое поле, называемое магнитным.
Магнитное поле существует не только вокруг природных магнитов. Его можно создать и при помощи электрического тока. Так, если по проводнику пропускать электрический ток, вокруг него тоже возникает магнитное поле. Если электрический ток выключить, то магнитное поле сразу же исчезнет.
Магнитное поле, возникающее в проводе при прохождении по нему тока, очень слабое. Чтобы значительно усилить его, провод наматывают на полый каркас в виде катушки из диэлектрика и получают электромагнит. Электромагниты различных размеров и форм применяют в электродвигателях, подъёмных кранах, в телеграфном и телефонном аппаратах, для изготовления реле, автоматических устройств, электрических звонков и др.
Электромагнит на практике представляет собой катушку изолированной медной проволоки, по которой протекает электрический ток, сообщая катушке свойства магнита. Для ещё большего усиления магнитных свойств в катушку вставляется стальной сердечник (рис. 74).
Рис. 74. Электромагнит: а — катушка с сердечником, б — схематическое изображение
На рисунке 75 показано условное обозначение электромагнита на электрических схемах и схема включения электромагнита в электрическую цепь.
Рис. 75. Условное обозначение (а) и схема включения (б) электромагнита в электрическую цепь
Для изготовления катушек, или обмоток, электромагнитов применяют специальное приспособление — намоточный станок (рис. 76). Каркас 1 закрепляют на валу 3 резиновыми кольцами 2, а катушку 5, с которой сматывают провод, — на металлическом вертикальном стержне 4. Конец провода пропускают в отверстие щеки 6 каркаса и закрепляют. Наматывают провод слоями, плотно укладывая витки и одновременно направляя их рукой.
Рис. 76. Намотка провода электромагнита: 1 — каркас обмотки, 2 — резиновые кольца, 3 — вал, 4 — стержень, 5 — катушка, 6 — отверстие для закрепления провода
После того как намотано нужное количество витков, провод отрезают, конец пропускают через отверстие в щеке каркаса и закрепляют. Поверхность обмотки изолируют несколькими слоями бумаги, на катушке указывают количество витков в обмотке и сечение провода, которым она выполнена.
В обмотках электромагнитов, которые используются для лабораторно-практических работ, выводы (концы) изготовляют из монтажного (гибкого) провода. Монтажный провод к обмоточному присоединяют пайкой, а место пайки изолируют и закрепляют.
Многочисленные опыты показали, что для усиления магнитного поля электромагнита нужно либо увеличить число витков при одном и том же сердечнике, либо усилить ток в катушке, либо увеличить размер сердечника.
Электромагнит, как и постоянный магнит, имеет два магнитных полюса. Но в отличие от постоянного магнита электромагнитом можно управлять. Электромагнит притягивает к себе материалы только тогда, когда ток проходит по его обмотке. Если же ток выключен, электромагнит теряет магнитные свойства.
В электромагнитах, применяемых в различных приборах, обмотка изготовляется из изолированной медной проволоки. В зависимости от назначения она имеет различное сечение и число витков. Обмотка наматывается на каркас, который может быть изготовлен из картона, текстолита, пластмассы и других изоляционных материалов. Он удерживает обмотку и изолирует её от сердечника.
Рис. 77. Электромагнит с дугообразным сердечником и притяжным якорем
Сердечники, или магнитопроводы, электромагнита могут быть разной конструкции. Широко применяются электромагниты с протяжным (рис. 77) и втяжным сердечником — якорем (рис. 78).
Рис. 78. Электромагнит с втяжным якорем
Если к полюсам электромагнита притягивается специальная железная пластинка (якорь), — это притяжная конструкция. Она используется в технике для выполнения какого-либо действия, например для замыкания или размыкания электрических контактов. После выключения электрического тока в катушке сердечник и якорь практически полностью размагничиваются, т. е. притяжение якоря к полюсам электромагнита прекращается.
Электромагниты с втяжным якорем, или тяговые электромагниты, используются в электротехнике в качестве привода. С помощью такого электромагнита можно привести в движение, например, стрелку электроизмерительного устройства. Втяжной якорь находится в состоянии устойчивого равновесия, если его концы одинаково удалены от середины катушки. Если же сердечник выведен из этого положения, то сила F, действующая на него со стороны магнитного поля катушки, стремится направить его обратно (см. рис. 78).
Рассмотрим применение электромагнитов на примере электромагнитного реле и электрического звонка.
Электромагнитное реле (рис. 79) — это прибор, с помощью которого управляют какими-либо другими электроприборами на расстоянии.
Рис. 79. Электромагнитное реле: а — устройство: 1,2 — контактные пластины, 3 — верхнее плечо якоря, 4 — обмотка, 5 — нижнее плечо якоря; б — условные обозначения
Под действием магнитного поля, создаваемого обмоткой катушки 4, верхнее плечо якоря 3 притягивается к сердечнику. Нижнее плечо якоря 5 отклоняет контактную пластину 2, пока она не соприкоснется с контактной пластиной 1. Соприкоснувшиеся контакты замыкают электрическую цепь, в которую включён какой-либо потребитель. При отключении тока якорь с контактной пластиной 2 отходит от сердечника, и электрические контакты 1, 2 расходятся, размыкая цепь.
В электромагнитных реле могут быть установлены контакты: замыкающие, размыкающие и переключающие. Условные обозначения обмотки и контактов реле на принципиальных электрических схемах показаны на рисунке 79, б.
Электрический звонок (рис. 80) применяют для звуковой сигнализации, в устройствах автоматического контроля, защиты в быту и на производстве.
Рис. 80. Электрический звонок: 1,2 — контакты, 3 — обмотка электромагнита, 4 — якорь с молоточком, 5 — чашечка звонка
Основной частью электрического звонка является электромагнит. При нажатии на кнопку (в устройствах защиты и контроля это контакты реле или выключателей) электрическая цепь замыкается. Ток, проходя по обмотке электромагнита 3, намагничивает сердечник, который притягивает к себе якорь с молоточком 4 и контактом 2, при этом молоточек ударяет по чашечке звонка 5, контакты 2 и 1 размыкаются, и электрическая цепь разрывается. В результате сердечник размагничивается и отпускает якорь, контакт 2 вследствие упругости снова соединяется с контактом 1, и всё повторяется сначала.
В зависимости от конструкции электрические звонки могут работать как от батарейки, так и от электрической сети.
Новые слова и понятия
Магнит, магнитное поле, электромагнит, сердечник, реле, обмотка, намоточный станок, якорь.
Проверяем свои знания
Практическая работа № 32
Инструменты и материалы: катушка электромагнита, прямой и дугообразный сердечники, «пробник», выключатель, источник постоянного тока с напряжением 4 В.
Практическая работа № 33
Задание 1. Познакомиться с разными конструкциями электромагнитов по учебнику и представленным образцам. Выявить их особенности и области применения.
Инструкционная карта № 7.
Намотка катушки
1 При намотке катушки любым способом следите, чтобы не было резких изгибов и скручивания обмоточного провода, так как при этом нарушается его изоляция.
Как сделать электромагнит в домашних условиях
Любая однослойная или многослойная катушка из изолированной проволоки — соленоид — при пропускании по ней тока приобретает свойства магнита. Силу такого магнита при данном токе можно значительно увеличить, снабдив соленоид железной арматурой. Полученная система называется электромагнитом.
Делая отдельные части арматуры подвижными относительно других, получаем механизм, который может производить механическую работу при включении в его обмотку тока.
По конструкции электромагниты можно объединить в четыре основных группы:
с поворотным якорем,
электромагниты для создания магнитных полей.
Электромагнит – искусственный магнит, у которого магнитное поле возникает и концентрируется в ферромагнитном сердечнике в результате прохождения электрического тока по охватывающей его обмотке, т.е. при пропускании тока через катушку помещенный внутри нее сердечник приобретает свойства естественного магнита.
Область применения электромагнитов очень обширна. Их используют в электрических машинах и аппаратах, в устройствах автоматики, в медицине, в различного рода научных исследованиях. Наиболее часто электромагниты и соленоиды используются для перемещения каких-то механизмов, а на производствах для подъёма груза.
Так, например, грузоподъемный электромагнит является очень удобным, производительным и экономичным механизмом: для закрепления и освобождения транспортируемого груза не требуется обслуживающий персонал. Достаточно положить электромагнит на перемещаемый груз и включить электрический ток в катушку электромагнита и груз притянется к электромагниту, а для освобождения от груза необходимо лишь отключить ток.
Все типы электромагнитов применяют как для постоянного, так и для однофазного переменного тока, с той лишь разницей, что при переменном токе все железные части делают, для уменьшения потерь на токи Фуко, из листового железа, тогда как для постоянного тока их в большинстве случаев делают из сплошного железа.
Конструкция электромагнита легка для повторения и в сущности не представляет собой ничего кроме сердечника и катушки из проводника. В этой статье мы ответим на вопрос как сделать электромагнит своими руками.
Как работает электромагнит (теория)
Если по проводнику протекает электрический ток, то вокруг этого проводника образуется магнитное поле. Так как ток может течь только тогда, когда цепь замкнута, то проводник должен представлять собой замкнутый контур, как, например, круг, который является простейшим замкнутым контуром.
Раньше проводником, свернутым в круг, часто пользовались для наблюдения действия тока на магнитную стрелку, помещенную в его центре. В этом случае стрелка находится на равном расстоянии от всех частей проводника, благодаря чему легче можно наблюдать действие тока на магнит.
Чтобы усилить действие электрического тока на магнит, можно прежде всего увеличить ток. Однако, если обогнуть проводник, по которому протекает какой-то ток, два раза вокруг охватываемого им контура, то действие тока на магнит удвоится.
Таким образом можно во много раз увеличить это действие, огибая проводник соответствующее число раз вокруг данного контура. Получающееся при этом проводящее тело, состоящее из отдельных витков, число которых может быть произвольным, называется катушкой.
Вспомним курс школьной физики, а именно о том, что при протекании электрического тока через проводник возникает магнитное поле. Если проводник свернуть в катушку линии магнитной индукции всех витков сложатся, и результирующее магнитное поле будет сильнее чем для одиночного проводника.
Магнитное поле, порожденное электрическим током в принципе не имеет существенных отличий по сравнению с магнитным если вернуться к электромагнитам, то формула его тяговой силы выглядит так:
где F – сила тяги, кГ (сила измеряется также в ньютонах, 1 кГ =9,81 Н, или 1 Н =0,102 кГ); B – индукция, Тл; S – площадь сечения электромагнита, м2.
То есть сила тяги электромагнита зависит от магнитной индукции, рассмотрим её формулу:
Здесь U0 – магнитная постоянная (12.5*107 Гн/м), U – магнитная проницаемость среды, N/L – число витков на единицу длины соленоида, I – сила тока.
Отсюда следует, что сила с которой магнит притягивает что-либо зависит от силы тока, количества витков и магнитной проницаемости среды. Если в катушке нет сердечника – средой является воздух.
Ниже приведена таблица относительных магнитных проницаемостей для разных сред. Мы видим, что у воздуха она равна 1, а у других материалов в десятки и даже сотни раз больше.
В электротехнике используют специальный металл для сердечников, его часто называют электротехнической или трансформаторной сталью. В третьей строке таблицы вы видите «Железо с кремнием» у которого относительная магнитная проницаемость равна 7*103 или 7000 Гн/м.
Это и есть усредненное значение для трансформаторной стали. Она отличается от обычной как раз-таки содержанием кремниями. На практике её относительная магнитная проницаемость зависит от приложенного поля, но не будем углубляться в подробности. Что даёт сердечник в катушке? Сердечник из электротехнической стали усилит магнитное поле катушки примерно в 7000-7500 раз!
Всё что нужно запомнить для начала – это то, что от материала сердечника внутри катушки зависит магнитная индукция, а от неё зависит сила с которой будет тянуть электромагнит.
Практика
Одним из наиболее популярных опытов, которые проводят для демонстрации возникновения магнитного поля вокруг проводника является опыт с металлической стружкой. Проводник накрывают листом бумаги и на него насыпают магнитную стружку, потом через проводник пропускают электрический ток, и стружка изменяет своё располагаясь каким-то образом на листе. Это уже почти электромагнит.
Но для электромагнита просто притягивать металлические стружки недостаточно. Поэтому нужно его усилить, исходя из вышесказанного – нужно сделать катушку, намотанную на металлический сердечник. Простейшим примером – будет изолированный медный провод, намотанный на гвоздь или болт.
Такой электромагнит способен притягивать разные булавки, скрепи и тому подобное.
В качестве провода можно использовать либо любой провод в ПВХ или другой изоляции, либо медный провод в лаковой изоляции типа ПЭЛ или ПЭВ, которые используются для обмоток трансформаторов, динамиков, двигателей и прочее. Найти его можно либо новый в катушках, либо смотать с тех же трансформаторов.
10 Нюансов изготовления электромагнитов простыми словами:
1. Изоляция по всей длине проводника должна быть однородной и целой, чтобы не было межвитковых замыканий.
2. Намотка должна идти в одну сторону как на катушке с нитками, то есть нельзя изогнуть провод на 180 градусов и пойти в обратном направлении. Это связано с тем что результирующее магнитное поле будет равно алгебраической сумме полей каждого витка, если не вдаваться в подробности, то витки, намотанные в обратную сторону, будут порождать электромагнитное поле противоположное по знаку, в результате поля будут вычитаться и в результате сила электромагнита будет меньше, а если витков в одном и другом направлении будет одинаковое количество – магнит совсем ничего не будет притягивать, так как поля подавят друг друга.
3. Сила электромагнита также будет зависеть от силы тока, а он от напряжения приложенного к катушке и её сопротивления. Сопротивление катушки зависит от длины провода (чем длиннее, тем оно больше) и площади его поперечного сечения (чем больше сечение, тем меньше сопротивление) приблизительный расчёт можно провести по формуле – R=p*L/S
4. Если ток будет слишком большим – катушка сгорит
5. При постоянном токе – ток будет больше, чем при переменном из-за влияния реактивного сопротивления индуктивности.
6. При работе на переменном токе – электромагнит будет гудеть и дребезжать, его поле будет постоянно менять направление, а его тяговая сила будет меньше (в два раза) чем при работе на постоянном. При этом сердечник для катушек переменного тока выполняется из тонколистового металла, собираясь в единое целое, при этом пластины друг от друга изолируются лаком или тонким слоем окалины (оксида), т.н. шихты – для уменьшения потерь и токов Фуко.
7. При одинаковой тяговой силе электрический магнит переменного тока будет весить в два раза больше, соответственно возрастают и габариты.
8. Но стоит учесть, что электромагниты переменного тока обладают большим быстродействием чем магниты постоянного тока.
9. Сердечники электромагнитов постоянного тока
10. Оба типа электромагнитов могут работать как на постоянном, так и на переменном токе, вопрос только какой силой он будет обладать, какие потери и нагрев будут происходить.
3 идеи для электромагнита из подручных средств на практике
Как уже было сказано самый простой способ сделать электромагнит – использовать металлический стержень и медный провод подобрав и один и другой под нужную мощность. Напряжение питания этого устройства подбирается опытным путем исходя из силы тока и нагрева конструкции. Для удобства можно использовать пластиковую катушку от ниток или подобного, а под её внутренее отверстие подобрать сердечник – болт или гвоздь.
Второй вариант – использовать почти готовый электромагнит. Вспомните об электромагнитных коммутационных приборах – реле, магнитных пускателях и контакторах. Для использования на постоянном токе и напряжении 12В удобно использовать катушку от автомобильных реле. Всё что нужно сделать – снять корпус выломать подвижные контакты и подключить питание.
Для работы от 220 или 380 вольт удобно использовать катушки магнитных пускателей и контакторов, они намотаны на оправке и легко вынимаются. Сердечник подберите исходя из площади поперечного сечения отверстия в катушке.
Так вы можете включать магнит от розетки, а регулировать его силу удобно если использовать реостат или ограничивать ток с помощью мощного сопротивления, например, нихромовой спирали.