Как вырабатывают кислород для баллонов
Производство медицинского кислорода
Промышленная отрасль производства медицинского кислорода значительно выросла за последние два года. К примеру, в 2019 году в России было произведено 7,5 млн кубометров газообразного медицинского кислорода, а по итогам первого полугодия 2020 года этот объем вырос на 14 %. У производства медицинского кислорода в жидком состоянии тоже наблюдается стабильный рост — 29 % за тот же период.
В России производство медицинского кислорода ведется по специальной лицензии. От получения технического кислорода процесс отличается более тщательной очисткой и фильтрацией, поскольку в конечном продукте не должно быть посторонних включений, а содержание оксида углерода, кислот и озона строго регламентируется. Поэтому производство медицинского кислорода в целом представляет собой более сложный и технологичный процесс. О том, как это происходит, расскажем далее.
Для чего используется медицинский кислород
В медицинские учреждения кислород поставляют для тяжелых больных, испытывающих проблемы с дыхательной системой. В стационарах газ применяется для пациентов с заболеваниями сердечно-сосудистой системы, проблемами с кровообращением, находящихся в реанимации или отделении интенсивной терапии. В хирургии он необходим для наркоза.
Кроме того, медицинский кислород становится все более востребован людьми, заботящимися о своем здоровье. Несмотря на то, что применение дыхательной смеси не включено в официальные протоколы лечения разных заболеваний, большинство врачей сходятся во мнении, что обогащенные кислородом смеси будут полезны во множестве ситуаций. Среди симптомов, с которыми поможет справиться оксигенотерапия:
Также врачи советуют при помощи медицинского кислорода укреплять иммунитет и бороться с негативными последствиями хронической гипоксии, с которой сталкиваются практически все жители больших городов. Кислородотерапия будет полезна в периоды интенсивных умственных активностей, для улучшения результатов во время активных физических нагрузок и эффективного восстановления после них.
Как производят медицинский кислород
Технологий производства медицинского кислорода существует множество. Чаще всего используются ВРУ — воздухоразделительные установки. Подобное оборудование для производства медицинского кислорода позволяет получать газ прямо из воздуха. Это очень удобно, поскольку отсутствует необходимость в сырьевой базе и добыть чистый кислород можно в любом месте.
Принципов разделения воздуха на составляющие несколько. Например, используется физическая адсорбция, мембранное или криогенное разделение, при котором воздух сильно охлаждается и затем компоненты разделяют по массе.
Как производят медицинский кислород методом низкотемпературной ректификации из воздуха? Для этого используется аппарат, представляющий собой цилиндрическую колонну с перегородками. Суть процесса ректификации в том, что воздух в парообразном состоянии пропускается через жидкость с меньшим содержанием кислорода и большим — азота. Эта жидкость имеет температуру ниже, чем у пара, в итоге кислород конденсируется, а азот испаряется.
Оборудование для производства медицинского кислорода
Так же, как способы производства кислорода для медицинских нужд, различаются и варианты оборудования. Это могут быть как большие установки, производящие сотни литров газа в час, так и компактные приборы — концентраторы.
Концентраторы состоят из двух емкостей с цеолитом. Они работают поочередно: через один сосуд пропускается воздух, чтобы отфильтровать кислород, а второй в это время очищается от азота и других компонентов.
Компактное оборудование для производства медицинского кислорода достаточно эффективно и позволяет получить кислород с очисткой до 95 %. Недостатков у таких устройств тоже хватает. Два основных — это высокая стоимость и несбалансированный состав дыхательной смеси, которая сильно иссушает дыхательные пути.
Чтобы компенсировать сухость медицинского кислорода, на концентраторы дополнительно устанавливают увлажнитель. Это увеличивает размеры оборудования и повышает его стоимость. Все эти факторы делают рациональным применение концентраторов в тех случаях, когда нужно обеспечить мобильную подачу кислорода — например, в машинах скорой помощи. Кроме того, такие установки используют в стационарах или для поддержания тяжелых больных.
В остальных случаях удобнее пользоваться медицинским кислородом, расфасованным в баллончики. Установка для производства медицинского кислорода методом ректификации называется ректификационной колонной. После выделения чистого О2 его помещают в баллоны. Генерация кислорода в промышленных масштабах позволяет снизить себестоимость литра газа и сделать его более доступным для конечного потребителя.
Кроме того, в промышленной установке производства медицинского кислорода проще контролировать состав смеси, поэтому можно сразу сделать ее неиссушающей, комфортной для использования. Это избавляет от необходимости отдельно применять модули увлажнения.
Преимущества кислородных баллончиков Prana
Кислородные баллончики Prana содержат оптимальную по составу дыхательную смесь. Она состоит на 80 % из кислорода и на 20 % из азота. Такая композиция дает важное преимущество — она не сушит дыхательные пути. Причем никакого негативного воздействия нет как при однократном применении, так и при постоянном использовании кислородных баллончиков.
Важным этапом является фильтрация. Многоступенчатая система очистки гарантирует, что дыхательная смесь не будет содержать посторонние примеси и включения. Медицинский кислород не имеет запаха и никак не ощущается при вдыхании, что позволяет использовать его даже аллергикам и людям с повышенной чувствительностью к разным добавкам.
Кислород Prana производится на современном и технологичном оборудовании, что гарантирует стабильное качество продукции. Производство сертифицировано и имеет все необходимые лицензии для поставок именно медицинского кислорода.
Дыхательная смесь поставляется в удобной фасовке — компактных баллончиках с кислородом разного объема. Самые маленькие баллоны рассчитаны на 8 литров, они подойдут для использования в машине, спортзале, на работе. Большие емкости на 12 и 16 литров позволяют получить медицинский кислород по минимальной цене, они удобны для постоянного использования дома.
Баллончики Prana выпускаются с маской или без нее — для большей эффективности или максимальной компактности.
Используя концентрированный медицинский кислород Prana в баллончиках, можно всего за 4-5 вдохов восполнить его недостаток и быстро устранить последствия гипоксии.
Кислород и его получение
СВОЙСТВА КИСЛОРОДА И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ
Кислород О2 является наиболее распространенным элементом на земле. Он находится в большом количестве в виде химических соединений с различными веществами в земной коре (до 50% вес.), в соединении с водородом в воде (около 86% вес.) и в свободном состоянии в атмосферном воздухе в смеси главным образом с азотом в количестве 20,93% об. (23,15% вес.).
Кислород имеет большое значение в народном хозяйстве. Он широко применяется в металлургии; химической промышленности; для газопламенной обработки металлов, огневого бурения твердых горных пород, подземной газификации углей; в медицине и различных дыхательных аппаратах, например для высотных полетов, и в других областях.
В нормальных условиях кислород представляет собой газ без цвета, запаха и вкуса, не горючий, но активно поддерживающий горение. При весьма низких температурах кислород превращается в жидкость и даже твердое вещество.
Важнейшие физические константы кислорода следующие:
Кислород обладает большой химической активностью и образует соединения со всеми химическими элементами, кроме редких газов. Реакции кислорода с органическими веществами имеют резко выраженный экзотермический характер. Так, при взаимодействии сжатого кислорода с жировыми или находящимися в мелкодисперсном состоянии твердыми горючими веществами происходит мгновенное их окисление и выделяющееся тепло способствует самовозгоранию этих веществ, что может быть причиной пожара или взрыва. Это свойство особенно необходимо учитывать при обращении с кислородной аппаратурой.
Одним из важных свойств кислорода является способность его образовывать в широких пределах взрывчатые смеси с горючими газами и парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры. Взрывчатыми являются и смеси воздуха с газо- или парообразными горючими.
Кислород может быть получен: 1) химическими способами; 2) электролизом воды; 3) физическим способом из воздуха.
Химические способы, заключающиеся в получении кислорода из различных веществ, малопроизводительны и в настоящее время имеют лишь лабораторное значение.
ПОЛУЧЕНИЕ КИСЛОРОДА ИЗ ВОЗДУХА
Главная задача при получении кислорода из воздуха заключается в разделении воздуха на кислород и азот. Попутно производится отделение аргона,-применение которого в специальных способах сварки непрерывно возрастает, а также и редких газов, играющих важную роль в ряде производств. Азот имеет некоторое применение в сварке как защитный газ, в медицине и других областях.
При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения и по мере его выделения жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией.
Для производства кислорода из воздуха имеются специализированные предприятия, оснащенные высокопроизводительными установками. Кроме того, на крупных металлообрабатывающих предприятиях имеются свои кислородные станции.
Низкие температуры, необходимые для сжижения воздуха, получают с помощью так называемых холодильных циклов. Ниже кратко рассматриваются основные холодильные циклы, используемые в современных установках.
Холодильный цикл с дросселированием воздуха основан на эффекте Джоуля—Томсона, т. е. резком снижении температуры газа при свободном его расширении. Схема цикла приведена на рис. 2.
Воздух сжимается в многоступенчатом компрессоре 1 до 200 кгс/см 2 и затем проходит через холодильник 2 с проточной водой. Глубокое охлаждение воздуха происходит в теплообменнике 3 обратным потоком холодного газа из сборника жидкости (ожижителя) 4. В результате расширения воздуха в дроссельном вентиле 5 он дополнительно охлаждается и частично сжижается.
Охлаждение воздуха до температуры сжижения происходит постепенно; при включении установки имеется пусковой период, в течение которого сжижения воздуха не наблюдается, а происходит лишь охлаждение установки. Этот период занимает несколько часов.
Несколько более сложным является цикл с дросселированием и предварительным аммиачным охлаждением воздуха.
Холодильный цикл среднего давления с расширением в детандере основан на понижении температуры газа при расширении с отдачей внешней работы. Кроме того, используется и эффект Джоуля— Томсона. Схема цикла приведена на рис. 3.
Достоинствами цикла являются: сравнительно небольшое давление сжатия, что упрощает конструкцию компрессора и повышенная холодопроизводительность (благодаря детандеру), что обеспечивает устойчивую работу установки при отборе кислорода в жидком виде.
Холодильный цикл низкого давления с расширением в турбодетандере, разработанный акад. П. Л. Капицей, основан на применении воздуха низкого давления с получением холода только за счет расширения этого воздуха в воздушной турбине (турбодетандере) с производством внешней работы. Схема цикла приведена на рис. 4.
Достоинствами цикла низкого давления с турбодетандером являются: более высокий к. п. д. турбомашин по сравнению с машинами поршневого типа, упрощение технологической схемы, повышение надежности и взрывобезопасности установки. Цикл применяется в установках большой производительности.
Разделение жидкого воздуха на составляющие осуществляется посредством процесса ректификации, сущность которого состоит в том, что образующуюся при испарении жидкого воздуха парообразную смесь азота и кислорода пропускают через жидкость с меньшим содержанием кислорода. Поскольку кислорода в жидкости меньше, а азота больше, то она имеет более низкую температуру, чем проходящий через нее пар, а это вызывает конденсацию кислорода из пара и обогащение им жидкости с одновременным испарением из жидкости азота, т. е. обогащение им паров над жидкостью.
Представление о сущности процесса ректификации может дать приведенная на рис. 5 упрощенная схема процесса многократного испарения и конденсации жидкого воздуха.
Принимаем, что воздух состоит только из азота и кислорода. Представим, что имеется несколько соединенных друг с другом сосудов (I—V), в верхнем находится жидкий воздух с содержанием 21% кислорода. Благодаря ступенчатому расположению сосудов жидкость будет стекать вниз и при этом постепенно обогащаться кислородом, а температура ее будет повышаться.
Допустим, что в сосуде II находится жидкость, содержащая 30% 02, в сосуде III — 40%, в сосуде IV — 50% и в сосуде V — 60% кислорода.
Для определения содержания кислорода в паровой фазе воспользуемся специальным графиком — рис. 6, кривые которого указывают содержание кислорода в жидкости и паре при различных давлениях.
Аналогично будет происходить процесс и в других сосудах и, таким образом, при сливе из верхних сосудов в нижние жидкость обогащается кислородом, конденсируя его из поднимающихся паров и отдавая им свой азот.
Независимо от технологической схемы установки и вида холодильного цикла процесс производства кислорода из воздуха включает следующие стадии:
1) очистка воздуха от пыли, паров воды и углекислоты. Связывание СО2 достигается пропусканием воздуха через водный раствор NaOH;
2) сжатие воздуха в компрессоре с последующим охлаждением в холодильниках;
3) охлаждение сжатого воздуха в теплообменниках;
4) расширение сжатого воздуха в дроссельном вентиле или детандере для его охлаждения и сжижения;
5) сжижение и ректификация воздуха с получением кислорода и азота;
6) слив жидкого кислорода в стационарные цистерны и отвод газообразного в газгольдеры;
7) контроль качества получаемого кислорода;
8) наполнение жидким кислородом транспортных резервуаров и наполнение баллонов газообразным кислородом.
Качество газообразного и жидкого кислорода регламентируется соответствующими ГОСТами.
По ГОСТу 6331-52 выпускается жидкий кислород двух сортов: сорт А с содержанием не менее 99,2% О2 и сорт Б с содержанием не менее 98,5% О2. Содержание ацетилена в жидком кислороде не должно превышать 0,3 см 3 /л.
Применяемый для интенсификации различных процессов на предприятиях металлургической, химической и других отраслей промышленности технологический кислород содержит 90—98% О2.
Контроль качества газообразного, а также и жидкого кислорода производится непосредственно в процессе производства с помощью специальных приборов.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _