Как выразить косинус в градусах

Как найти синус и косинус углов в градусах без тригонометрической таблицы?

В статье мы расскажем, как находить значения:

Как вычисляются синусы и косинусы углов?

Предположим, стоит задача найти косинус и синус угла \(30^°\). Отложим на круге угол в \(30^°\) и найдем какая точка соответствует этому углу.

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Аналогично и для любой другой точки на круге: значение абсциссы равно косинусу угла, а ординаты – синусу угла. Поэтому:

В тригонометрии ось абсцисс (ось x) часто называют «ось косинусов», а ординат (ось y) – «ось синусов».

Обычно на осях не отмечают \(0,1\); \(0,2\); \(0,3\) и т.д., а сразу наносят стандартные значения для синуса и косинуса: \(±\frac<1><2>=±0,5\); \(±\frac<\sqrt<2>> <2>≈±0,707\); \(±\frac<\sqrt<3>> <2>≈±0,866\).

Первый шаг к тому, чтобы находить синусы и косинусы стандартных углов – научится отмечать эти углы на тригонометрическом круге.

Как отметить любой угол на тригонометрическом круге?

Чтоб отложить положительный угол нужно двигаться против часовой стрелки от начала отсчета, чтобы отметить отрицательный – по часовой стрелке;

Градусная мера окружности равна \(360^°\), полуокружности \(180^°\), а четверти \(90^°\);

Углы в \(0^°\), \(30^°\), \(45^°\) и \(60^°\) выглядят так:

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусахКак выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусахКак выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Задание 1 . Отметьте на окружности точки соответствующие углам: \(720^°\), \(225^°\), \(300^°\), \(870^°\), \(900^°\), \(-330^°\), \(-630^°\), \(-210^°\).

Как находить синус и косинус любого угла?

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

\(-540^°\) на тригонометрическом круге совпадает с \(-1\) на оси косинусов. То есть, координаты этой точки: \((-1;0)\). Значит, \(\cos⁡(-540^°)=-1\), а \(\sin⁡(-540^° )=0\).

Есть и другой способ запомнить тригонометрический круг – внимательно посмотреть на картинку ниже и запомнить максимальное количество элементов. После прикройте страницу и по памяти нарисуйте круг и отметьте всё, что смогли запомнить. Сверьте, что у вас получилось с тем, что было на картинке. Повторяйте эту последовательность действий пока по памяти не получится нарисовать тригонометрический круг со всеми значениями. Это займет 15 минут вашего времени, но сильно поможет в 13 задаче ЕГЭ (и не только в ней).

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Примеры вычисления синуса и косинуса из ЕГЭ

В двух следующих примерах я специально рисовала круг от руки, чтобы вы увидели, как выглядят реальные решения.

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Пример . Найдите значение выражения \(54\sqrt<3>\cos⁡(510^°)\).
Решение. \(510^°=360^°+150^°=360^°+180^°-30^°.\)

Источник

Основные тригонометрические формулы и тождества sin, cos, tg, ctg

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Формулы приведения

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.

Формулы приведения являются следствием периодичности тригонометрических функций.

Тригонометрические формулы сложения

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

На основе формул сложения выводятся тригонометрические формулы кратного угла.

Формулы кратного угла: двойного, тройного и т.д.

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

Формулы понижения степени

Часто при расчетах действовать с громоздктми степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

Произведение тригонометрических функций

Формулы произведения тригонометрических функций

Универсальная тригонометрическая подстановка

Универсальная тригонометрическая подстановка

Источник

Тригонометрия простыми словами

Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».

Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).

Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.

Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.

Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.

Значения тригонометрических функций
для первой четверти круга (0° – 90°)

Принцип повтора знаков тригонометрических функций

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.

В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.

Тригонометрический круг

Углы в радианах

Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.

Источник

Нахождение значений синуса, косинуса, тангенса и котангенса

Для того, чтобы определить значение угла α, необходимо воспользоваться подходящей функции из тригонометрии. Во время решения задач постоянно возникает необходимость в том, чтобы узнать значение углов. Для некоторых углов можно найти точные значения, для других сложно определить точную цифру и можно вывести только приблизительное значение.

В этой статье мы подробно поговорим о функциях из тригонометрии. Мы не только расскажем о свойствах синуса, тангенса и других функций, но и узнаем, как правильно вычислять значения для каждого отдельного случая.

Рассмотрим подробно каждый случай.

Приближенное число для каждой из известных функций можно найти по определению. Для одних можно указать точные значения, для других – только приблизительные.

Если для примера не подходит ни одно из приведенных выше решений, можно найти приближенное значение. В этом вам помогут таблицы основных тригонометрических функций, которые легко можно найти.

Изобразим данные формулы на рисунке:

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Для каждой группы соответствуют свои значения.

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Чем точнее выполняется чертеж, тем более точными будут значения для каждого индивидуального случая. Выполнять вычисления удобно только в теории, так как на практике довольно сложно и долго выполнять рисунки.

Линии тригонометрических функций

Линии тригонометрических функций – это линии, которые изображаются вместе с единичной окружностью. Они имеют точку отсчета и единичный отрезок, которая равна единице в координатной системе. Они используются для наглядного изображения значений.

Рассмотрим их на подробном рисунке

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Для тридцати-, сорокопяти-, шестидесятиградусных углов мы имеем определенные значения. Чтобы найти их, можно воспользоваться правилами о прямоугольном треугольнике с острыми углами. Для этого используется теорема Пифагора.

Тангенс можно найти по формуле, которая предполагает деление противолежащего катета на прилежащий. Котангенс находим по такой же схеме – делим прилежащий катет на противолежащий.

Теперь мы сможем найти значения для основных тригонометрических функций. Используем формулу, которая предполагает деление длин соответствующих сторон рассматриваемого треугольника.

Полученные значения для тридцати-, сорокапяти-, шестидесятиградусных углов будут использоваться для решения различных задач. Запишите их – они часто будут использоваться. Для удобства можно использовать таблицу значений.

Проиллюстрируем значения для тридцати-, сорокапяти-, шестидесятиградусных углов с использованием окружности и линий.

Как выразить косинус в градусах. Смотреть фото Как выразить косинус в градусах. Смотреть картинку Как выразить косинус в градусах. Картинка про Как выразить косинус в градусах. Фото Как выразить косинус в градусах

Значения основных функций тригонометрии

Для того, чтобы закрепить полученные знания, рассмотрим их на подробном примере

Сведение к углу

Для того, чтобы решать задачи было намного проще, при нахождении значений переходите к углам из интервала от 0 до 90 ° с помощью формул приведения, если угол не находится в этих пределах.

Использование формул

Раннее мы рассмотрели подробности, касающиеся нахождению значений основных функций с использованием формул тригонометрии. Для того, чтобы определить значение для определенного угла, используйте формулы и значения основных функций для известных углов.

Частные случаи

Тригонометрия – довольно сложная наука. Далеко не всегда можно найти формулы, используемые для вычисления. Существует множество уравнений, которые не поддаются стандартным формулам. Некоторые значения очень сложно обозначить точной цифрой. Это не так просто, как может показаться.

Однако точные значения не всегда нужны. Хватает и тех, что не претендуют на высокую точность. Благодаря существующим таблицам, которые можно найти в математических учебниках, можно найти любое приближенное значение основных функций. Благодаря справочным материалам вычислять формулы будет намного проще. В таблицах содержатся значения с высокой точностью.

Источник

Таблицы значений синусов, косинусов, тангенсов, котангенсов (sin, cos, tg, ctg)

Исходя из определений синуса, косинуса, тангенса и котангенса можно найти значения этих функций для углов 0 и 90 градусов

Значения синусов, косинусов, тангенсов и котангенсов в курсе геометрии определяются как соотношения сторон прямоугольного треугольника, углы которого равны 30, 60 и 90 градусов, и также 45, 45 и 90 градусов.

Определение тригонометрических функуций для острого угла в прямоугольном треугольнике

В соответствии с определениями находятся значения функций:

Сведем эти значения в таблицу и назовем ее таблицей основных значений синуса, косинуса, тангенса и котангенса.

Таблица основных значений синусов, косинусов, тангенсов и котангенсов

Таблица синусов, косинусов, тангенсов и котангенсов

Периодичность синуса, косинуса, тангенса и котангенса позволяет расширять эту таблицу до сколь угодно больших значений углов. Значения, собранные в таблице, используются при решении задач чаще всего, поэтому их рекомендуется выучить наизусть.

Как пользоваться таблицей основных значений тригонометрических функций

Принцип пользования таблицей значений синусов, косинусов, тангенсов и котангенсов понятен на интуитивном уровне. Пересечение строки и столбца дает значение функции для конкретного угла.

Пример. Как пользоваться таблицей синусов, косинусов, тангенсов и котангенсов

Нужно узнать, чему равен sin 7 π 6

Таблицы Брадиса

Таблица Брадиса позволяет вычислить значение синуса, косинуса, тангенса или котангенса с точностью до 4-х знаков после запятой без использования вычислительной техники. Это своего рода замена инженерному калькулятору.

Таблица Брадиса для синусов и косинусов

sin0′6′12′18′24′30′36′42′48′54′60′cos1′2′3′
0.000090°
0.0000001700350052007000870105012201400157017589°369
0175019202090227024402620279029703140332034988°369
0349036603840401041904360454047104880506052387°369
0523054105580576059306100628064506630680069886°369
06980715073207500767078508020819083708540.087285°369
0.0872088909060924094109580976099310111028104584°369
1045106310801097111511321149116711841201121983°369
1219123612531271128813051323134013571374139282°369
1392140914261444146114781495151315301547156481°369
15641582159916161633165016681685170217190.173680°369
10°0.1736175417711788180518221840185718741891190879°369
11°1908192519421959197719942011202820452062207978°369
12°2079209621132130214721642181219822152233225077°369
13°2250226722842300231723342351236823852402241976°368
14°24192436245324702487250425212538255425710.258875°368
15°0.2588260526222639265626722689270627232740275674°368
16°2756277327902807282328402857287428902907292473°368
17°2924294029572974299030073024304030573074309072°368
18°3090310731233140315631733190320632233239325671°368
19°32563272328933053322333833553371338734040.342070°358
20°0.3420343734533469348635023518353535513567358469°358
21°3584360036163633364936653681369737143730374668°358
22°3746376237783795381138273843385938753891390767°358
23°3907392339393955397139874003401940354051406766°358
24°40674083409941154131414741634179419542100.422665°358
25°0.4226424242584274428943054321433743524368438464°358
26°4384439944154431444644624478449345094524454063°358
27°4540455545714586460246174633464846644679469562°358
28°4695471047264741475647724787480248184833484861°358
29°48484863487948944909492449394955497049850.500060°358
30°0.5000501550305045506050755090510551205135515059°358
31°5150516551805195521052255240525552705284529958°257
32°5299531453295344535853735388540254175432544657°257
33°5446546154765490550555195534554855635577559256°257
34°55925606562156355650566456785693570757210.573655°257
35°0.57365750576457795793580758215835585058640.587854°257
36°5878589259065920593459485962597659906004601853°257
37°6018603260466060607460886101611561296143615752°257
38°6157617061846198621162256239625262666280629351°257
39°62936307632063346347636163746388640164140.642850°247
40°0.6428644164556468648164946508652165346547656149°247
41°6561657465876600661366266639665266656678669148°247
42°6691670467176730674367566769678267946807682047°246
43°6820683368456858687168846896890969216934694746°246
44°69476959697269846997700970227034704670590.707145°246
45°0.7071708370967108712071337145715771697181719344°246
46°7193720672187230724272547266727872907302731443°246
47°7314732573377349736173737385739674087420743142°246
48°7431744374557466747874907501751375247536754741°246
49°75477559757075817593760476157627763876490.766040°246
50°0.7660767276837694770577167727773877497760777139°246
51°7771778277937804781578267837784878597869788038°245
52°7880789179027912792379347944795579657976798637°245
53°7986799780078018802880398049805980708080809036°235
54°80908100811181218131814181518161817181810.819235°235
55°0.8192820282118221823182418251826182718281829034°235
56°8290830083108320832983398348835883688377838733°235
57°8387839684068415842584348443845384628471848032°235
58°8480849084998508851785268536854585548563857231°235
59°85728581859085998607861686258634864386520.866030°134
60°0.8660866986788686869587048712872187298738874629°134
61°8746875587638771878087888796880588138821882928°134
62°8829883888468854886288708878888688948902891027°134
63°8910891889268934894289498957896589738980898826°134
64°89888996900390119018902690339041904890560.906325°134
65°0.9063907090789085909291009107911491219128913524°124
66°9135914391509157916491719178918491919198920523°123
67°9205921292199225923292399245925292599256927222°123
68°9272927892859291929893049311931793239330933621°123
69°93369342934893549361936793739379938393910.939720°123
70°93979403940994159421942694329438944494490.945519°123
71°9455946194669472947894839489949495009505951118°123
72°9511951695219527953295379542954895539558956317°123
73°9563956895739578958395889593959896039608961316°122
74°96139617962296279632963696419646965096550.965915°122
75°9659966496689673967796819686969096949699970314°112
76°9703970797119715972097249728973297369740974413°112
77°9744974897519755975997639767977097749778978112°112
78°9781978597899792979697999803980698109813981611°112
79°98169820982398269829983398369839984298450.984810°112
80°0.98489851985498579860986398669869987198749877011
81°98779880988298859888989098939895989899009903011
82°99039905990799109912991499179919992199239925011
83°99259928993099329934993699389940994299439945011
84°99459947994999519952995499569957995999609962011
85°99629963996599669968996999719972997399749976001
86°99769977997899799980998199829983998499859986000
87°99869987998899899990999099919992999399939994000
88°99949995999599969996999799979997999899980.9998000
89°999899999999999999991.00001.00001.00001.00001.00001.0000000
90°1.0000
sin60′54′48′42′36′30′24′18′12′6′0′cos1′2′3′

Для нахождения значений синусов и косинусов углов, не представленных в таблице, необходимо использовать поправки.

Теперь приведем таблицу Брадиса для тангенсов и котангенсов. Она содержит значения тангенсов углов от 0 до 76 градусов, и котангенсов углов от 14 до 90 градусов.

Таблица Брадиса для тангенса и котангенса

tg0′6′12′18′24′30′36′42′48′54′60′ctg1′2′3′
090°
0,000001700350052007000870105012201400157017589°369
0175019202090227024402620279029703140332034988°369
0349036703840402041904370454047204890507052487°369
0524054205590577059406120629064706640682069986°369
06990717073407520769078708050822084008570,087585°369
0,0875089209100928094509630981099810161033105184°369
1051106910861104112211391157117511921210122883°369
1228124612631281129913171334135213701388140582°369
1405142314411459147714951512153015481566158481°369
15841602162016381655167316911709172717450,176380°369
10°0,1763178117991817183518531871189019081926194479°369
11°1944196219801998201620352053207120892107212678°369
12°2126214421622180219922172235225422722290230977°369
13°2309232723452364238224012419243824562475249376°369
14°24932512253025492568258626052623264226610,267975°369
15°0,2679269827172736275427732792281128302849286774°369
16°2867288629052924294329622981300030193038305773°369
17°3057307630963115313431533172319132113230324972°3610
18°3249326932883307332733463365338534043424344371°3610
19°34433463348235023522354135613581360036200,364070°3710
20°0,3640365936793699371937393759377937993819383969°3710
21°3839385938793899391939393959397940004020404068°3710
22°4040406140814101412241424163418342044224424567°3710
23°4245426542864307432743484369439044114431445266°3710
24°44524473449445154536455745784599462146420,466365°4711
25°0,4663468447064727474847704791481348344856487764°4711
26°4877489949214942496449865008502950515073509563°4711
27°5095511751395161518452065228525052725295531762°4711
28°5317534053625384540754305452547554985520554361°4811
29°55435566558956125635565856815704572757500,577460°4812
30°0,5774579758205844586758905914593859615985600959°4812
31°6009603260566080610461286152617662006224624958°4812
32°6249627362976322634663716395642064456469649457°4812
33°6494651965446569659466196644666966946720674556°4813
34°67456771679668226847687368996924695069760,700255°4913
35°0,7002702870547080710771337159718672127239726554°4813
36°7265729273197346737374007427745474817508753653°5914°
37°7536756375907618764676737701772977577785781352°5914
38°7813784178697898792679547983801280408069809851°5914
39°80988127815681858214824382738302833283610,839150°51015
40°0,83918421845184818511854185718601863286620,869349°51015
41°8693872487548785881688478878891089418972900448°51016
42°9004903690679099913191639195922892609293932547°61116
43°93259358939194249457949095239556959096230,965746°61117
44°96579691972597599793982798619896993099651,000045°61117
45°1,0000003500700105014101760212024702830319035544°61218
46°0355039204280464050105380575061206490686072443°61218
47°0724076107990837087509130951099010281067110642°61319
48°1106114511841224126313031343138314231463150441°71320
49°15041544158516261667170817501792183318751,191840°71421
50°1,1918196020022045208821312174221822612305234939°71422
51°2349239324372482252725722617266227082753279938°81523
52°2799284628922938298530323079312731753222327037°81624
53°3270331933673416346535143564361336633713376436°81625
54°37643814386539163968401940714124417642291,428135°91726
55°1,4281433543884442449645504605465947154770482634°91827
56°4826488249384994505151085166522452825340539933°101929
57°5399545855175577563756975757581858805941600332°102030
58°6003606661286191625563196383644765126577664331°112132
59°66436709677568426909697770457113718272511,732130°112334
60°1,7321,7391,7461,7531,7601,7671,7751,7821,7891,7971,80429°124
61°1,8041,8111,8191,8271,8341,8421,8491,8571,8651,8731,88128°134
62°1,8811,8891,8971,9051,9131,9211,9291,9371,9461,9541,96327°134
63°1,9631,9711,9801,9881,9972,0062,0142,0232,0322,0412,0526°134
64°2,0502,0592,0692,0782,0872,0972,1062,1162,1252,1352,14525°235
65°2,1452,1542,1642,1742,1842,1942,2042,2152,2252,2362,24624°235
66°2,2462,2572,2672,2782,2892,32,3112,3222,3332,3442,35623°245
67°2,3562,3672,3792,3912,4022,4142,4262,4382,4502,4632,47522°246
68°2,4752,4882,52,5132,5262,5392,5522,5652,5782,5922,60521°246
69°2,6052,6192,6332,6462,662,6752,6892,7032,7182,7332,74720°257
70°2,7472,7622,7782,7932,8082,8242,8402,8562,8722,8882,90419°358
71°2,9042,9212,9372,9542,9712,9893,0063,0243,0423,063,07818°369
72°3,0783,0963,1153,1333,1523,1723,1913,2113,2303,2513,27117°3610
73°3,2713,2913,3123,3333,3543,3763710
3,3983,423,4423,4653,48716°4711
74°3,4873,5113,5343,5583,5823,6064812
3,6303,6553,6813,7063,73215°4813
75°3,7323,7583,7853,8123,8393,8674913
3,8953,9233,9523,9814,01114°51014
tg60′54′48′42′36′30′24′18′12′6′0′ctg1′2′3′

Как пользоваться таблицами Брадиса

Для нахождения значений синуса угла нужно найти пересечение строки, содержащей в крайней левой ячейке необходимое количество градусов, и столбца, содержащего в верхней ячейке необходимое число минут.

Если точного значения угла нет в таблице Брадиса, прибегаем к помощи поправок. Поправки на одну, две и три минуты даны в крайних правых столбцах таблицы. Для нахождения значения синуса угла, которого нет в таблице, находим самое близкое к нему значение. После этого прибавляем или отнимаем поправку, соответствующую разнице между углами.

Пример. Как пользоваться таблицей Брадиса

Принцип работы с косинусами, тангенсами и котангенсами аналогичен. Однако, важно помнить о знаке поправок.

При вычислении значений синусов поправка имеет положительный знак, а при вычислении косинусов поправку необходимо брать с отрицательным знаком.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *