Как выразить скорость через ускорение

Формулы вычисления ускорения через скорость. Пример задачи

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Каждый школьник сможет дать ответ на вопрос, что такое скорость. Под ней понимают физическую величину, которая определяет быстроту прохождения телом расстояний, что математически выражается через производную пути l по времени t:

В системе СИ скорость принято измерять в метрах в секунду (м/с).

Если взять теперь производную по времени t от скорости v, то мы получим ускорение a:

Заметим, что ускорение может быть также рассчитано, как вторая производная по времени от пути. Величина a показывает быстроту, с которой изменяется величина v. Как правило, ускорение определяют в метрах в секунду в квадрате (м/с2).

Величины a и v являются векторными. Скорость направлена по касательной к траектории, а ускорение совпадает с вектором изменения скорости.

Равноускоренное (равнозамедленное) движение по прямой

Когда тело движется вдоль прямой линии с постоянным ускорением, то есть a=const, то существует всего три формулы определения ускорения через скорость и время:

Первое выражение позволяет определить ускорение, если тело начало ускоренное движение из состояния покоя. Оно отличается от математического определения ускорения тем, что в данном случае определяется средняя величина a за время движения t. Второе выражение также справедливо для ускоренного движения, только в этом случае до возникновения ускорения тело уже имело скорость v0. Наконец, третья формула применяется тогда, когда тело замедляет свое движение (тормозит) с постоянным ускорением.

Отметим, что все три равенства предполагают линейную зависимость между величинами a и v.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Пример решения задачи

Автомобиль двигался по трассе со скоростью 80 км/ч. Затем он начал тормозить и остановился ровно через 1 минуту. Необходимо определить его среднее ускорение торможения.

Прежде чем пользоваться записанной в предыдущем пункте формулой ускорения через скорость, переведем известные из условия задачи величины в единицы СИ:

v0 = 80 км/ч = 22,22 м/с;

Поскольку автомобиль в итоге остановился, то v = 0. Подставим все известные значения в соответствующую формулу, получим:

a = (v0-v)/t = 22,22/60 = 0,37 м/с2.

Рассчитанная величина не является слишком большой по сравнению с ускорением, которое наша планета сообщает всем телам (9,81 м/с2).

Источник

Как посчитать путь ускоряющегося тела не используя время

Существует формула, с помощью которой можно посчитать путь, пройденный телом, когда нам известны его начальная скорость, ускорение и конечная скорость.

Сокращенно эту формулу называют «путь без времени». Так ее называют потому, что в правой ее части время t движения отсутствует (рис. 1).

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Формула пути без времени помогает упростить решение некоторых задач кинематики. Особенно, задач, части C.

Однако, не торопитесь на ЕГЭ записывать эту формулу в готовом виде. Сначала в решении задачи нужно записать вывод этой формулы. И только потом ее можно использовать.

Формулу выводят из выражений для равнопеременного движения. Сейчас я помогу вам вывести эту формулу с помощью нескольких простых шагов.

Выводим формулу пути без времени

Для определенности будем считать, что тело движется по прямой все быстрее и быстрее. То есть, скорость тела увеличивается, так как появляется ускорение.

В таком случае векторы ускорения и скорости тела будут сонаправленными (параллельными и направленными в одну и ту же сторону).

Сонаправленные или противоположно направленные векторы называют коллинеарными векторами. Прочитайте подробнее о коллинеарных векторах.

Чтобы вычислить путь тела, когда скорость его увеличивается, нужно использовать две формулы:

\( \large v_ <0>\left( \frac<\text<м>> \right)\) – начальная скорость тела;

\( \large v \left( \frac<\text<м>> \right)\) – конечная скорость;

\( \large a \left( \frac<\text<м>>> \right)\) – ускорение тела;

\( \large S \left( \text <м>\right)\) – путь, пройденный телом;

\(\large t \left( c \right)\) – время, за которое тело прошло этот путь.

В формуле для пути S присутствует время t. Получим из нее формулу для пути, в которой время будет отсутствовать.

Что сделать, чтобы получить формулу пути, в которой отсутствует время:

Выражаем время из формулы для скорости

Выпишем формулу, связывающую начальную и конечную скорость тела:

\[ \large v = v_ <0>+ a \cdot t \]

Избавимся в правой части от начальной скорости, обозначенной символом \( v_<0>\). Для этого из обеих частей уравнения вычтем число \( v_<0>\). Получим такую запись:

\[ \large v — v_ <0>= a \cdot t \]

Теперь, чтобы справа в формуле оставалось только время «t», избавимся от ускорения «a». Для этого разделим обе части уравнения на «a»:

Это выражение нам пригодится для дальнейшего вывода формулы «путь без времени».

В формулу пути подставим выражение для времени

Запишем теперь формулу для пути S и полученную формулу для времени t, объединив их в систему:

В первом уравнении системы будем заменять символ t дробью из второго уравнения. Тогда система из двух уравнений превратится в единственное уравнение. И в этом уравнении не будет символа t времени:

Осталось теперь упростить полученное выражение. Будем производить упрощение по частям.

Упрощаем выражение, расположенное до знака «плюс» в правой части

Выпишем отдельно все, что располагается до знака «плюс» в правой части уравнения:

Умножим числитель дроби на число \(v_<0>\).

В числитель дроби, обособленный с помощью скобок помещаем число \(v_<0>\):

Теперь необходимо умножить скобку на число \(v_<0>\). На рисунке 2 указано, как правильно выражение в скобках умножить на число, стоящее за скобками.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Нужно к каждой скорости в скобках дописать число \(v_<0>\), умножая его на эти скорости. Получим такое выражение:

То есть, вместо первоначальной записи, мы получили такую запись:

Возводим в квадрат дробь

После знака «плюс» в правой части уравнения располагается дробь, которую нужно возвести в квадрат. Обратим внимание на эту дробь:

Правильно возвести дробь в степень поможет рисунок 3.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

В результате возведения в квадрат дробь приобретет такой вид:

В числителе этой дроби находится выражение в скобках, которое нужно возвести в квадрат. И нам придется применить одну из формул сокращенного умножения. Запоминать формулы сокращенного умножения удобно в виде, приведенном на рисунке 4.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Используем для этого формулу сокращенного умножения, которая содержит знак «минус». Она называется «Квадрат разности». Тогда числитель дроби превратится в такую запись:

Теперь можем записать полученную дробь:

Упрощаем правую часть, записанную после знака «плюс»

Обратим внимание на все, что располагается в правой части уравнения после знака «плюс»:

Мы уже провели некоторые преобразования и можем теперь заменить дробь, возводимую в квадрат более подробной записью:

Примечание: Когда мы умножаем одну дробь на другую, то можем менять местами знаменатели этих дробей.

Итак, поменяем местами знаменатели дробей:

Теперь видно, что мы можем сократить ускорение и еще немного упростить выражение:

А перемножив числители и знаменатели двух дробей, получим такую запись:

Теперь, первоначальную дробь можно заменить дробью, полученной в ходе преобразований:

Мы закончили преобразовывать выражения, содержащиеся в правой части уравнения после знака «плюс».

Теперь, осталось сложить две дроби в правой части – дробь, записанную до знака «плюс» с дробью, записанной после знака «плюс». А чтобы эти дроби можно было сложить, нужно будет привести их к общему знаменателю.

Приводим к общему знаменателю дроби в правой части уравнения

Вернемся еще раз к первоначальному уравнению:

Заменим правую часть этого уравнения выражениями, которые мы получили:

Сравним знаменатели дробей.

Первая дробь обладает знаменателем «a», а вторая – «2a». Выберем число «2a» в качестве общего знаменателя обеих дробей.

Чтобы первую дробь привести к общему знаменателю «2a», умножим ее на единицу:

Примечания:

Так как снизу в первой дроби не хватает числа 2, то единицу представим в виде дроби 2/2:

Получим такую дробь:

Поместим ее в выражение для пути:

Дроби с одинаковыми знаменателями складываем

Теперь знаменатели дробей равны. И мы можем записать эти дроби под общим знаменателем:

Раскроем скобки в числителе полученного выражения:

Примечание: Обратим внимание на то, что в числителе дважды встречается член \(2v_ <0>v\), обладающий различными знаками. В начале числителя – знаком «плюс», а в конце числителя – знаком «минус». Это означает, что из числа \(2v_<0>v\) вычитается такое же число \(2vv_<0>\). В конце концов, это число покидает нашу запись и, она упрощается:

Перепишем выражение, записав все, что содержит знак «плюс» в начало числителя:

Вычтем подобные члены, содержащие \( v^<2>_<0>\):

В результате получим короткую запись. Именно о ней говорят, когда имеется ввиду формула пути без времени:

Примечания:

Как выглядит формула пути без времени, когда скорость тела уменьшается

Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:

Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:

Выводы

Пусть нам известны начальная и конечная скорость тела и его ускорение. Тогда путь, пройденный телом, можно рассчитать так:

Источник

Основы механики для чайников. Часть 1: Кинематика

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

В прошлой статье мы немножко разобрались с тем, что такое механика и зачем она нужна. Мы уже знаем, что такое система отсчета, относительность движения и материальная точка. Что ж, пора двигаться дальше! Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики и приведем практический пример решения задачи.

Присоединяйтесь к нам в телеграм и получайте ежедневную рассылку с полезной информацией по актуальным студенческим вопросам.

Траектория, радиус-вектор, закон движения тела

Кинематикой занимался еще Аристотель. Правда, тогда это не называлось кинематикой. Затем очень большой вклад в развитие механики, и кинематики в частности, внес Галилео Галилей, изучавший свободное падение и инерцию тел.

Итак, кинематика решает вопрос: как тело движется. Причины, по которым оно пришло в движение, ее не интересуют. Кинематике не важно, сама поехала машина, или ее толкнул гигантский динозавр. Абсолютно все равно.

Сейчас мы будем рассматривать самую простую кинематику – кинематику точки. Представим, что тело (материальная точка) движется. Не важно, что это за тело, все равно мы рассматриваем его, как материальную точку. Может быть, это НЛО в небе, а может быть, бумажный самолетик, который мы запустили из окна. А еще лучше, пусть это будет новая машина, на которой мы едем в путешествие. Перемещаясь из точки А в точку Б, наша точка описывает воображаемую линию, которая называется траекторией движения. Другое определение траектории – годограф радиус вектора, то есть линия, которую описывает конец радиус-вектора материальной точки при движении.

Радиус-вектор – вектор, задающий положение точки в пространстве.

Для того, чтобы узнать положение тела в пространстве в любой момент времени, нужно знать закон движения тела – зависимость координат (или радиус-вектора точки) от времени.

Перемещение и путь

Тело переместилось из точки А в точку Б. При этом перемещение тела – отрезок, соединяющий данные точки напрямую – векторная величина. Путь, пройденный телом – длина его траектории. Очевидно, перемещение и путь не стоит путать. Модуль вектора перемещения и длина пути совпадают лишь в случае прямолинейного движения.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

В системе СИ перемещение и длина пути измеряются в метрах.

Перемещение равно разнице радиус-векторов в начальный и конечный моменты времени. Другими словами, это приращение радиус вектора.

Скорость и ускорение

Средняя скорость – векторная физическая величина, равная отношению вектора перемещения к промежутку времени, за которое оно произошло

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

А теперь представим, что промежуток времени уменьшается, уменьшается, и становится совсем коротким, стремится к нулю. В таком случае о средней скорости говорить на приходится, скорость становится мгновенной. Те, кто помнит основы математического анализа, тут же поймут, что в дальнейшем нам не обойтись без производной.

Мгновенная скорость – векторная физическая величина, равная производной от радиус вектора по времени. Мгновенная скорость всегда направлена по касательной к траектории.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

В системе СИ скорость измеряется в метрах в секунду

Если тело движется не равномерно и прямолинейно, то у него есть не только скорость, но и ускорение.

Ускорение (или мгновенное ускорение) – векторная физическая величина, вторая производная от радиус-вектора по времени, и, соответственно, первая производная от мгновенной скорости

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Ускорение показывает, как быстро изменяется скорость тела. В случае прямолинейного движения, направления векторов скорости и ускорения совпадают. В случае же криволинейного движения, вектор ускорения можно разложить на две составляющие: ускорение тангенциальное, и ускорение нормальное.

Тангенциальное ускорение показывает, как быстро изменяется скорость тела по модулю и направлено по касательной к траектории

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Нормальное же ускорение характеризует быстроту изменения скорости по направлению. Векторы нормального и тангенциального ускорения взаимно перпендикулярны, а вектор нормального ускорения направлен к центру окружности, по которой движется точка.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Здесь R – радиус окружности, по которой движется тело.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Закон равноускоренного движения

Рассмотрим далее закон равноускоренного движения, то есть движения с постоянным ускорением. Будем рассматривать простейший случай, когда тело движется вдоль оси x.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Производная по скорости от времени даст значение ускорения a, которое является константой.

Пример решения задачи

Теперь, когда мы рассмотрели физические основы кинематики, пора закрепить знания на практике и решить какую-нибудь задачу. Причем, чем быстрее, тем лучше.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.

Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.

Источник

Физика

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Закон сложения скоростей

Как уже упоминалось в предыдущем уроке, скорость тела зависит от выбранной наблюдателем системы отсчета. Разберем следующий пример: в безветренную погоду пчела летит со скоростью относительно земли. Это будет собственная скорость пчелы. Затем погода меняется и начинает дуть ветер, перпендикулярный скорости пчелы. Скорость ветра обозначена (см. рисунок 1).

Рисунок 1 – Первоначальная скорость пчелы и ветра

Естественно, что ветер начнет сдувать пчелу с первоначального курса. Собственная скорость не изменяется, так как это характеристика самой пчелы, но ее скорость относительно земли (по модулю и направлению) изменится и станет (см. рисунок 2):

Рисунок 2 – Изменившаяся скорость пчелы

Систему отсчета, связанную с землей, можно считать неподвижной. Если же рассматривать движение пчелы относительно воздуха, можно говорить о движущейся со скоростью v2 системе отсчета.

Рисунок 3 – Векторы скорости и перемещений при движении пчелы при ветре

Мгновенная скорость, направление мгновенной скорости

Средняя скорость. Средняя путевая скорость

Так как в реальной жизни тела редко движутся с постоянной скорость, но необходимо как-то описывать их движение и скорость, ввели понятие мгновенной скорости.

Мгновенная скорость – это скорость тела в выбранный конкретный момент времени.

Если по определению скорости разделить перемещение на суммарное время пути, можно получить средняя скорость:

Фактически, это та же формула, которая используется при расчетах для прямолинейного равномерного движения.

То есть средняя скорость движения – это такая скорость, с которой тело должно было бы двигаться, если бы оно перемещалось из начальной точки в конечную равномерно и прямолинейно. Из выражения для вычисления средней скорости можно увидеть, что средняя скорость сонаправлена вектору перемещения.

Касательно же мгновенной скорости, чтобы ее найти, необходимо разделить общее время Δt на одинаковые отрезки Δt1, Δt2,…Δtn, и найти средние скорости за эти отрезки времени:

А куда направлена мгновенная скорость? Из рисунка 5 видно, что при уменьшении отрезков времени Δtb направление вектора перемещения ему соответствующее постепенно приближается к направлению касательной к траектории. Значит, мгновенная скорость направлена по касательной к линии траектории.

Еще одна важная характеристика, использующаяся в кинематике – средняя путевая скорость. Из названия вытекает, что средняя путевая скорость – это отношение пути (S), пройденного телом, к отрезку времени (t), за которое оно этот путь прошло:

Именно о путевой скорости идет речь, когда говорят, что автомобиль ехал из одного города в другой со скоростью 70 км/ч, например.

Ускорение. Касательное ускорение. Центростремительное ускорение

Продолжая речь о телах, движущихся неравномерно, необходимо сказать о такой физической величине, как ускорение.

Единицы измерения ускорения:

Рисунок 6 – Тело перемещается из точки 1 в точку 2 (в верхнем правом углу дана иллюстрация к разности векторов)

Если скорость тела меняется не равномерно на выбранном участке пути, нужно поступить так же, как и в случае с поиском мгновенной скорости: разделить на маленькие отрезки времени и рассматривать ускорение на каждом из них.

Поскольку ускорение получается из разности векторов скорости (конечной и начальной), в общем случае оно будет направлено под некоторым углом к мгновенной скорости (а, следовательно, и к вектору перемещения, и к касательной к траектории).

Рисунок 7 – Полное, касательно и центростремительное ускорение тела, движущегося из точки 1 в точку 2

Равноускоренное движение

Прямолинейное равноускоренное движение. Определение скорости при равноускоренном движении. Уравнения движения при равноускоренном движении

Когда движение тела происходит с постоянным по модулю и направлению ускорением, такой тип движения называют равноускоренным. Для него справедливо выражение:

Частный случай равноускоренного движения – прямолинейное равноускоренное движение. Как следует из названия, это движение вдоль прямой линии с постоянным ускорением.

При условии, что ускорение сонаправлено начальной скорости, формула для вычисления скорости при прямолинейном равноускоренном движении записывается в скалярном виде:

Если же ускорение противонаправлено начальной скорости, это выражение станет таким:

Рисунок 8 – График зависимости скорости от времени при прямолинейном равноускоренном движении

Как известно из предыдущего курса физики, путь, который прошло тело, можно найти как площадь фигуры под графиком зависимости скорости движения от времени. Общую площадь под графиком можно найти как сумму площадей прямоугольника ABCD и треугольника ADE.

Свободное падение

Движение тела, брошенного вертикально вверх. Движение тела, брошенного под углом к горизонту. Криволинейное равноускоренное движение

Примерами движения с постоянным ускорением может служить свободное падение, движение брошенного вертикально вверх тела, движение тела, брошенного под углом к горизонту. Поговорим об этих видах движения подробнее.

Представим, что какое-то небольшое, но тяжелое тело подняли на высоту h, а затем отпустили (см. рисунок 9).

Рисунок 9 – Свободное падение тела

Тело начнет падать. Принимаем допущение, что на это тело воздействует одна только сила тяжести (силой сопротивления воздуха и силой ветра пренебрегаем). Тогда тело будет двигаться вертикально вниз, а его ускорение будет равняться ускорению свободного падения:

Представим, что тело подкинули вертикально наверх с начальной скоростью v0 (см. рисунок 10).

Рисунок 10 – Тело бросили вертикально вверх

Очевидно, что тело сначала будет лететь вверх, постепенно замедляясь, пока его скорость не уменьшится до нуля. Затем тело полетит вниз, постепенно ускоряясь. Получается, что максимальной своей скорости тело будет достигать два раза – у земли, и эта скорость будет равно начальной скорости v0 (вообще нужно было бы писать voy, но так как рассматривается движение вдоль только одной оси OY, опустим индекс y).

Отсюда можно найти полное время полета:

Данный тип движения чуть сложнее, чем предыдущие два, так как придется рассматривать движение сразу вдоль двух осей OX и OY (см. рисунок 11). Этот тип движения относится к криволинейному равноускоренному движению. Будем считать, что тело подбросили с начальной скоростью под углом α к горизонту.

Рисунок 11 – Тело брошено под углом к горизонту

Уравнения движения в общем виде по двум осям выглядят так:

Еще время полета можно посчитать, учитывая что в двух моментах – в начале полета и в конце. Значит можно посчитать:

Равномерное движение точки по окружности

Центростремительное ускорение

Представим себе равномерное движение по окружности: во время этого типа движения скорость не меняется по модулю, однако меняется по направлению (см. рисунок 12).

Рисунок 12 – Изменение направления скорости при равномерном движении по окружности

За изменение направления скорости отвечает центростремительное ускорение ( Оно, так же как и скорость, постоянно по модулю, но меняется по направлению – в любой точке окружности оно направлено к ее центру. Центростремительное ускорение можно найти по формуле:

где R – радиус окружности, по которой циклически движется тело.

Источник

Что такое ускорение? Формулы ускорения при равноускоренном движении по прямой траектории

Ускорение и причина его появления

В физике величину, которая характеризует изменение во времени скорости, называют ускорением. Математическая формула для ускорения выглядит так:

Чем быстрее изменяется скорость, тем больше будет ускорение тела. Например, значение a = 1 м/с2 говорит о том, что за 1 секунду скорость увеличилась на 1 м/с.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Ускорение у тел возникает за счет действия на них внешних сил любой природы. Этот факт был установлен Ньютоном в XVII веке. В настоящее время он носит название 2-го закона Ньютона:

Обе формулы говорят о том, что вектор ускорения направлен в сторону изменения вектора скорости или в сторону вектора силы (F¯ и dv¯ направлены одинаково). Если направления векторов a¯ и v¯ совпадают, тогда тело будет ускоряться, если они противоположны, то тело будет замедлять свое движение, если же они направлены под некоторым углом, тогда траектория перемещения будет кривой линией.

Равноускоренное прямолинейное движение. Скорость и ускорение

Указанный вид движения предполагает, что траектория тела является прямой линией, а величина ускорения в процессе перемещения тела не изменяется ни по модулю, ни по направлению. Поскольку тело движется по прямой линии, то векторы a¯ и v¯ направлены либо в одну сторону, либо в противоположные.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Предположим, что тело находилось в покое. Затем на него начала действовать постоянная сила, которая придала ему ускорение. В таком случае скорость v в любой момент времени t может быть вычислена так:

Где a = const. Графиком этого уравнения является возрастающая прямая, которая начинается с точки (v=0; t=0).

Если же тело до начала действия силы уже имело некоторую скорость v0, тогда будут справедливы такие формулы:

Из последних двух выражений можно получить формулы ускорения при равноускоренном движении тела по прямой линии:

Время t отсчитывается от момента действия силы на тело.

Ускорение и путь

При решении задач на равноускоренное перемещение часто требуется найти ускорение, зная пройденный путь. Покажем, какие формулы для этого следует применять.

Путь рассчитать несложно при равноускоренном движении по прямой. Для этого следует взять интеграл по времени от уравнения v(t). Выполнив это математическое действие, получим три рабочие формулы:

Как выразить ускорение из формул равноускоренного движения для пути? Для этого необходимо изолировать множитель a*t2 в одной части равенства, а затем все равенство поделить на квадрат времени. Из формул выше получаем:

Первое уравнение используется для экспериментального определения ускорения свободного падения g, когда тяжелые тела сбрасывают вниз с некоторой высоты. Подобные эксперименты проводил еще Галилей в конце XVI века. В настоящее время для определения ускорения g в исследуемой местности используют абсолютные гравиметры, принцип работы которых также основан на свободном падении.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Два последних уравнения отличаются друг от друга лишь знаком ускорения. При торможении ускорение считают отрицательным.

Задача на вычисление ускорения

Разобравшись с основными формулами ускорения при равноускоренном движении, решим следующую проблему практического характера: водитель автомобиля, который двигался со скоростью 63 км/ч, увидел, что впереди загорелся красный сигнал светофора. После нажатия на педаль тормоза автомобиль полностью остановился через 100 метров. Зная, что время торможения заняло 14 секунд, необходимо рассчитать соответствующее ускорение.

Как выразить скорость через ускорение. Смотреть фото Как выразить скорость через ускорение. Смотреть картинку Как выразить скорость через ускорение. Картинка про Как выразить скорость через ускорение. Фото Как выразить скорость через ускорение

Для решения задачи можно сразу же воспользоваться одной из записанных выше формул:

Переведем начальную скорость автомобиля из км/ч в м/с, получаем:

v0 = 63*1000/3600 = 17,5 м/с2.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *