Как вывести основное тригонометрическое тождество

Основное тригонометрическое тождество

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

9 класс, 10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Связь между sin и cos одного угла

Вы уже наверняка знаете, что тождественный — это равный.

Основные тригонометрические тождества — это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Это значит, что любую из этих функций можно найти, если известна другая функция.

Ключ к сердцу тригонометрии — основное тригонометрическое тождество. Запомните и полюбите его, чтобы отношения с тригонометрией сложились самым наилучшим образом:

sin 2 α + cos 2 α = 1

Из основного тождества вытекают равенства тангенса и котангенса, поэтому оно — ключевое.

Равенство tg 2 α + 1 = 1/cos 2 α и равенство 1 + сtg 2 α + 1 = 1/sin 2 α выводят из основного тождества, разделив обе части на sin 2 α и cos 2 α.

В результате деления получаем:

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Поэтому основному тригонометрическому тождеству уделяется максимум внимания. Но какая же «метрия» может обойтись без доказательств. Видите тождество — доказывайте, не раздумывая.

sin 2 α + cos 2 α = 1

Сумма квадратов синуса и косинуса одного угла тождественно равна единице.

Чтобы доказать тождество, обратимся к теме единичной окружности.

Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат. Радиус единичной окружности равен единице.

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Докажем тождество sin 2 α + cos 2 α = 1

Образовался прямоугольный треугольник OA1B.

Основное тригонометрическое тождество связывает синус угла и косинус угла. Зная одно, вы легко можете найти другое. Нужно лишь извлечь квадратный корень по формулам:

Как видите, перед корнем может стоять и минус, и плюс. Основное тригонометрическое тождество не дает понять, положительным или отрицательным был исходный синус/косинус угла.

Как правило, в задачках с подобными формулами уже есть условия, которые помогают определиться со знаком. Обычно такое условие — указание на координатную четверть. Таким образом без труда можно определить, какой знак нам требуется.

Тангенс и котангенс через синус и косинус

Из всего этого множества красивых, но не сильно понятных слов, можно сделать вывод о зависимости одного от другого. Такая связь помогает отдельно преобразовывать нужные величины.

Исходя из определений:

Это позволяет сделать вывод, что тригонометрические тождества

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество
Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

задаются sin и cos углов.

Отсюда следует, что тангенс угла — это отношение синуса угла к косинусу. А котангенс угла — это отношение косинуса к синусу.

Отдельно стоит обратить внимание на то, что тригонометрические тождества

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество
Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

верны для всех углов α, значения которых вписываются в диапазон.

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

применимо для любого угла α, не равного π * z, где z — это любое целое число.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Связь между тангенсом и котангенсом

Уж насколько очевидной кажется связь между ранее рассмотренными тождествами, настолько еще более наглядна связь между тангенсом и котангенсом одного угла.

Такое тождество применимо и справедливо при любых углах α, значение которых не равняются π/2 * z, где z — это любое целое число. В противном случае, функции не будут определены.

Как и любое другое, данное тригонометрическое тождество подлежит доказательству. Доказывать его очень просто.

tg α * ctg α = 1.

Получается, что тангенс и котангенс одного угла, при котором они имеют смысл — это взаимно обратные числа.

Если числа a и b взаимно обратные — это значит, что число a — это число, обратное числу b, а число b — это число, обратное числу a. Кроме того, это значит, что числу a обратно число b, а числу b обратно число a. Короче, и так, и эдак.

Тангенс и косинус, котангенс и синус

Все тождества выше позволяют сделать вывод, что тангенс угла связан с косинусом угла, а котангенс угла — с синусом.

Эта связь становится очевидна, если взглянуть на тождества:

Сумма квадрата тангенса угла и единицы равна числу, обратному квадрату косинуса этого угла.

Сумма единицы и квадрата котангенса угла равна числу, обратному квадрату синуса этого угла.

Вывести оба этих тождества можно из основного тригонометрического тождества:
sin 2 α + cos 2 α = 1.

Хорошо бы выучить все формулы и запомнить формулировки тождеств наизусть. Чтобы это сделать, сохраняйте себе табличку с основными формулами.

Основные тригонометрические тождества

sin 2 α + cos 2 α = 1

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

tg 2 α + 1 = Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

1 + ctg 2 α = Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Чтобы тратить еще меньше времени на решение задач, сохраняйте таблицу значений тригонометрических функции углов, которые чаще всего встречаются в задачах.

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Примеры решения задач

Разберем пару задачек, для решения которых нужно знать основные тождества. Рассмотрите внимательно предложенные решения и потренируйтесь самостоятельно.

Задачка 1. Найдите cos α, tg α, ctg α при условии, что sin α = 12/13.

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Задачка 2. Найдите значение cos α,
если:
Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Подставляем значения sin α:

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Как видите, задачи решаются достаточно просто, нужно лишь верно применять формулы основных тождеств.

Источник

Тригонометрические формулы. Их вывод

Наиболее часто встречающиеся тригонометрические формулы:

\(\blacktriangleright\) Основные тождества: \[\begin <|l|l|>\hline \sin^2 \alpha+\cos^2 \alpha =1& \mathrm\, \alpha \cdot \mathrm\, \alpha =1 \\ &(\sin\alpha\ne 0, \cos\alpha\ne 0)\\[0.5ex] \hline &\\ \mathrm\, \alpha=\dfrac<\sin \alpha> <\cos \alpha>&\mathrm\, \alpha =\dfrac<\cos \alpha> <\sin \alpha>\\&\\ 1+\mathrm^2\, \alpha =\dfrac1 <\cos^2 \alpha>& 1+\mathrm^2\, \alpha=\dfrac1<\sin^2 \alpha>\\&\\ (\cos\alpha\ne 0)& (\sin\alpha\ne 0) \\ \hline \end\]

\(\blacktriangleright\) Формулы сложения углов: \[\begin <|l|r|>\hline &\\ \sin<(\alpha\pm \beta)>=\sin\alpha\cdot \cos\beta\pm \sin\beta\cdot \cos\alpha & \cos<(\alpha\pm \beta)>=\cos\alpha\cdot \cos\beta \mp \sin\alpha\cdot \sin\beta\\ &\\ \hline &\\ \mathrm\, (\alpha\pm \beta)=\dfrac<\mathrm\, \alpha\pm \mathrm\, \beta><1 \mp \mathrm\, \alpha\cdot \mathrm\, \beta> & \mathrm\, (\alpha\pm\beta)=-\dfrac<1\mp \mathrm\, \alpha\cdot \mathrm\, \beta><\mathrm\, \alpha\pm \mathrm\, \beta>\\&\\ \cos\alpha\cos\beta\ne 0&\sin\alpha\sin\beta\ne 0\\ \hline \end\]

\(\blacktriangleright\) Формулы понижения степени: \[\begin <|lc|cr|>\hline &&&\\ \sin^2\alpha=\dfrac<1-\cos<2\alpha>>2 &&& \cos^2\alpha=\dfrac<1+\cos<2\alpha>>2\\&&&\\ \hline \end\]

\(\blacktriangleright\) Формулы произведения функций: \[\begin <|c|>\hline \\ \sin\alpha\sin\beta=\dfrac12\bigg(\cos<(\alpha-\beta)>-\cos<(\alpha+\beta)>\bigg)\\\\ \cos\alpha\cos\beta=\dfrac12\bigg(\cos<(\alpha-\beta)>+\cos<(\alpha+\beta)>\bigg)\\\\ \sin\alpha\cos\beta=\dfrac12\bigg(\sin<(\alpha-\beta)>+\sin<(\alpha+\beta)>\bigg)\\\\ \hline \end\]

\(\blacktriangleright\) Выражение синуса и косинуса через тангенс половинного угла: \[\begin <|l|r|>\hline &\\ \sin<2\alpha>=\dfrac<2\mathrm\, \alpha><1+\mathrm^2\, \alpha> & \cos<2\alpha>=\dfrac<1-\mathrm^2\, \alpha><1+\mathrm^2\, \alpha>\\&\\ \cos\alpha\ne 0 & \sin\alpha\ne 0\\ \hline \end\]

\(\blacktriangleright\) Формула вспомогательного аргумента: \[\begin <|c|>\hline \text<Частный случай>\\ \hline \\ \sin\alpha\pm \cos\alpha=\sqrt2\cdot \sin<\left(\alpha\pm \dfrac<\pi>4\right)>\\\\ \sqrt3\sin\alpha\pm \cos\alpha=2\sin<\left(\alpha\pm \dfrac<\pi>6\right)>\\\\ \sin\alpha\pm \sqrt3\cos\alpha=2\sin<\left(x\pm \dfrac<\pi>3\right)>\\\\ \hline \text<Общий случай>\\ \hline\\ a\sin\alpha\pm b\cos\alpha=\sqrt\cdot \sin<(\alpha\pm \phi)>, \ \ \cos\phi=\dfrac a<\sqrt>, \ \sin\phi=\dfrac b<\sqrt>\\\\ \hline \end\]

Зная идею вывода формул, вы можете запомнить лишь несколько из них. Тогда остальные формулы вы всегда сможете быстро вывести.

Вывод всех основных тождеств был рассказан в предыдущем разделе “Введение в тригонометрию”.

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

\(AB^2=AO^2+BO^2-2AO\cdot BO\cdot \cos(\alpha-\beta)=1+1-2\cos(\alpha-\beta) \ (1)\) (т.к. \(AO=BO=R\) – радиус окружности)

По формуле расстояния между двумя точками на плоскости:

Таким образом, сравнивая равенства \((1)\) и \((2)\) :

Отсюда и получается наша формула.

\(\blacktriangleright\) Вывод остальных формул суммы/разности углов:

Остальные формулы с легкостью выводятся с помощью предыдущей формулы, свойств четности/нечетности косинуса/синуса и формул приведения \(\sin x=\cos(90^\circ-x)\) и \(\cos x=\sin (90^\circ-x)\) :

\(\blacktriangleright\) Вывод формул двойного и тройного углов:

Данные формулы выводятся с помощью предыдущих формул:

1) \(\sin 2\alpha=\sin(\alpha+\alpha)=\sin\alpha\cos\alpha+\sin\alpha\cos\alpha=2\sin\alpha\cos\alpha\)

разделим числитель и знаменатель дроби на \(\cos^2\alpha\ne 0\) (при \(\cos\alpha=0 \Rightarrow \mathrm\,2\alpha=0\) ):

5) \(\sin3\alpha=\sin(\alpha+2\alpha)=\sin\alpha\cos2\alpha+\cos\alpha\sin2\alpha=\sin\alpha(1-2\sin^2\alpha)+\cos\alpha\cdot 2\sin\alpha\cos\alpha=\)

6) Аналогично выводится, что \(\cos3\alpha=\cos(\alpha+2\alpha)=4\cos^3\alpha-3\cos\alpha\)

\(\blacktriangleright\) Вывод формул понижения степени:

Данные формулы — просто по-другому записанные формулы двойного угла для косинуса:

1) \(\cos2\alpha=2\cos^2\alpha-1 \Rightarrow \cos^2\alpha=\dfrac<1+\cos2\alpha>2\)

2) \(\cos2\alpha=1-2\sin^2\alpha \Rightarrow \sin^2\alpha=\dfrac<1-\cos2\alpha>2\)

\(\blacktriangleright\) Вывод формул произведения функций:

1) Сложим формулы косинуса суммы и косинуса разности двух углов:

Получим: \(\cos(\alpha+\beta)+\cos(\alpha-\beta)=2\cos\alpha\cos\beta \Rightarrow \cos\alpha\cos\beta=\dfrac12\Big(\cos(\alpha-\beta)+\cos(\alpha+\beta)\Big)\)

2) Если вычесть из формулы косинуса суммы косинус разности, то получим:

3) Сложим формулы синуса суммы и синуса разности двух углов:

\(\blacktriangleright\) Вывод формул суммы/разности функций:

Получили формулу суммы косинусов.

Получили формулу разности косинусов.

Получили формулу суммы синусов.

4) Формулу разности синусов можно вывести из формулы суммы синусов:

Аналогично выводится формула суммы котангенсов.

\(\blacktriangleright\) Вывод формул выражения синуса и косинуса через тангенс половинного угла:

(разделим числитель и знаменатель дроби на \(\cos^2\alpha\ne 0\) (при \(\cos\alpha=0\) и \(\sin2\alpha=0\) ):)

\(\blacktriangleright\) Вывод формул вспомогательного угла:

Данные формулы выводятся с помощью формул синуса/косинуса суммы/разности углов.

\(a\sin x+b\cos x=\sqrt\left(\dfrac a<\sqrt>\sin x+ \dfrac b<\sqrt>\cos x \right)=\sqrt\big(a_1\sin x+b_1\cos x\big)\)

\(\sqrt\,\big(\cos \phi \sin x+\sin \phi\cos x\big)=\sqrt\,\sin (x+\phi)\) (по формуле синуса суммы двух углов)

Значит, формула выглядит следующим образом: \[<\large\,\sin (x+\phi),>> \quad \text <где >\cos \phi=\dfrac a<\sqrt>\] Заметим, что мы могли бы, например, принять за \(\cos \phi=b_1, \ \sin \phi=a_1\) и тогда формула выглядела бы как \[a\sin x+b\cos x=\sqrt\,\cos (x-\phi)\]

\(\blacktriangleright\) Рассмотрим некоторые частные случаи формул вспомогательного угла:

\(a) \ \sin x\pm\cos x=\sqrt2\,\left(\dfrac1<\sqrt2>\sin x\pm\dfrac1<\sqrt2>\cos x\right)=\sqrt2\, \sin \left(x\pm\dfrac<\pi>4\right)\)

\(b) \ \sqrt3\sin x\pm\cos x=2\left(\dfrac<\sqrt3>2\sin x\pm \dfrac12\cos x\right)=2\, \sin \left(x\pm\dfrac<\pi>6\right)\)

\(c) \ \sin x\pm\sqrt3\cos x=2\left(\dfrac12\sin x\pm\dfrac<\sqrt3>2\cos x\right)=2\,\sin\left(x\pm\dfrac<\pi>3\right)\)

Источник

Основные тригонометрические тождества

Тригонометрические тождества — это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла, которая позволяет находить любую из данных функций при условии, что будет известна какая-либо другая.

\sin^<2>\alpha + \cos^ <2>\alpha = 1

tg \alpha \cdot ctg \alpha = 1

Содержание

Зависимость между синусом и косинусом

\sin^ <2>\alpha+\cos^ <2>\alpha=1

Данное тождество говорит о том, что сумма квадрата синуса одного угла и квадрата косинуса одного угла равна единице, что на практике дает возможность вычислить синус одного угла, когда известен его косинус и наоборот.

При преобразовании тригонометрических выражений очень часто используют данное тождество, которое позволяет заменять единицей сумму квадратов косинуса и синуса одного угла и также производить операцию замены в обратном порядке.

Нахождение тангенса и котангенса через синус и косинус

Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой y является синус, а абсциссой x — косинус. Тогда тангенс будет равен отношению \frac=\frac<\sin \alpha> <\cos \alpha>, а отношение \frac=\frac<\cos \alpha> <\sin \alpha>— будет являться котангенсом.

Зависимость между тангенсом и котангенсом

tg \alpha \cdot ctg \alpha=1

Зависимости между тангенсом и косинусом, котангенсом и синусом

Примеры с решениями задач на использование тригонометрических тождеств

Пример 1

Решение

\sin^<2>\alpha + \left (-\frac12 \right )^2 = 1

Это уравнение имеет 2 решения:

\sin \alpha = \pm \sqrt <1-\frac14>= \pm \frac <\sqrt 3>

По условию \frac<\pi> <2>. Во второй четверти синус положителен, поэтому \sin \alpha = \frac<\sqrt 3> <2>.

tg \alpha = \frac<\sqrt 3> <2>: \frac12 = \sqrt 3

Пример 2

Решение

Источник

Основные тригонометрические тождества, их формулировки и вывод

В этой статье мы разберем такие важные понятия в тригонометрии, как арксинус, арккосинус, арктангенс и арккотангенс. Мы можем найти значения чисел (углов), если знаем данные тригонометрических функций; это и есть та самая задача, что приводит нас к обратным функциям.

Ниже мы не только дадим определения основных понятий и общепринятые обозначения, но и приведем расчеты, из которых будет ясно, что они из себя представляют. В конце мы попробуем связать понятия арккотангенса, арктангенса, арккосинуса и арксинуса с понятием единичной окружности.

Основные определения

Арксинус и другие обратные функции как угол

Сформулируем основные определения.

Вышеуказанные определения можно сформулировать в более краткой и символической форме:

Если вы хотите более подробно изучить такой подход к определению обратных тригонометрических функций, рекомендуем вам учебник Кочеткова (ч.1, стр. 260-278)

Арксинус и другие обратные функции как число

В том случае, если в задаче речь идет, скажем, о синусе угла, то логично его арксинус также воспринимать как угол. Если нам нужно, например, вычислить косинус некоторого числа, то тут важно встать на другую точку зрения и рассмотреть обратные функции как числа. Исходя из второго подхода, можно немного переформулировать определения:

Такие формулировки типичны для большинства современных учебников по математике.

Объяснение обратных функций с позиции геометрии

Более наглядно представить обратные функции числа можно геометрически: ведь если это углы, их можно изобразить на чертеже. Это просто сделать, если вы еще не забыли базовые определения основных прямых функций.

Для этого нам понадобится уже знакомая нам единичная окружность. Ее дуги, связывающие между собой основные углы, и будут соответствовать величинам обратных функций.

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Как вывести основное тригонометрическое тождество. Смотреть фото Как вывести основное тригонометрическое тождество. Смотреть картинку Как вывести основное тригонометрическое тождество. Картинка про Как вывести основное тригонометрическое тождество. Фото Как вывести основное тригонометрическое тождество

Вывод: что такое аркфункции

Источник

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Основное тригонометрическое тождество

Несложно догадаться, что синус и косинус угла – это величины, связанные друг с другом. Отложим на единичной окружности произвольный угол α и опустим из точки А перпендикуляр на ось Ох, в некоторую точку В:

Изучим треугольник АОВ. Он прямоугольный, а потому для него можно записать теорему Пифагора:

Мы рассматриваем единичную окружность, а потому ОА = 1, ОВ = соsα, AB = sinα. Подставив эти величины в равенство, получим тождество:

sin 2 α + соs 2 α = 1

Его называют основным тригонометрическим тождеством, ведь именно оно связывает значение двух прямых тригонометрических ф-ций – синуса и косинуса.

Задание. В прямоугольном треугольнике есть угол α. Известно, что sin α = 0,8. Чему равен соsα?

Решение. Подставим в основное тригон-кое тождество значение sinα = 0,8 и получим уравнение:

sin 2 α + соs 2 α = 1

соsα = – 0,6 или соsα = 0,6

Нашли два возможных значения косинуса. Но по условию α – это острый угол, ведь в прямоугольном треугольнике угол не может быть больше 90°. То есть угол α относится к первой четверти, а потому его косинус положителен. Значит, соsα = 0,6.

Рассмотренный пример показал, что одному заданному значению синуса соответствует сразу два противоположных друг другу значения косинуса. Верно и обратное. Действительно, отложим по оси Ох некоторую величину соsα и проведем вертикальную линию, чтобы найти соответствующие ему значения синуса. Она пересечет единичную окружность в двух точках с противоположными ординатами:

По этой причине при решении задач на использование основного тригон-кого тождества обычно указывают, к какой четверти относится угол α.

Задание. Вычислите sinα, если соsα = 0,28 и α принадлежит IV четверти.

sin 2 α + соs 2 α = 1

sin α = –0,96 или sin α = 0,96

Так как α принадлежит IV четверти, то sinα должен быть отрицательным, поэтому sinα = – 0,96.Напомним, что в IV четверти значение косинуса положительно, ведь соответствующая ей дуга единичной окружности располагается правее оси Оу, то есть абсциссы точек, принадлежащих ей, положительны.

Задание. Найдите tgα, если sinα = 5/13 и π/2 2 α + соs 2 α = 1

соs 2 α = 1 – sin 2 α = 1 – (5/13) 2 = 169/169 – 25/169 = 144/169

соsα = – 12/13 или соsα = 12/13

Условие π/2 2 α + соs 2 α = 1

Далее поделим его на величину соs 2 α:

Крайнее левое слагаемое – это величина tg 2 α, а следующая дробь равна единице, так как у неё совпадают числитель и знаменатель:

В итоге нам удалось получить ф-лу, которая связывает значение тангенса и косинуса угла. Есть такая формула и для котангенса. Для ее получения необходимо поделить основное тригон-кое тождество на sin 2 α:

Задание. Известно, что tgα = 0,75. Найдите соsα и sinα, если угол α принадлежит III четверти.

Просто подставляем в ф-лу известное значение тангенса и решаем получившееся уравнение. Для простоты вычислении заменим десятичную дробь 0,75 на обычную 3/4:

Так как угол относится к III четверти, где косинус отрицателен, то

Синус угла найдем, используя основное тригон-кое тождество:

sin 2 α + соs 2 α = 1

sin 2 α = 1 – соs 2 α = 1 – (– 0,8) 2 = 1 – 0,64 = 0,36

sinα = – 0,6 или sinα = 0,6

С учетом того, что в III четверти синус становится отрицательным, следует выбрать вариант sinα = – 0,6

Ответ: sinα = – 0,6; соsα = – 0,8.

Иногда ф-лы используют не для вычисления значений тригон-ких выражений, а для упрощения выражений. Из тождества sin 2 α + соs 2 α = 1 несложно получить из выражения

sin 2 α = 1 – соs 2 α

соs 2 α = 1 – sin 2 α

которые помогают в работе с длинными ф-лами.

Задание. Упростите выражение

4sin 2 α + 9соs 2 α – 6

таким образом, чтобы в нем не содержалось синуса.

Решение. Произведем замену sin 2 α = 1 – соs 2 α:

4sin 2 α+ 9соs 2 α – 6 = 4(1 – соs 2 α)+ 9соs 2 α – 6 =

= 4 – 4 соs 2 α + 9соs 2 α – 6 = 5соs 2 α – 2

Видим, что получилось значительно более простое выражение.

Задание. Избавьтесь от синуса в выражении

sin 4 α – соs 4 α

Решение. Воспользуемся ф-лой разности квадратов:

sin 4 α – соs 4 α = (sin 2 α – соs 2 α)(sin 2 α + соs 2 α) = (sin 2 α – соs 2 α)•1 =

= 1 – соs 2 α– соs 2 α = 1 – 2 соs 2 α

Задание. Упростите дробь

Тригонометрические функции суммы и разности

Легко проводить вычисления, когда все тригонометрические действия выполняются над одним углом α. Однако иногда в задачах добавляется ещё один угол, который обычно обозначают как β. Существуют ф-лы, с помощью которых можно вычислять тригон-кие ф-ции от суммы и разности углов α и β.

Вывод этих ф-л достаточно сложен, поэтому сначала мы просто без доказательства приведем две из них, позволяющие вычислять синус суммы и косинус суммы:

Достаточно запомнить их, а далее следующие формулы можно выводить из них. Так, если вместо β подставить угол (–β), то получим формулы для разности. При этом мы используем тот факт, что синус – нечетная ф-ция, то естьsin (– β) = – sinβ, а косинус – четная ф-ция, то есть соs (– β) = соsβ:

Теперь поступим также с ф-лой для косинуса разности:

Итак, нам удалось получить ф-лы для нахождения синуса и косинуса суммы и разности углов.

С помощью этих формул возможно вычислить значение тригон-ких ф-ций для некоторых нестандартных углов. (Стандартными считаются углы в 0°, 30°, 45°, 60° и 90°, ведь для них значение тригон-ких ф-ций можно узнать из таблички.)

Задание. Вычислите соs 150°.

Решение. В табличке стандартных углов есть углы, равные 90° и 60°. Их сумма как раз равна 150°. Поэтому запишем:

Задание. Вычислите синус, косинус и тангенс для угла 15°.

Решение. Угол в 15° можно представить как разность 45° – 30°. Тогда синус будет вычисляться так:

Далее вычислим косинус:

Можно выполнить проверку. Полученные значения должны удовлетворять основному тригон-кому тождеству. И действительно:

Проверка пройдена: сумма квадратов синуса и косинуса оказалась равной единице. Теперь посчитаем tg 15°, используя определение тангенса:

Задание. Вычислите значение тригонометрического выражения

sinπ/7 соsπ/42 + sinπ/42 соsπ/7

Решение: Значение тригон-ких ф-ций для углов π/7 и π/42 мы не знаем, однако это не помешает вычислениям. Можно заметить, что исходное выражение представляет собой синус суммы π/7 и π/42:

sinπ/7 соsπ/42 + sinπ/42 соsπ/7 = sin (π/7 + π/42) = sinπ/6 = 1/2

Задание. Упростите выражение

Вынесем за скобки множитель 2:

Теперь произведем замену:

C учетом этого можно переписать выражение и использовать ф-лу суммы косинусов:

Формулы двойного угла

Что будет, если формулу синуса суммы подставить не два различных угла α и β, а два одинаковых угла α и α? Получится ф-ла для синуса двойного угла:

Аналогично можно составить ф-лу и для косинуса двойного угла:

Итак, справедливы следующие ф-лы:

Задание. Вычислите sin 120° и соs 120°.

Задание. Упростите выражение

соs 2 t – соs 2t = соs 2 t – (соs 2 t – sin 2 t) = соs 2 t – соs 2 t + sin 2 t = sin 2 t

Задание. Докажите, что функция

является периодической и имеет период, равный π.

Решение. Используем ф-лу квадрата суммы:

Таким образом, исходную ф-цию можно переписать в виде

По определению, ф-ция является периодической с периодом Т, если выполняется условие у(х + Т) = у(х). Поэтому подставим в нашу ф-цию величину х + π:

Получили, что у(х + π) = y(x), то есть ф-ция имеет период, равный π.

Задание. Выведите формулы синуса и косинуса тройного угла.

Решение. Для их получения следует использовать ф-лу синуса суммы углов, в которую подставляют вместо β величину 2α:

Аналогично можно получить и ф-лу для косинуса тройного угла:

Формулы понижения степени

Если нам необходимо узнать косинус угла, который вдвое больше табличного, мы используем ф-лу:

соs 2α = соs 2 α – sin 2 α

А что делать, если нам надо вычислить косинус угла, который вдвое меньше известного? Попробуем преобразовать ф-лу косинуса двойного угла:

В результате нам удалось получить тождество, позволяющее по косинусу удвоенного угла найти косинус самого угла! Однако значительно чаще в тригонометрии это равенство записывают в обратном порядке:

и называют ф-лой понижения степени. Действительно, в левой части стоит косинус в квадрате, а справа – косинус без квадрата, но вычисляется он от угла 2α, а не α.

Попробуем получить аналогичную ф-лу и для синуса. Для этого используем основное тригон-кое тождество:

С помощью этих ф-л можно вычислять тригон-кие ф-ции для некоторых малых углов. Так, ранее мы с использованием ф-лу разности синусов определили, что

При этом мы представляли угол 15° как разность 45° – 30°. Но как посчитать соs 7,5°? Этот угол невозможно представить как разницу или сумму известных нам табличных углов (0°, 30°; 45°; 60° и 90°). Однако поможет ф-ла понижения степени. Действительно, ведь 2•7,5° = 15°. Тогда можно записать:

Мы нашли соs 2 7,5°. Чтобы узнать соs 7,5°, необходимо извлечь квадратный корень:

Так как угол 7,5° принадлежит I четверти, то его косинус должен быть положительным, поэтому можно записать:

Видно, что получается довольно громоздкое выражение. Используя ф-лу понижения степени, можно найти косинус и угла, который ещё вдвое меньше, то есть равен 3,75°, но в результате получится ещё более громоздкое выражение.

Задание. Вычислите sinπ/8.

Решение. Угол π/4 является табличным (его градусная мера составляет 45°). Поэтому можно записать:

Эти примеры показывают, что тригон-кие ф-ции многих нестандартных углов можно выразить, используя квадратные корни. Возникает вопрос – а любую ли тригонометрическую ф-цию можно выразить таким способом? Оказывается, что нет. Например, sin 10° невозможно найти ни в одной, даже самой подробной тригонометрической таблице. Мы не будем это доказывать, но эту величину невозможно представить в виде выражения, используя арифметические операции и корни. Однако существуют приближенные методы, позволяющие с любой наперед заданной точностью вычислять значение тригонометрических ф-ций.

Формулы приведения

Возможно, вы уже заметили, что синусы и косинусы принимают одинаковые значения в углах, чья сумма равна 90°. Например, sin30° = соs60° = 1/2, и при этом 30° + 60° = 90°. Также мы знаем, что sin 45° = соs 45° (45° + 45° = 90°) и sin60° = соs30° (60° + 30°). В чем причина такой закономерности и справедлива ли она для нестандартных углов?

Используя ф-лу синуса разности, мы можем записать, что

Полученная ф-ла sin (90° – α) = соsα называется формулой приведения. При ее выводе мы использовали тот факт, что sin 90° = 1, а соs 90° = 0, поэтому формула получилась очень простой. Однако синусы и косинусы других углов, кратных 90° (или кратных π/2, если измерять углы в радианах), также равны 0, 1 или – 1, поэтому для них тоже можно получить подобные простые ф-лы, например:

Похожих ф-л можно написать несколько десятков! Все их запоминать не надо, так как существует особое мнемоническое правило, позволяющее записать необходимую ф-лу.

Пусть есть некоторое тригон-кое выражение вида

где f – тригонометрическая ф-ция (sin; соs; tg; ctg)

k– угол, кратный π/2 (π/2, π, 3π/2, 2π)

Мы хотим заменить ее другой ф-цией, только от угла α. На первом шаге мы смотрим на слагаемое k. Если оно кратно π (– π, π, 2π), то ф-ция f остается неизменной. Если же слагаемое k – это число π/2 или 3π/2, то ф-цию f надо поменять на так называемую кофункцию (синус меняем на косинус, тангенс на котангенс и наоборот).

Далее надо определить знак, стоящий перед новой ф-цией. Для этого мы предполагаем, что α – это острый угол, то есть он принадлежит I четверти. Далее с учетом этого предположения смотрим, в какую четверть попадает угол k ± α, и какое значение принимает там исходная тригонометрическая ф-ция. Если она отрицательна, то перед новой тригонометрической ф-цией надо поставить минус. В противном случае ничего ставить не надо.

Лучше всего изучить это алгоритм на примерах.

Задание. Упростите выражение соs (π/2 + α).

Решение. Первый шаг – смотрим на слагаемое под знаком косинуса. Это число π/2. Оно НЕ кратно π, а потому мы должны поменять косинус на синус:

Второй шаг – надо определить, надо ли ставить минус перед синусом. Если α – это острый угол, то угол (π/2 + α) попадет во II четверть:

Во второй четверти косинус отрицателен, а потому перед синусом следует поставить минус:

Важное примечание. В этом примере для составления формулы приведения мы «предположили», что угол α является острым. В результате нам удалось получить формулу соs (π/2 + α) = – sinα. Однако отметим, что полученная нами формула выполняется для абсолютно любых значений угла α, а не только для 0° 1 2 + 3 соs2x

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *