Как вывести стек на экран c

О стеке простыми словами — для студентов и просто начинающих

Привет, я студент второго курса технического университета. После пропуска нескольких пар программирования по состоянию здоровья, я столкнулся с непониманием таких тем, как «Стек» и «Очередь». Путем проб и ошибок, спустя несколько дней, до меня наконец дошло, что это такое и с чем это едят. Чтобы у вас понимание не заняло столько времени, в данной статье я расскажу о том что такое «Стек», каким образом и на каких примерах я понял что это такое. Если вам понравится, я напишу вторую часть, которая будет затрагивать уже такое понятие, как «Очередь»

Теория

На Википедии определение стека звучит так:

Стек (англ. stack — стопка; читается стэк) — абстрактный тип данных, представляющий собой список элементов, организованных по принципу LIFO (англ. last in — first out, «последним пришёл — первым вышел»).

Поэтому первое, на чем бы я хотел заострить внимание, это представление стека в виде вещей из жизни. Первой на ум мне пришла интерпретация в виде стопки книг, где верхняя книга — это вершина.

Как вывести стек на экран c. Смотреть фото Как вывести стек на экран c. Смотреть картинку Как вывести стек на экран c. Картинка про Как вывести стек на экран c. Фото Как вывести стек на экран c

На самом деле стек можно представить в виде стопки любых предметов будь то стопка листов, тетрадей, рубашек и тому подобное, но пример с книгами я думаю будет самым оптимальным.

Итак, из чего же состоит стек.

Стек состоит из ячеек(в примере — это книги), которые представлены в виде структуры, содержащей какие-либо данные и указатель типа данной структуры на следующий элемент.
Сложно? Не беда, давайте разбираться.

Как вывести стек на экран c. Смотреть фото Как вывести стек на экран c. Смотреть картинку Как вывести стек на экран c. Картинка про Как вывести стек на экран c. Фото Как вывести стек на экран c

На данной картинке схематично изображен стек. Блок вида «Данные/*next» и есть наша ячейка. *next, как мы видим, указывает на следующий элемент, другими словами указатель *next хранит адрес следующей ячейки. Указатель *TOP указывает на вершину стек, то есть хранит её адрес.

С теорией закончили, перейдем к практике.

Практика

Для начала нам нужно создать структуру, которая будет являться нашей «ячейкой»

Новичкам возможно будет не понятно, зачем наш указатель — типа comp, точнее сказать указатель типа структуры comp. Объясню, для того чтобы указатель *next мог хранить структуру comp, ей нужно обозначить тип этой структуры. Другими словами указать, что будет хранить указатель.

После того как у нас задана «Ячейка», перейдем к созданию функций.

Функции

Функция создания «Стека»/добавления элемента в «Стек»

При добавлении элемента у нас возникнет две ситуации:

Разберем чуть чуть по-подробнее.
Во-первых, почему функция принимает **top, то есть указатель на указатель, для того чтобы вам было наиболее понятно, я оставлю рассмотрение этого вопроса на потом. Во-вторых, по-подробнее поговорим о q->next = *top и о том, что же означает ->.

-> означает то, что грубо говоря, мы заходим в нашу структуру и достаем оттуда элемент этой структуры. В строчке q->next = *top мы из нашей ячейки достаем указатель на следующий элемент *next и заменяем его на указатель, который указывает на вершину стека *top. Другими словами мы проводим связь, от нового элемента к вершине стека. Тут ничего сложного, все как с книгами. Новую книгу мы кладем ровно на вершину стопки, то есть проводим связь от новой книги к вершине стопки книг. После этого новая книга автоматически становится вершиной, так как стек не стопка книг, нам нужно указать, что новый элемент — вершина, для этого пишется: *top = q;.

Функция удаления элемента из «Стека» по данным

Данная функция будет удалять элемент из стека, если число Data ячейки(q->Data) будет равна числу, которое мы сами обозначим.

Здесь могут быть такие варианты:

Для лучшего понимания удаления элемента проведем аналогии с уже привычной стопкой книг. Если нам нужно убрать книгу сверху, мы её убираем, а книга под ней становится верхней. Тут то же самое, только в начале мы должны определить, что следующий элемент станет вершиной *top = q->next; и только потом удалить элемент free(q);

Если книга, которую нужно убрать находится между двумя книгами или между книгой и столом, предыдущая книга ляжет на следующую или на стол. Как мы уже поняли, книга у нас-это ячейка, а стол получается это NULL, то есть следующего элемента нет. Получается так же как с книгами, мы обозначаем, что предыдущая ячейка будет связана с последующей prev->next = q->next;, стоит отметить что prev->next может равняться как ячейке, так и нулю, в случае если q->next = NULL, то есть ячейки нет(книга ляжет на стол), после этого мы очищаем ячейку free(q).

Так же стоит отметить, что если не провести данную связь, участок ячеек, который лежит после удаленной ячейки станет недоступным, так как потеряется та самая связь, которая соединяет одну ячейку с другой и данный участок просто затеряется в памяти

Функция вывода данных стека на экран

Самая простая функция:

Здесь я думаю все понятно, хочу сказать лишь то, что q нужно воспринимать как бегунок, он бегает по всем ячейкам от вершины, куда мы его установили вначале: *q = top;, до последнего элемента.

Главная функция

Хорошо, основные функции по работе со стеком мы записали, вызываем.
Посмотрим код:

Вернемся к тому, почему же в функцию мы передавали указатель на указатель вершины. Дело в том, что если бы мы ввели в функцию только указатель на вершину, то «Стек» создавался и изменялся только внутри функции, в главной функции вершина бы как была, так и оставалась NULL. Передавая указатель на указатель мы изменяем вершину *top в главной функции. Получается если функция изменяет стек, нужно передавать в нее вершину указателем на указатель, так у нас было в функции s_push,s_delete_key. В функции s_print «Стек» не должен изменяться, поэтому мы передаем просто указатель на вершину.
Вместо цифр 1,2,3,4,5 можно так-же использовать переменные типа int.

Заключение

Полный код программы:

Так как в стек элементы постоянно добавляются на вершину, выводиться элементы будут в обратном порядке

В заключение хотелось бы поблагодарить за уделенное моей статье время, я очень надеюсь что данный материал помог некоторым начинающим программистам понять, что такое «Стек», как им пользоваться и в дальнейшем у них больше не возникнет проблем. Пишите в комментариях свое мнение, а так же о том, как мне улучшить свои статьи в будущем. Спасибо за внимание.

Источник

Урок 39. Коллекция Стек (Stack) C#

На 39 уроке учебника C# для начинающих рассматривается класс Stack. Эта коллекция включает в себя функциональные возможности, требуемые в структуре стекирования «Last In, First Out» (LIFO, последним пришёл — первым ушёл). Стеки позволяют хранить предметы для последующего извлечения и обработки.

Стеки похожи по своей структуре на очереди. Однако если очередь гарантирует, что элементы извлекаются из коллекции в том порядке, в котором они были добавлены, стеки позволяют извлекать сначала самые последние добавленные элементы. Это известно как последним пришёл — первым ушёл или LIFO.

В операционных системах и языках разработки высокого уровня часто используются стеки. Одним из ключевых применений является сохранение точек возврата для вызовов программы. Каждый раз, когда вызывается подпрограмма, адрес вызывающей функции добавляется или перемещается в стек. Когда подпрограмма завершается, последний адрес может быть извлечен или выскочил из стека, и нормальный поток программы может продолжаться из предыдущего местоположения. Более ранняя статья по обработке исключений C# содержит пример использования стека при чтении свойства StackTrace.

Коллекция стека реализует свойства и методы интерфейса ICollection. Это было описано в предыдущей статье интерфейсы коллекции. В остальной части этой статьи описываются дополнительные функциональные возможности, предоставляемые стеком.

Класс Stack имеет три конструктора. Первый не требует никаких параметров. Он создает пустой стек с емкостью для хранения до десяти элементов. При добавлении одиннадцатого элемента емкость стека автоматически удваивается. Она удваивается снова каждый раз, когда емкость стека превышена.

Если максимальное число элементов, которые будут храниться в стеке, известно до создания коллекции, более эффективно объявить его. Если размер занижен, то размер стека все равно будет удвоен для размещения дополнительных элементов. Чтобы объявить начальный размер стека, передайте емкость конструктору в виде целочисленного параметра.

Стеки позволяют добавлять новые элементы в верхнюю часть стека, а затем извлекать их в обратном порядке. Чтобы добавить новый элемент в верхнюю часть стека, используйте метод Push. Этот метод принимает один параметр, являющийся объектом для добавления в стек.

Для извлечения элементов из стека вызывается метод Pop. Pop возвращает элемент из верхней части стека и удаляет его из коллекции. Элемент возвращается как объект, который может быть приведен к правильному типу. В следующем примере метод ToString используется для выполнения преобразования, когда три элемента добавляются и затем извлекаются из стека. Нельзя сказать, что порядок извлечения является обратным порядку, в котором элементы были помещены в стопку.

Иногда необходимо получить следующий элемент в стеке, не удаляя его из коллекции. Метод Peek используется таким же образом, как и Pop, но когда получается значение верхнего элемента, то он также остается в положении.

Другие методы работы со стеком

В дополнение к методам LIFO, класс Stack предоставляет другие функциональные возможности для изменения и чтения коллекции. Это увеличивает коллекцию с поведением, похожим на те, которые встречаются в некоторых других подобных типов.

Метод Clear используется для очистки содержимого стека. Метод не требует никаких параметров.

Часто вам нужно будет определить, существует ли элемент в стеке, но вы не хотите его доставать. Метод Contains разрешает это, возвращая логическое значение, указывающее, присутствует ли объект.

Создание потокобезопасной обертки стека

В предыдущей статье, посвященной интерфейсам коллекций, была описана концепция потокобезопасной синхронизированной коллекции. Для того чтобы создать потокобезопасный стек, синхронизированная коллекция обертки генерируется с помощью статического метода Synchronized.

Как вывести стек на экран c. Смотреть фото Как вывести стек на экран c. Смотреть картинку Как вывести стек на экран c. Картинка про Как вывести стек на экран c. Фото Как вывести стек на экран cстатьи IT, стек, уроки по си шарп, си шарп, коллекции

Источник

Урок №105. Стек и Куча

На этом уроке мы рассмотрим стек и кучу в языке C++.

Сегменты

Память, которую используют программы, состоит из нескольких частей — сегментов:

Сегмент кода (или «текстовый сегмент»), где находится скомпилированная программа. Обычно доступен только для чтения.

Сегмент bss (или «неинициализированный сегмент данных»), где хранятся глобальные и статические переменные, инициализированные нулем.

Сегмент данных (или «сегмент инициализированных данных»), где хранятся инициализированные глобальные и статические переменные.

Куча, откуда выделяются динамические переменные.

Стек вызовов, где хранятся параметры функции, локальные переменные и другая информация, связанная с функциями.

Сегмент кучи (или просто «куча») отслеживает память, используемую для динамического выделения. Мы уже немного поговорили о куче на уроке о динамическом выделении памяти в языке С++.

В языке C++ при использовании оператора new динамическая память выделяется из сегмента кучи самой программы:

Адрес выделяемой памяти передается обратно оператором new и затем он может быть сохранен в указателе. О механизме хранения и выделения свободной памяти нам сейчас беспокоиться незачем. Однако стоит знать, что последовательные запросы памяти не всегда приводят к выделению последовательных адресов памяти!

При удалении динамически выделенной переменной, память возвращается обратно в кучу и затем может быть переназначена (исходя из последующих запросов). Помните, что удаление указателя не удаляет переменную, а просто приводит к возврату памяти по этому адресу обратно в операционную систему.

Куча имеет свои преимущества и недостатки:

Выделение памяти в куче сравнительно медленное.

Выделенная память остается выделенной до тех пор, пока не будет освобождена (остерегайтесь утечек памяти) или пока программа не завершит свое выполнение.

Доступ к динамически выделенной памяти осуществляется только через указатель. Разыменование указателя происходит медленнее, чем доступ к переменной напрямую.

Поскольку куча представляет собой большой резервуар памяти, то именно она используется для выделения больших массивов, структур или классов.

Стек вызовов

Стек вызовов (или просто «стек») отслеживает все активные функции (те, которые были вызваны, но еще не завершены) от начала программы и до текущей точки выполнения, и обрабатывает выделение всех параметров функции и локальных переменных.

Стек вызовов реализуется как структура данных «Стек». Поэтому, прежде чем мы поговорим о том, как работает стек вызовов, нам нужно понять, что такое стек как структура данных.

Стек как структура данных

Структура данных в программировании — это механизм организации данных для их эффективного использования. Вы уже видели несколько типов структур данных, например, массивы или структуры. Существует множество других структур данных, которые используются в программировании. Некоторые из них реализованы в Стандартной библиотеке C++, и стек как раз является одним из таковых.

Например, рассмотрим стопку (аналогия стеку) тарелок на столе. Поскольку каждая тарелка тяжелая, а они еще и сложены друг на друге, то вы можете сделать лишь что-то одно из следующего:

Посмотреть на поверхность первой тарелки (которая находится на самом верху).

Взять верхнюю тарелку из стопки (обнажая таким образом следующую тарелку, которая находится под верхней, если она вообще существует).

Положить новую тарелку поверх стопки (спрятав под ней самую верхнюю тарелку, если она вообще была).

В компьютерном программировании стек представляет собой контейнер (как структуру данных), который содержит несколько переменных (подобно массиву). Однако, в то время как массив позволяет получить доступ и изменять элементы в любом порядке (так называемый «произвольный доступ»), стек более ограничен.

В стеке вы можете:

Посмотреть на верхний элемент стека (используя функцию top() или peek() ).

Вытянуть верхний элемент стека (используя функцию pop() ).

Добавить новый элемент поверх стека (используя функцию push() ).

Стек — это структура данных типа LIFO (англ. «Last In, First Out» = «Последним пришел, первым ушел»). Последний элемент, который находится на вершине стека, первым и уйдет из него. Если положить новую тарелку поверх других тарелок, то именно эту тарелку вы первой и возьмете. По мере того, как элементы помещаются в стек — стек растет, по мере того, как элементы удаляются из стека — стек уменьшается.

Например, рассмотрим короткую последовательность, показывающую, как работает добавление и удаление в стеке:

Stack: empty
Push 1
Stack: 1
Push 2
Stack: 1 2
Push 3
Stack: 1 2 3
Push 4
Stack: 1 2 3 4
Pop
Stack: 1 2 3
Pop
Stack: 1 2
Pop
Stack: 1

Стопка тарелок довольно-таки хорошая аналогия работы стека, но есть лучшая аналогия. Например, рассмотрим несколько почтовых ящиков, которые расположены друг на друге. Каждый почтовый ящик может содержать только один элемент, и все почтовые ящики изначально пустые. Кроме того, каждый почтовый ящик прибивается гвоздем к почтовому ящику снизу, поэтому количество почтовых ящиков не может быть изменено. Если мы не можем изменить количество почтовых ящиков, то как мы получим поведение, подобное стеку?

Во-первых, мы используем наклейку для обозначения того, где находится самый нижний пустой почтовый ящик. Вначале это будет первый почтовый ящик, который находится на полу. Когда мы добавим элемент в наш стек почтовых ящиков, то мы поместим этот элемент в почтовый ящик, на котором будет наклейка (т.е. в самый первый пустой почтовый ящик на полу), а затем переместим наклейку на один почтовый ящик выше. Когда мы вытаскиваем элемент из стека, то мы перемещаем наклейку на один почтовый ящик ниже и удаляем элемент из почтового ящика. Всё, что находится ниже наклейки — находится в стеке. Всё, что находится в ящике с наклейкой и выше — находится вне стека.

Сегмент стека вызовов

Сегмент стека вызовов содержит память, используемую для стека вызовов. При запуске программы, функция main() помещается в стек вызовов операционной системой. Затем программа начинает свое выполнение.

Когда программа встречает вызов функции, то эта функция помещается в стек вызовов. При завершении выполнения функции, она удаляется из стека вызовов. Таким образом, просматривая функции, добавленные в стек, мы можем видеть все функции, которые были вызваны до текущей точки выполнения.

Наша аналогия с почтовыми ящиками — это действительно то, как работает стек вызовов. Стек вызовов имеет фиксированное количество адресов памяти (фиксированный размер). Почтовые ящики являются адресами памяти, а «элементы», которые мы добавляем или вытягиваем из стека, называются фреймами (или «кадрами») стека. Кадр стека отслеживает все данные, связанные с одним вызовом функции. «Наклейка» — это регистр (небольшая часть памяти в ЦП), который является указателем стека. Указатель стека отслеживает вершину стека вызовов.

Единственное отличие фактического стека вызовов от нашего гипотетического стека почтовых ящиков заключается в том, что, когда мы вытягиваем элемент из стека вызовов, нам не нужно очищать память (т.е. вынимать всё содержимое из почтового ящика). Мы можем просто оставить эту память для следующего элемента, который и перезапишет её. Поскольку указатель стека будет ниже этого адреса памяти, то, как мы уже знаем, эта ячейка памяти не будет находиться в стеке.

Стек вызовов на практике

Давайте рассмотрим детально, как работает стек вызовов. Ниже приведена последовательность шагов, выполняемых при вызове функции:

Программа сталкивается с вызовом функции.

Создается фрейм стека, который помещается в стек. Он состоит из:

адреса инструкции, который находится за вызовом функции (так называемый «обратный адрес»). Так процессор запоминает, куда ему возвращаться после выполнения функции;

памяти для локальных переменных;

сохраненных копий всех регистров, модифицированных функцией, которые необходимо будет восстановить после того, как функция завершит свое выполнение.

Процессор переходит к точке начала выполнения функции.

Инструкции внутри функции начинают выполняться.

После завершения функции, выполняются следующие шаги:

Регистры восстанавливаются из стека вызовов.

Фрейм стека вытягивается из стека. Освобождается память, которая была выделена для всех локальных переменных и аргументов.

Обрабатывается возвращаемое значение.

ЦП возобновляет выполнение кода (исходя из обратного адреса).

Возвращаемые значения могут обрабатываться разными способами, в зависимости от архитектуры компьютера. Некоторые архитектуры считают возвращаемое значение частью фрейма стека, другие используют регистры процессора.

Знать все детали работы стека вызовов не так уж и важно. Однако понимание того, что функции при вызове добавляются в стек, а при завершении выполнения — удаляются из стека, дает основы, необходимые для понимания рекурсии, а также некоторых других концепций, которые полезны при отладке программ.

Источник

Как вывести стек на экран c

Алгоритм работы стека, в самой простой реализации, следующий:

Таким образом, если стек не пустой, в его вершине всегда располагается последний добавленный элемент, с которым мы и можем взаимодействовать.

В библиотеке System.Collections.Generic языка C#, уже есть реализация .Net класса Stack, однако для понимания устройства этой структуры данных, напишем свою реализацию стека.

Стандартно для стека реализуют три операции:

Мы добавим к этим операциям следующие:

Стек на основе массива

Для хранения данных используется массив фиксированного размера, если мы добавляем новый элемент, а массив уже заполнен, то вызывается метод RebuildData который смещает элементы стека на одну позицию, при этом первый элемент удаляется. По скольку привязка к конкретному типу данных ограничит использование стека, сделаем реализацию на языке C#, с применением универсальных типов данных или обобщений.

Такой же алгоритм выполнен в буфере клавиатуры. Он может содержать фиксированное количество информации о нажатии клавиш, при переполнении буфера, старые данные затираются новыми.

При необходимости можно переписать метод RebuildData таким образом, чтобы он изменял размер массива если значения не помещаются:

Пример использования фиксированного стека

В результате выполнения программа выведет на экран 5 последних добавленных имен:

Стек на основе списка(List)

Используя List для хранения данных, у нас нет необходимости следить за количеством объектов помещенных в стек, как это было в классе с массивом. Список автоматически расширяется при добавлении новых значений.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *