охарактеризуйте машинные двоичные коды прямой обратный и дополнительный
Охарактеризуйте машинные двоичные коды прямой обратный и дополнительный
Арифметические операции на сумматорах прямого, обратного и дополнительного кода
Все операции в ЭВМ выполняют над числами, представленными специальными машинными кодами. Их использование позволяет обрабатывать знаковые разряды чисел так же, как и значащие разряды, а также заменять операцию вычитания операцией сложения.
Каждому двоичному числу можно поставить в соответствие несколько видов кодов.
Различают следующие коды двоичных чисел: прямой (П), обратный (ОК) и дополнительный (ДК).
Прямой код двоичного числа образуется из абсолютного значения этого числа и кода знака (0 или 1) перед его старшим числовым разрядом.
Прямой код двоичного числа образуется по следующему алгоритму:
1) определить данное двоичное число: либо целое (порядок), либо правильная дробь (мантисса);
2) если это дробь, то цифры после запятой можно рассматривать как целое число;
3) если это целое и положительное двоичное число, то вместе с добавлением нуля в старший разряд число превращается в код.
Для отрицательного двоичного числа перед ним ставится единица.
число Y 2 = +0,11011012 → код числа Y пр = 01101101.
Подчеркиванием выделяют знаковые разряды.
Обратный код двоичного числа образуется по следующему алгоритму:
1) обратный код положительных чисел совпадает с их прямым кодом;
2) обратный код отрицательного числа содержит единицу в знаковом разряде числа, а значащие разряды числа заменяются инверсными, т. е. нули заменяются единицами, а единицы нулями.
Свое название обратный код получил потому, что коды цифр отрицательного числа заменены инверсными.
Наиболее важные свойства обратного кода чисел:
— сложение положительного числа С с его отрицательным значением в обратном коде дает так называемую машинную единицу МЕок = 1|1111, состоящую из единиц в знаковом и в значащих разрядах числа;
— нуль в обратном коде имеет двоякое значение.
Он может быть как положительным числом 0|0000, так и отрицательным 1|1111.
Двойственное представление нуля явилось причиной того, что в современных ЭВМ все числа представляются не обратным, а дополнительным кодом.
Обратный код положительного двоичного числа совпадает с прямым кодом, а для отрицательного числа нужно, исключая знаковый разряд, во всех остальных разрядах нули заменить единицами и наоборот.
Дополнительный код положительных чисел совпадает с их прямым кодом. Дополнительный код отрицательного числа представляет собой результат суммирования обратного кода числа с единицей младшего разряда (2 0 – для целых чисел, 2 –k – для дробных).
Основные свойства дополнительного кода:
· сложение дополнительных кодов положительного числа С с его отрицательным значением дает так называемую машинную единицу дополнительного кода:
т. е. число 10 (два) в знаковых разрядах числа;
Дополнительный код положительного числа совпадает с его прямым кодом. Дополнительный код отрицательного числа образуется путем прибавления единицы к обратному коду.
Арифметические действия в машинных кодах
Сложение, а также вычитание чисел в обратном или дополнительном кодах выполняют с использованием обычного правила арифметического сложения многоразрядных чисел.
Это правило распространяется и на знаковые разряды чисел.
Различие обратного и дополнительного кодов связано с последующими действиями с единицей переноса из старшего разряда, изображающего знак числа.
При сложении чисел в обратном коде эту единицу надо прибавить к младшему разряду результата, а в дополнительном коде единица переноса из старшего разряда игнорируется, так как дополнительный код из обратного получается как раз прибавлением единицы.
Сложение и вычитание машинных чисел
Операция вычитания приводится к операции сложения путем преобразования чисел в обратный или дополнительный код согласно таблице.
Сложение (вычитание) машинных чисел
Скобки в представленных выражениях указывают на замену операции вычитания операцией сложения с обратным или дополнительным кодом соответствующего числа.
Сложение двоичных чисел осуществляется последовательно, поразрядно в соответствии с таблицей.
При выполнении сложения цифр необходимо соблюдать следующий алгоритм:
1) слагаемые должны иметь одинаковое число разрядов.
Для выравнивания разрядной сетки слагаемых можно дописывать незначащие нули слева к целой части числа и незначащие нули справа к дробной части числа;
2) знаковые разряды участвуют в сложении так же, как и значащие;
3) необходимые преобразования кодов производят с изменением знаков чисел. Приписанные незначащие нули изменяют свое значение при преобразованиях по общему правилу;
4) при преобразовании единицы переноса из старшего знакового разряда, в случае использования ОК, эта единица складывается с младшим числовым разрядом.
При использовании ДК единица переноса теряется. Знак результата формируется автоматически, результат представляется в том коде, в котором представлены исходные слагаемые.
1. Сложить два числа: А10 = 7, В10 = 16.
Исходные числа имеют различную разрядность, необходимо провести выравнивание разрядной сетки:
Сложение в обратном или дополнительном коде дает один и тот же результат:
2. Сложить два числа: А10 = +16, В10 = –7 в ОК и ДК.
По таблице необходимо преобразование А +(–В), в которой второй член преобразуется с учетом знака:
При сложении чисел в ОК и ДК были получены переносы в знаковый разряд и из знакового разряда.
В случае ОК перенос из знакового разряда требует дополнительного прибавления единицы младшего разряда.
В случае ДК этот перенос игнорируется.
Пример сложения чисел +18 и –7 приведен в таблице.
Прямой, обратный и дополнительный коды двоичного числа
Прямой код двоичного числа
Обратный код двоичного числа
Дополнительный код двоичного числа
Мы знаем, что десятичное число можно представить в двоичном виде. К примеру, десятичное число 100 в двоичном виде будет равно 1100100, или в восьмибитном представлении 0110 0100. А как представить отрицательное десятичное число в двоичном виде и произвести с ним арифметические операции? Для этого и предназначены разные способы представления чисел в двоичном коде.
Сразу отмечу, что положительные числа в двоичном коде вне зависимости от способа представления (прямой, обратный или дополнительный коды) имеют одинаковый вид.
Прямой код
Обратный код
Для неотрицательных чисел обратный код двоичного числа имеет тот же вид, что и запись неотрицательного числа в прямом коде.
Для отрицательных чисел обратный код получается из неотрицательного числа в прямом коде, путем инвертирования всех битов (1 меняем на 0, а 0 меняем на 1).
Для преобразования отрицательного числа записанное в обратном коде в положительное достаточного его проинвертировать.
Арифметические операции с отрицательными числами в обратном коде:
Дополнительный код
В дополнительном коде (как и в прямом и обратном) старший разряд отводится для представления знака числа (знаковый бит).
Арифметические операции с отрицательными числами в дополнительном коде
Вывод:
1. Для арифметических операций сложения и вычитания положительных двоичных чисел наиболее подходит применение прямого кода
2. Для арифметических операций сложения и вычитания отрицательных двоичных чисел наиболее подходит применение дополнительного кода
(35 голосов, оценка: 4,69 из 5)
Вычислительная техника и программирование/Занятие 4
Содержание
Машинные коды [ править ]
Все операции в ЭВМ выполняются над числами, представленными специальными машинными кодами. Их использование позволяет обрабатывать знаковые разряды чисел так же, как и значащие разряды, а также заменять операцию вычитания операцией сложения.
Различают следующие коды двоичных чисел:
Прямой код [ править ]
Прямой код двоичного числа образуется из абсолютного значения этого числа и кода знака (0 или 1) перед его старшим числовым разрядом.
Обратный код [ править ]
Обратный код двоичного числа образуется по следующему правилу. Обратный код положительных чисел совпадает с их прямым кодом. Обратный код отрицательного числа содержит единицу в знаковом разряде числа, а значащие разряды числа заменяются на инверсные, т.е. нули заменяются единицами, а единицы нулями.
Свое название обратный код получил потому, что коды цифр отрицательного числа заменены на инверсные. Наиболее важные свойства обратного кода чисел:
Дополнительный код [ править ]
Основные свойства дополнительного кода:
• сложение дополнительных кодов положительного числа С с его отрицательным значением дает т.н. машинную единицу дополнительного кода:
МЕдк=МЕок + 2 0 = 10|00…00,
т.е. число 10 (два) в знаковых разрядах числа;
• дополнительный код называется так потому, что представление отрицательных чисел является дополнением прямого кода чисел до машинной единицы
Модифицированные обратные и дополнительные коды [ править ]
Модифицированные обратные и дополнительные коды двоичных чисел отличаются соответственно от обратных и дополнительных кодов удвоением значений знаковых разрядов. Знак «+» в этих кодах кодируется двумя нулевыми знаковыми разрядами, а знак «–» – двумя единичными разрядами.
Арифметические действия в машинных кодах. [ править ]
Сложение (вычитание). Операция вычитания приводится к операции сложения путем преобразования чисел в обратный или дополнительный код согласно таблице.
Требуемая операция | Необходимое преобразование |
---|---|
А+В | А+В |
А-В | А+(-В) |
-А+В | (-А)+В |
-А-В | (-А)+(-В) |
Здесь А и В неотрицательные числа. Скобки в представленных выражениях указывают на замену операции вычитания операцией сложения с обратным или дополнительным кодом соответствующего числа. Сложение двоичных чисел осуществляется последовательно, поразрядно в соответствии с таблицей. При выполнении сложения цифр необходимо соблюдать следующие правила:
Пример 1. Сложить два числа: А10 = 7, В10 = 16.
Исходные числа имеют различную разрядность, необходимо провести выравнивание разрядной сетки:
Сложение в обратном или дополнительном коде дает один и тот же результат:
По таблице необходимо преобразование А+(-В), в которой второй член преобразуется с учетом знака
При сложении чисел в ОК и ДК были получены переносы в знаковый разряд и из знакового разряда. В случае ОК перенос из знакового разряда требует дополнительного прибавления единицы младшего разряда (п.4 правил). В случае ДК этот перенос игнорируется.
Практическая часть. [ править ]
Виды двоичных кодов
В микропроцессорах двоичные коды используются для представления любой обрабатываемой информации. При этом разрядность обрабатываемых чисел может превышать разрядность самого процессора и используемой в нЈм памяти. В этом случае длинное число может занимать несколько ячеек памяти и обрабатываться несколькими командами процессора. При обработке все ячейки памяти, выделенные под многобайтное число, рассматриваются как одно число.
Для представления числовой информации могут использоваться знаковые и беззнаковые коды. Для определЈнности примем длину слова процессора равной восьми битам.
Беззнаковые двоичные коды.
При этом минимально возможное число, которое можно записать таким двоичным кодом, равно 0. Максимально возможное число, которое можно записать таким двоичным кодом, можно определить как:
Недостатком такого кода является то, что знаковый разряд и цифровые разряды приходится обрабатывать раздельно. Алгоритм программ, работающий с такими кодами получается сложный. Для выделения и изменения знакового разряда приходится применять механизм маскирования разрядов, что резко увеличивает размер программы и уменьшает ее быстродействие. Для того, чтобы алгоритм обработки знакового и цифровых разрядов не различался, были введены обратные двоичные коды.
Знаковые обратные двоичные коды.
Обратные двоичные коды отличаются от прямых только тем, что отрицательные числа в них получаются инвертированием всех разрядов числа. При этом знаковый и цифровые разряды не различаются. Алгоритм работы с такими кодами резко упрощается.
Тем не менее при работе с обратными кодами требуется специальный алгоритм распознавания знака, вычисления абсолютного значения числа, восстановления знака результата числа. Кроме того, в прямом и обратном коде числа для запоминания числа 0 используется два кода, тогда как известно, что число 0 положительное и отрицательным не может быть никогда.
Знаковые дополнительные двоичные коды.
От перечисленных недостатков свободны дополнительные коды. Эти коды позволяют непосредственно суммировать положительные и отрицательные числа не анализируя знаковый разряд и при этом получать правильный результат. Все это становится возможным благодаря тому, что дополнительные числа являются естественным кольцом чисел, а не исскуственным образованием как прямые и обратные коды. Кроме того немаловажным является то, что вычислять дополнение в двоичном коде чрезвычайно легко. Для этого достаточно к обратному коду добавить 1:
В обратных и дополнительных кодах наблюдается интересный эффект, который называется эффект распространения знака. Он заключается в том, что при преобразовании однобайтного числа в двухбайтное достаточно всем битам старшего байта присвоить значение знакового бита младшего байта. То есть для хранения знака числа можно использовать сколько угодно старших бит. При этом значение кода совершенно не изменяется.
Использование для представления знака числа двух бит предоставляет интересную возможность контролировать переполнения при выполнении арифметических операций. Рассмотрим несколько примеров.
1) Просуммируем числа 12 и 5
В этом примере видно, что в результате суммирования получается правильный результат. Это можно проконтролировать по флагу переноса C, который совпадает со знаком результата (действует эффект распространения знака).
В этом примере флаг переноса C тоже совпадает со знаком результата, то есть переполнения не произошло и в этом случае
В этом примере при суммировании положительного и отрицательного числа автоматически получается правильный знак результата. В данном случае знак результата отрицательный. Флаг переноса совпадает со знаком результата, поэтому переполнения не было (мы можем убедиться в этом непосредственными вычислениями на бумаге или на калькуляторе).
В данном примере знак результата положительный. Флаг переноса совпадает со знаком результата, поэтому переполнения не было и в этом случае.
5)Просуммируем числа 100 и 31
В этом примере видно, что в результате суммирования произошло переполнение восьмибитовой переменной, т.к. в результате операции над положительными числами получился отрицательный результат. Однако если рассмотреть флаг переноса, то он не совпадает со знаком результата. Эта ситуации является признаком переполнения результата и легко обнаруживается при помощи операции «исключающее ИЛИ» над старшим битом результата и флагом переноса C. Большинство процессоров осуществляют эту операцию аппаратно и помещают результат во флаг переполнения OV.
В этом примере результате операции над отрицательными числами в результате суммирования произошло переполнение восьмибитовой переменной, т.к. получился положительный результат. И в этом случае если рассмотреть флаг переноса C, то он не совпадает со знаком результата. Отличие от предыдущего случая только в комбинации этих бит. В примере 5 говорят о переполнении результата (комбинация 01), а в примере 6 об антипереполнении результата (комбинация 10).
Представление дробных чисел в двоичном коде с фиксированной запятой.
Рассмотрим, как можно записать дробное число. До сих пор мы предполагали, что двоичная запятая находится правее самого младшего разряда. Но кто сказал, что она должна всегда находиться в этом месте? Мы можем договориться, что запятая находится слева от самого старшего разряда, и тогда в такой переменной можно будет записывать только дробные числа:
Или договоримся, что она находится точно посередине переменной, и тогда мы сможем записывать смешанные числа:
Остальные случаи рассматривать не будем. Они строятся точно так же как и для целых чисел.
Представление чисел в двоичном коде с плавающей запятой.
Часто приходится обрабатывать очень большие числа (например, расстояние между звЈздами) или наоборот очень маленькие числа (например, размеры атомов или электронов). При таких вычислениях пришлось бы использовать числа с очень большой разрядностью. В то же время нам не нужно знать расстояние между звЈздами с точностью до миллиметра. Для вычислений с такими величинами числа с фиксированной запятой неэффективны.
В десятичной арифметике для записи таких чисел используется алгебраическая форма. При этом число записывается в виде мантиссы, умноженной на 10 в степени, отображающей порядок числа, Например:
Для записи двоичных чисел тоже используется такая форма записи. Эта форма записи называется запись числа с плавающей точкой. Напомним, что мантисса не может быть больше единицы и после запятой в мантиссе не может записываться ноль.
А теперь рассмотрим промышленные стандарты, используемые для представления чисел в компьютерах. Существует стандарт IEEE 754 для представления чисел с одинарной точностью (float) и с двойной точностью (double). Для записи числа в формате с плавающей запятой одинарной точности требуется тридцатидвухбитовое слово. Для записи чисел с двойной точностью требуется шестидесятичетырЈхбитовое слово. Чаще всего числа хранятся в нескольких соседних ячейках памяти процессора. Форматы числа в формате с плавающей запятой одинарной точности и числа в формате с плавающей запятой удвоенной точности приведены на рисунке
Рассмотрим несколько примеров:
1) Определить число с плавающей запятой, лежащее в четырЈх соседних байтах:
11000001 01001000 00000000 00000000
— Знаковый бит, равный 1 показывает, что число отрицательное.
— Экспонента 10000010 в десятичном виде соответствует числу 130. Вычтя число 127 из 130, получим число 3.
— Теперь запишем мантиссу: 1,100 1000 0000 0000 0000 0000
— И, наконец, определим десятичное число: 1100,1b = 12,5d
2) Определить число с плавающей запятой, лежащее в четырЈх соседних байтах:
11000011 00110100 00000000 00000000
— Знаковый бит, равный 1 показывает, что число отрицательное.
— Экспонента 10000110 в десятичном виде соответствует числу 134. Вычтя число 127 из 134, получим число 7.
— Теперь запишем мантиссу: 1,011 0100 0000 0000 0000 0000
— И, наконец, определим десятичное число: 10110100b=180d
Для того чтобы записать ноль, достаточно записать в смещенный порядок число 00000000b. Значение мантиссы при этом не имеет значения. Число, в котором все байты равны 0, тоже попадает в этот диапазон значений.
Все остальные комбинации битов (в том числе и все единицы) воспринимаются как не числа и отображаются на экран: NaN.
Запись десятичных чисел.
Иногда бывает удобно хранить числа в памяти процессора в десятичном виде (Например, для вывода на экран дисплея). Для записи таких чисел используются двоично-десятичные коды. Для записи одного десятичного разряда используется четыре двоичных бита. Эти четыре бита называются тетрадой. Иногда встречается название, пришедшее из англоязычной литературы: нибл. При помощи четырех бит можно закодировать шестнадцать цифр. Лишние комбинации в двоично-десятичном коде являются запрещенными. Таблица соответствия двоично-десятичного кода и десятичных цифр приведена ниже:
Остальные комбинации двоичного кода в тетраде являются запрещенными. Запишем пример двоично-десятичного кода:
1258 = 0001 0010 0101 1000
589 = 0000 0101 1000 1001
Достаточно часто в памяти процессора для хранения одной десятичной цифры выделяется одна ячейка памяти (восьми, шестнадцати или тридцатидвухразрядная). Это делается для повышения скорости работы программы. Для того, чтобы отличить такой способ записи двоично-десятичного числа от стандартного, способ записи десятичного числа, как это показано в примере, называется упакованной формой двоично-десятичного числа.
Суммирование двоично-десятичных чисел.
Запись текстов в памяти процессора.
Все символы и буквы могут быть закодированы при помощи восьми двоичных символов. Наиболее распространенными таблицами являются таблицы ASCII с национальными расширениями, применяющиеся в DOS (и которые можно использовать для записи текстов в микропроцессорах), и таблицы ANSI, применяющиеся в WINDOWS. В таблицах ASCII и ANSI первые 128 символов совпадают. В этой части таблицы содержатся символы цифр, знаков препинания, латинские буквы верхнего и нижнего регистров и управляющие символы. Национальные расширения символьных таблиц и символы псевдографики содержатся в последних 128 кодах этих таблиц, поэтому русские тексты в операционных системах DOS и WINDOWS не совпадают.