Slc ssd что это
QLC, TLC, MLC и SLC
↑ следующая новость | предыдущая новость ↓
В современных SSD наиболее распространены четыре типа чипов памяти NAND: QLC, TLC, MLC и SLC.
TLC (Triple-Level Cell) – ячейка памяти, способная хранить 3 бита информации. Обладает большей плотностью, но меньшей выносливостью по сравнению с SLC и MLC. TLC также отстает от SLC и MLC по скорости чтения и записи и ресурсу в циклах Program/Erase. До настоящего момента память типа TLC NAND использовалась в основном в flash-накопителях (флешках), однако совершенствование технологий производства сделало возможным использование памяти TLC и в стандартных SSD.
Описанные выше ячейки памяти относятся к планарному, то есть 2D-типу. Их недостатком является необходимость перехода к более тонким техпроцессам для увеличения плотности записи данных в каждом отдельном чипе. Из-за ряда физических ограничений делать это до бесконечности не получится. Поэтому были разработаны 3D-ячейки памяти. Такая ячейка представляет собой цилиндр:
Таким образом, появляется возможность разместить несколько ячеек памяти на одном слое микросхемы. Такие ячейки называются 3D V-NAND, 3D TLC и 3D QLC. Емкость и надежность 3D-памяти сравнимы с емкостью и надежностью памяти TLC.
SLC (Single-Level Cells) – ячейка, способная хранить 1 бит информации. Память SLC имеет высокую производительность, низкое энергопотребление, наибольшую скорость записи и количество циклов Program/Erase. Память типа SLC обычно используется в серверах высокого уровня, поскольку стоимость SSD на основе SLC велика.
3D NAND
Количество состояний ячейки в зависимости от типа памяти
Физически все четыре типа ячеек NAND-памяти состоят из одинаковых транзисторов. Единственным отличием является количество хранимого ячейкой памяти заряда. Все четыре типа ячеек работают одинаково: при появлении напряжения ячейка переходит из состояния «выключено» в состояние «включено». SLC использует два отдельных значения напряжения для представления одного бита информации на ячейку и двух логических уровней (0 и 1). MLC использует четыре отдельных значения напряжения для представления четырех логических состояний (00, 01, 10, 11) или двух битов. TLC использует восемь отдельных значений напряжения для представления восьми логических состояний (000, 001, 010, 011, 100, 101, 110, 111) или трех битов информации. QLC использует шестнадцать отдельных значений напряжения для представления шестнадцати логических состояний (от 0000 до 1111).
Поскольку в SLC используется только два значения напряжения, эти значения могут сильно отличаться друг от друга, уменьшая потенциальную возможность некорректно интерпретировать текущее состояние ячейки и позволяя использовать стандартные условия коррекции ошибки NAND. Вероятность ошибок чтения увеличивается при использовании TLC и QLC NAND, поэтому данные типы памяти требуют большего объема ECC (Error Correction Code – код коррекции ошибок) при исчерпании ресурса NAND, поскольку в TLC и QLC приходится корректировать сразу три или четыре бита информации соответственно.
Как не заблудиться в SLC, MLC и TLC при выборе SSD. Наткнулся на статью, при выбора внешнего ssd диска. Кому-то может быть полезна.
Производительность и срок службы SSD в первую очередь зависят от флэш-памяти NAND и контроллера с прошивкой. Они являются основными составляющими цены накопителя, и при покупке логично обращать внимание именно на эти компоненты. Сегодня мы поговорим о NAND.
Тонкости технологического процесса производства флэш-памяти вы при желании найдете на сайтах, специализирующихся на обзорах SSD. Моя же статья ориентирована на более широкий круг читателей и преследует две цели:
1. Приоткрыть завесу над невнятными спецификациями, опубликованными на сайтах производителей SSD и магазинов.
2. Снять вопросы, которые могут у вас возникнуть при изучении технических характеристик памяти разных накопителей и чтения обзоров, написанных для «железных» гиков.
Для начала я проиллюстрирую проблему картинками.
Что указывают в характеристиках SSD
Технические характеристики NAND, публикуемые на официальных сайтах производителей и в сетевых магазинах, далеко не всегда содержат подробную информацию. Более того, терминология сильно варьируется, и я подобрал для вас данные о пяти различных накопителях.
Вам что-нибудь говорит эта картинка?
Ок, допустим, Яндекс.Маркет — не самый надежный источник информации. Обратимся к сайтам производителей — так легче стало?
Может быть, так будет понятнее?
Между тем, во всех этих накопителях установлена одинаковая память! В это трудно поверить, особенно глядя на две последних картинки, не правда ли? Дочитав запись до конца, вы не только в этом убедитесь, но и будете читать подобные характеристики как открытую книгу.
Производители памяти NAND
Производителей флэш-памяти намного меньше, чем компаний, продающих SSD под своими брендами. В большинстве накопителей сейчас установлена память от:
Intel и Micron не случайно делят одно место в списке. Они производят NAND по одинаковым технологиям в рамках совместного предприятия IMFT.
На ведущем заводе в американском штате Юта одна и та же память выпускается под марками этих двух компаний почти в равных пропорциях. С конвейера завода в Сингапуре, который сейчас контролирует Micron, память может сходить также и под маркой ее дочерней компании SpecTek.
Все производители SSD покупают NAND у вышеперечисленных компаний, поэтому в разных накопителях может стоять фактически одинаковая память, даже если ее марка отличается.
Казалось бы, при таком раскладе с памятью все должно быть просто. Однако существует несколько типов NAND, которые в свою очередь подразделяются по разным параметрам, внося путаницу.
ТИПЫ ПАМЯТИ NAND: SLC, MLC И TLC
Это три разных типа NAND, главным технологическим отличием между которыми является количество битов, хранящихся в ячейке памяти.
SLC является самой старой из трех технологий, и вы вряд ли найдете современный SSD с такой NAND. На борту большинства накопителей сейчас MLC, а TLC – это новое слово на рынке памяти для твердотельных накопителей
Вообще, TLC давно используется в USB-флэшках, где выносливость памяти не имеет практического значения. Новые технологические процессы позволяют снизить стоимость гигабайта TLC NAND для SSD, обеспечивая приемлемое быстродействие и срок службы, в чем логично заинтересованы все производители.
Занятно, что пока широкая публика обеспокоена ограниченным количеством циклов перезаписи SSD, по мере развития технологий NAND этот параметр только снижается!
В первой записи серии мы подсчитывали ресурс накопителя с MLC NAND, и если просто поделить его на три, картина получится не самой радужной. Но это вовсе не значит, что от TLC надо бежать, как черт от ладана.
Во-первых, в моих прикидках за основу был взят заоблачный мультипликатор увеличения объема записи 10х, который на практике в разы ниже. Профильные сайты нередко оценивают его в 2-3х, и даже еще меньше для контроллеров SandForce, применяющих сжатие данных при записи.
Во-вторых, дело не только в количестве циклов перезаписи и мультипликаторе. В контроллер могут закладываться технологии, призванные снизить физическую нагрузку на ячейки памяти при чтении и записи путем адаптации к подаваемому напряжению.
Объемы производства TLC NAND для SSD пока невелики, поэтому неудивительно, что первая ласточка прилетела от компании, имеющей свое производство памяти.
Судя по обзорам и тестам, Samsung 840 неплохо проявил себя, особенно на фоне накопителей с MLC предыдущего поколения.
Кстати, этот накопитель характеризует большая резервная область, призванная продлить срок службы TLC. Королем же производительности в 2012 году стал Samsung 840 Pro с 21nm Toggle Mode MLC на борту.
ИНТЕРФЕЙСЫ MLC NAND: ONFI И TOGGLE MODE
Сейчас на рынке преобладают накопители с памятью MLC, но и эта память делится на два типа в соответствии с используемым интерфейсом.
ONFi (Open NAND Flash Interface) – это альянс производителей флэш-памяти, выпускающейся по единому стандарту. Обратите внимание на присутствие там Intel и Micron, равно как и на отсутствие Samsung с Toshiba. Последняя пара выпускает память с интерфейсом Toggle Mode.
Примечание. Пропускная способность указана для каждого канала NAND.
В начале 2013 года можно купить накопители с памятью ONFi 1.0 и 2.x, а также Toggle Mode 1.0.
ПАМЯТЬ MLC NAND: АСИНХРОННАЯ ONFI 1.0 ПРОТИВ СИНХРОННОЙ ONFI 2.Х
Несмотря на то, что память с пропускной способностью до 200MB/s выпускается уже какое-то время, Intel и Micron не спешат отказываться от выпуска более старой и медленной памяти. Дело в том, что она дешевле, и это позволяет производителям SSD позиционировать накопители в разные сегменты рынка.
Давайте возьмем для примера спецификации двух твердотельных накопителей Corsair в том виде, как они опубликованы на сайте.
Все числовые показатели у них практически идентичны, разве что первый на йоту побыстрее и потребляет побольше энергии. На сайте не указано, но у этих накопителей еще и одинаковый контроллер SandForce-2281 (на что также намекает емкость 120 Гб).
В обоих накопителях установлена память Intel-Micron 25nm MLC NAND. Но в таблице выделено главное отличие: у первого накопителя эта память синхронная, а второго – aсинхронная!
Несмотря на минимальное различие в паспортных характеристиках быстродействия, накопитель с синхронной памятью превосходит коллегу почти во всех аспектах бенчмарков (в таблице по ссылке не отображается название Force GT, но это он).
Как видите, производители не выставляют напоказ ключевые отличия между линейками накопителей, однако это можно понять по цене. SSD с асинхронной памятью продаются немного дешевле, поскольку ее стоимость ниже, чем у синхронной. Зачастую индикатором может служить маркетинговое позиционирование на сайте (более производительные накопители стоят выше в списке).
В серии Vertex 4 используется синхронная память Intel Micron 25nm MLC, а в Agility 4 — асинхронная.
ПАМЯТЬ MLC NAND: 2.Х
Буква “x” обобщает различные этапы второй версии спецификаций ONFi. В 2012 году большинство накопителей снабжалось памятью MLC, изготовленной в рамках технологического процесса 25nm по спецификациям ONFi 2.1.
Впрочем, в конце года на рынке появился накопитель Intel 335 с памятью Intel 20nm MLC NAND, что соответствовало уже спецификациям ONFi 2.3. Переход на новый технологический процесс не приносит дивидендов в быстродействии, поскольку пропускная способность интерфейса все так же ограничена 200MB/s.
В спецификации ONFi 2.3 заложена поддержка протокола EZ-NAND, призванного улучшить коррекцию ошибок (ECC), уровень которых растет по мере уменьшения размера ячеек памяти. Однако для этого в NAND должен быть встроен отдельный контроллер. В Intel 335 он отсутствует, поэтому данную модель можно считать «переходной».
Более того, меньший размер ячеек памяти 20nm породил сомнения в выносливости NAND, произведенной по этой технологии!
Intel оценивает ее идентично 25nm NAND — в 3 000 циклов перезаписи. Гарантийный срок составляет 3 года, как и у Intel 330 при тех же объемах записи в 20GB в день.
Так или иначе, поскольку Intel и Micron переходят на 20nm процесс, логично ожидать в 2013 году появления накопителей с такой памятью под различными брендами.
ПАМЯТЬ MLC NAND 2.Х: 3K ПРОТИВ 5K
Этого вопроса я уже касался ранее, поэтому
некоторые производители SSD ставят в разные линейки продуктов память с различными интерфейсами. Хорошим примером служит тот же Corsair, но теперь с серией Neutron (в таблице приведены характеристики быстродействия, заявленные производителем).
Как видите, при прочих равных память Toggle Mode на бумаге выглядит побыстрее ONFi 2.x в последовательной записи и случайном чтении. В принципе, бенчмарки это подтвердили, но все же посмотрите их самостоятельно (например, AnandTech 120Gb, 240Gb).
КАК ОПРЕДЕЛИТЬ КОНКРЕТНЫЙ ТИП ПАМЯТИ В SSD!
Вне зависимости от того, приобрели вы твердотельный накопитель или только планируете покупку, после прочтения этой записи у вас может возникнуть вопрос, вынесенный в подзаголовок.
Ни одна программа тип памяти не показывает. Эту информацию можно найти в обзорах накопителей, но есть и более короткий путь, особенно когда нужно сравнить между собой несколько кандидатов на покупку.
На специализированных сайтах можно найти базы данных по SSD, и вот вам пример.
Я без проблем нашел там характеристики памяти своих накопителей, за исключением SanDisk P4 (mSATA), установленного в планшете.
В КАКИХ SSD УСТАНОВЛЕНА САМАЯ ЛУЧШАЯ ПАМЯТЬ!
Давайте сначала пройдемся по основным пунктам статьи:
• производителей NAND можно пересчитать по пальцам одной руки
• в современных твердотельных накопителях используется два типа NAND: MLC и TLC, только набирающая обороты
•MLC NAND различается интерфейсами:
• ONFi (Intel, Micron) и Toggle Mode (Samsung, Toshiba)
ONFi MLC NAND делится на асинхронную (дешевле и медленнее) и синхронную (дороже и быстрее)
• производители SSD используют память разных интерфейсов и типов, создавая разнообразный модельный ряд на любой кошелек
• официальные спецификации редко содержат конкретную информацию, но базы данных SSD позволяют точно определить тип NAND
Конечно, в таком зоопарке не может быть однозначного ответа на вопрос, вынесенный в подзаголовок. Вне зависимости от бренда накопителя, NAND соответствует заявленным спецификациям, иначе ОЕМ-производителям нет смысла ее покупать (они дают на SSD свою гарантию).
Однако… представьте, что лето вас порадовало небывалым урожаем земляники на даче!
Она вся сочная и сладкая, но вам просто не съесть столько, поэтому вы решили продать часть собранных ягод.
Самую лучшую землянику вы оставите себе или выставите на продажу? 🙂
Можно предположить, что производители NAND устанавливают самую лучшую память в свои накопители. Учитывая ограниченное количество компаний, выпускающих NAND, список производителей «коробочных» SSD получается еще короче:
• Crucial (подразделение Micron)
• SanDisk (и отчасти Toshiba)
Опять же, это лишь предположение, не подкрепленное достоверными фактами. Но разве вы поступили бы иначе на месте этих компаний? Между тем, у Micron есть флэш-память с маркетинговым названием XPERT (eXtended Performance and Enhanced Reliability Technology), а у Intel — так называемая High Endurance Technology MLC, которую они не продают сторонним производителям SSD.
В следующей статье серии я планирую похожий обзор контроллеров твердотельных накопителей, хотя и более короткий. Однако мне очень важно понять, насколько вам нужны такие материалы.
question-96Моя специализация – клиентские ОС Microsoft, и я предполагаю, что читатели этого блога ожидают материалов именно на тему Windows и программ. Общие обзоры компонентов SSD не имеют к этому никакого отношения.
Пожалуйста, напишите в комментариях:
интересна ли вам была эта запись
помогла ли она вам чем-нибудь
что конкретно нового вы узнали
Тех, кто уже приобрел SSD, я прошу ответить на два дополнительных вопроса:
Учитывали ли вы характеристики NAND перед покупкой накопителя?
Вообще, на какие критерии вы обращали внимание?
Статья слишком общая и частично устаревшая.
Реальные тесты
Надёжность SSD: результаты ресурсных испытаний c 3dnews.ru [обновлено 6.02.19]
Отдаю предпочтение только Samsung и SanDisk. Хотя сейчас в нотбуке стоит Kingston 240gb. Вообще считаю серию EVO у самсунгов бест оф зэ бест.
Флеш-память стремительно скатывается в говно. В погоне за компактностью уже изобрели QLC(4 бита на ячейку) и PLC(5 бит на ячейку) у которых вообще практически нет циклов перезаписи, скорость ужасная и энергопотребление огромное.
И если для SSD производители ещё кое-как признаются какой это тип памяти и ресурс, то вот на рынке флешек и microSD совсем беда. Покупаешь одноразовую подделку 🙁
Прочитал вслух название поста и явился демон =( Что теперь делать?
Народ смотрит только на цену. Когда мне было нужно купить SSD чтобы «встряхнуть» компик на i7-2600 я посмотрел только на цену и срок гарантии, немного на скорость. И купил WD Blue в итоге (не реклама). Покупать вчетверо дороже интеловские диски мне даже в голову не пришло.
Учителя, рассказавшего о зарплате, обвиняют в экстремизме
🇷🇺Сельского учителя, опубликовавшего посты о жизни на 14 тысяч рублей, обвиняют в экстремизме
«Курские известия» связались с Александром и узнали подробности. Педагог уже пообщался с полицией.
По мнению педагога, история может быть связана с родственником директора техникума. Он будет продолжать эксперимент и готов защищать свои права в суде.
В пресс-службе УМВД по Курской области прокомментировали ситуацию:
— Приглашение гражданина в отдел полиции не связано с видеообращением, опубликованным 29 ноября 2021 года, по поводу его дохода. Мужчину пригласили для дачи объяснения в рамках проверки по факту размещения в его аккаунте в общем доступе в сети Интернет материалов с изображением символики, которая запрещена на территории Российской Федерации. Данный факт зарегистрирован 24 ноября 2021 года. Стоит отметить, что в числе подписчиков страницы зарегистрированы, в том числе, несовершеннолетние.
В настоящее время рассматривается вопрос о привлечении его к ответственности по ст.20.3 КоАП РФ «Пропаганда либо публичное демонстрирование нацистской атрибутики или символики, либо атрибутики или символики экстремистских организаций, либо иных атрибутики или символики, пропаганда либо публичное демонстрирование которых запрещены федеральными законами.
Преподаватель Суджанского сельскохозяйственного техникума Александр Мамкин занимал 3-е место на Всероссийском педагогическом конкурсе «Мои инновации в образовании – 2018». Тема его работы: «Применение проектной технологии веб-квест при изучении истории» стала третьей в номинации «Инновации в преподавании общественных наук».
Будьте терпимее
Опять «умная» лента на пикабу
Полезный совет, если прорвало стояк с водой
Хочу поделиться своим горьким опытом. Вчера перекрывал воду в квартире, повернул барашек шарового крана на стояке с холодной водой и. кран остался у меня в руках. Ситуация примерно такая:
Дом высотный, давление хорошее, на пол лилось примерно по ведру за 2 секунды. Сначала пытался выливать воду ведрами в унитаз, но они наполнялись мновенно.
Решение пришло неожиданно от супруги: взять шланг от пылесоса и отвести воду в унитаз.
Сейчас это кажется очень простым решением, но в стрессовой ситуации голова была занята осмыслением страшных последствий потопа.
Обычный шланг от пылесоса помог дождаться прихода слесаря, который перекрыл воду в доме и прикрутил новый кран.
Если бы не шланг, то за час ожидания я бы затопил 5 этажей и неизвестно сколько бы платил за ремонт у соседей. Всем добра!
«Елена, алё!» Продолжение
Некто padillion наложил эти дикие вопли на современный бит, и получился такой трек, который неплохо так разошелся по интернету:
Самое смешное, что эта резкая мадам нашла его в инстаграме и пригрозила судом, попутно наговорив на новый трек. Там глядишь и до альбома недалеко. Ребята, это заслуженная слава!
Дисклеймер: никакого отношения к упомянутым персонажам не имею, никого не раскручиваю и не рекламирую. Форсю мем.
Я тоже душнила
У жены во время беременности был жёсткий токсикоз. Да такой, что два раза приходилось ложиться в перинатальный центр. Речь пойдет про первый раз. В четверг жена с направлением от врача на госпитализацию приезжает в перинатальный центр, а там говорят «мест нет». На вопрос «что делать и как быть» отвечают «идите к главврачу на второй этаж». Главврач говорит жене «мест нет, может быть завтра кого-то выпишут и будет место, но скорее всего до понедельника ничего не будет». Перинатальный центр новый и большой, странно, что там нет мест. Да и создалась впечатление, что человек финансовой благодарности захотел. Жена в слезах звонит мне, меня же такой поворот конкретно взбесил, ибо есть направление на госпитализацию, беременной девушке реально очень плохо, а они тут на денежки намекают и отфутболивают. Приезжаю я в перинаталку и начинаю просто звонить в министерство здравоохранения. С третьего раза дозваниваюсь куда надо (два первых раза меня переадресовывали на министерства по другим областям) и минут через 15 с небес на землю (с какого-то этажа выше на первый этаж к нам) спускается какая-то баба и ведёт нас в абсолютно пустую палату ставить капельницы жене, попутно приговаривая «ой ну что вы сразу письма писать, это всё решается на местном уровне, надо было к главврачу зайти». Потом ещё мне звонили из министерства, спрашивали решился ли мой вопрос и главврач сам звонил мне и рассказывал сказки как он сейчас будет нам место искать. По итогу в четверг капельницы прокапали, отправили домой. На следующий день в пятницу жену положили одну в палату (палаты на двоих) и при этом на этаже было очень много пустых палат.
Я считаю, что в данной ситуации, когда время очень дорого и на кону жизнь неродившегося ребёнка, я всё сделал правильно. Не стал бегать обивать пороги и пробовать «договориться», а решил всё быстро несколькими звонками.
Всем здоровья! Не бойтесь и не стесняйтесь предпринимать какие-то действия в экстренных ситуациях.
Ячейки памяти в SSD. Как работают, почему ломаются? SLC, MLC, TLC, QLC
Для данной статьи существует видоеверсия с большим количеством анимаций, рекомендую к просмотру именно её, вместо текстовой версии:
Принципы работы ячеек памяти, определение носителя информации, принципы считывания состояния ячейки памяти
Каждая ячейка памяти — это полевой транзистор с изолированным затвором, но не простой, а хитрый. Со сдвоенным затвором. Если кто не в курсе общая суть полевого транзистора заключается в следующем:
У нас есть исток и сток, проще говоря вход и выход, и между ними область через которую может проходить заряд от стока к истоку, и есть ещё одна отделённая область от этих структур диэлектриком, которая называется — затвор. И если подать заряд на затвор, то затвор своим электромагнитным полем начинает влиять на легированную часть транзистора между стоком и истоком и этим перекрывает возможность протекания тока между ними.
Бывают конструкции наоборот, что если не подавать заряд на затвор, то ток от стока к истоку не идёт, а если подавать — то идёт. Но общая суть — это то, что затвор — это типа ручки у крана. Когда хочешь открываешь, когда хочешь закрываешь. Ну либо замок у ворот, собственно термин «затвор» как бы и намекает, что мы им можем затворять или отворять ток между стоком и истоком. Наиболее классический вариант для ячеек памяти — это когда без подачи питания на затвор — между стоком и истоком ток не идёт, а при питании плюсом на затвор — ток — идёт. Очень удобно в части управления, но как этим сохранять информацию — не понятно. И для того чтобы сохранять информацию была придумана модификация с двумя затворами. Первый, грубо говоря, внешний. Простой обыкновенный, а второй — внутренний, хитрый, называемый «плавающим». А хитрость его в том, что он со всех сторон окружён изолятором.
То есть если поместить в него какой-то заряд, то этот заряд сам никуда не денется. И тут начинается самое интересное. Предположим, что заряда на плавающем затворе — нет. В таком случае — транзистор работает ровно так же, как и в случае когда второго затвора не было вообще. То есть не подаём заряд на затвор ток не идёт — подаём — ток идёт. Но если в плавающий затвор подать отрицательный заряд, то логика работы меняется. Если не подавать заряд на обычный затвор, то ток идти не будет, но если падать положительный заряд, то этот заряд будет компенсирован отрицательным зарядом плавающего затвора и в сумме они не дадут необходимого заряда чтобы ток через транзистор пошёл. То есть в случае активации транзистора ток через него всё равно не идёт. Иными словами — в случае подачи положительного заряда, если на плавающем ничего нет, то транзистор будет открыт, а если заряд есть — то транзистор будет закрыт. А теперь вспоминаем, что заряд в плавающем затворе никуда не девается, в том числе и в моменты когда питание на весь накопитель не подаётся вообще. То есть в любой момент времени мы можем по поведению тока сток исток понять есть ли заряд в нашем хитром затворе или нет. То есть прочитать заранее сохранённое состояние нашего транзистора, который стал уже вовсе и не транзистором, а ячейкой памяти.
Запись данных в ячейку памяти и причины ограниченности ресурса работы SSD
С запоминанием информации в целом понятно. С тем как понять что записано надеюсь тоже понятно. Остаётся понять только то, как осуществляется зарядка и разрядка плавающего изолированного затвора. То есть изменение состояния самой ячейки памяти. Иными словами — запись и стирание данных. И тут всё в общем-то не так сложно. Общая суть в том, что если приложить достаточное напряжение — то электроны могут пройти через диэлектрик, в нашем случае диоксид кремния.
При подаче высокого напряжения на Затвор и Сток электроны вынужденно проходят в область плавающего затвора
И имея вокруг нашего хитрого затвора достаточную разность потенциалов можно в него насильно впихнуть электроны, или наоборот высосать из него электроны, тем самым придав ему некий заряд, который сам по себе, без этих повышенных напряжений, никуда уже не денется долгие годы. Собственно таким образом и производится запись в ячейки памяти.
Подача отрицательного заряда на затвор «выталкивает» электроны из плавающего затвора и они притягиваются на исток
Проблема только в том, что эти насильственные действия над транзистором на повышенном напряжении разрушают диоксид кремния вокруг затвора раз за разом при каждом прохождении через него заряда.
Что ведёт к деградации свойств, и в конечном итоге к выходу ячейки памяти из строя. То есть при многократном воздействии на изолированный плавающий затвор для изменения его заряда — разрушается транзистор. То есть для транзистора существует предельное количество циклов изменения состояния этого затвора перед тем как ячейка памяти перестанет работать должным образом. Естественно разработчики накопителей в курсе проблемы, это всё учитывается в создаваемых контроллеров памяти, которые стремятся равномерно производить износ всего накопителя, вводятся резервные области для замены вышедших из строя ячеек, есть и другие софтовые оптимизации уже и на уровне операционных систем позволяющие максимально редко производить ненужные перезаписи.
Многобитные ячейки памяти. MLC, TLC, QLC. Принципы работы и отличия от однобитных. Причины падения скорости от увеличения битности.
С точки зрения работы транзистора наш дополнительный затвор позволяет сдвигать сток затворную характеристику. И кардинальное наличие заряда в плавающем затворе сдвигает эту характеристику так далеко, что рабочие напряжения для транзистора его не открывают.
Отрицательные заряды сильно смещают напряжение Затвор-исток при котором начинает идти ток сток-исток
И в показанной схеме у нас есть некий широкий диапазон напряжений на затворе который нам позволяет понять что записано условно 0 или 1. То есть мы сохраняем 1 бит информации.
И описанный метод записи и чтения — полностью цифровой. То есть транзистор либо проводит ток, либо — нет, и это мы можем интерпретировать условно в то, что записан условно 0 или 1.
И так работает SLC память, SLC расшифровывается как «Single-Level Cells», то есть одноуровневая ячейка. Величины зарядов, напряжения и прочее параметры плавающего затвора — не имеют особого значения значения, как-то произведена перезарядка затвора, как-то проводит транзистор и в целом это всё надёжно и просто работает. Однако при разных градациях зарядов на плавающем затворе — напряжения на которых начинает открываться транзистор разные. И если фиксировать не только факт проводимости транзистора, а характеристику проводимости — то можно более точно и контролируемо заряжая плавающий затвор получить больше информации при записи в одну ячейку.
Набор стоко-затворных характеристик для разного уровня заряда плавающего затвора
И это уже не цифровая запись, а аналоговая, то есть если мы зарядили чуть-чуть плавающий затвор, то и сместили мы характеристику чуть-чуть и у нас транзистор открывается если подать на затвор напряжение чуть выше чем минимально нужное, если зарядить плавающий затвор чуть сильнее, то и открыть транзистор будет ещё сложнее и т.д. В теории можно допустить бесконечное количество градаций уровней записей. Сейчас наверное некоторые из вас в шоке, но ячейки памяти в MLC, TLC и QLC SSD накопителях — это аналоговые носители информации, а не цифровые. Потому что именно таким образом и производиться запись многобитных ячеек памяти. Ячейка всё равно может сохранить только одно состояние записи, но если для однобитных ячеек записью было наличие или отсутствие заряда на плавающем затворе, то в многобитных ячейках под записью понимается не факт наличия или отсутствия заряда — а величина заряда. И уже эта величина при чтении должна быть оцифрована таким образом, чтобы это можно было записать в более чем один бит информации. И при оцифровывании любого аналогового сигнала емкость его данных в цифровом виде зависит от получаемой дискретности уровней распознавания сигнала. То есть чем больше градаций сигнала можно распознать, тем выше ёмкость данных аналогового сигнала. В текущий момент дискретизация сигнала производиться не очень сильная.
Для двух битов данных нужно распознать 4 уровня величины сохранённого заряда,
для трёх бит нужно распознать 8 уровней величины заряда,
и для 4-х бит нужно распознавать до 16 уровней заряда.
И распознование производится по смещению характеристики открытия транзистора. Грубо говоря, если у нас разбит весь диапазон тестирования открытия транзистора на 16 диапазонов, то надо по очереди тестировать каждое напряжение на затвор и зная при каком из них у нас в достаточной степени открылся транзистор — такой уровень и считать записанным в этом транзисторе. И просто каждой градации этих напряжений даются порядковые номера которые и есть цифровая интерпретация уровня заряда плавающего затвора. И для 16 градаций или для QLC памяти — это 4 бита. Некоторые компании грозятся сейчас выпустить 5 битные ячейки.
Как вы понимаете именно по технике разницы с 4-х битными не будет, но градаций будет уже не 16, а 32. То есть надо очень точно попадать в нужный диапазон заряда при наполнении плавающего затвора, и гораздо сложнее становится процесс считывания сигнала, вернее процесс оцифровки уровня заряда плавающего затвора. Естественно при этом снижается скорость работы с памятью. Кроме того — напомню, что процесс наполнения затвора зарядом — это аварийный для транзистора режим работы, и этот аварийный режим надо ещё очень точно контролировать, чтобы действительно был помещён нужный заряд, а не чуть больше или чуть меньше, потому что если заряд не попал в строгие рамки, то при его интерпритации он может дать другие цифровые значения. И, естественно, чем больше градаций — тем сложнее попасть в нужный диапазон. И в многобитных ячейках — неверная запись не является чем-то очень редким, поэтому для записи всегда требуется контроль на ошибки, что отнимает время, снижая скорость работы, вдобавок в случае ошибочной записи требуется перезапись ячеек в странице в которой была произведена ошибочная запись, что, как вы понимаете, ещё и снижает ресурс.
Причины снижения ресурса работы накопителей, запись накопителей с уплотнением данных.
Но не только этим снижается ресурс записи на многобитных ячейках. Как вы могли понять из теории — аппаратных различий для MLC, TLC или QLC памяти — нет. Меняется только процесс интерпретации записи, который задаётся программно. Иными словами если контроллер накопителя это позволяет, то QLC можно записывать в более простых для записи TLC, MLC или SLC режимах. Что сейчас активно и делается, хотя не на всех накопителях, но если пару лет назад было редкость — перезапись накопителей с уплотнением, то сейчас редкость когда такого не происходит. Работу уплотнения записи отлично было видно в тестах накопителей, когда при полной последовательной записи скорость падала в несколько градаций.
Пример «Ступенчатой» скорости записи, когда она падает градациями несколько раз
Разберёмся в том, что при этом происходило с накопителем.
Вначале накопитель занимал весь свой объём записывая всё в однобитном режиме. То есть абы какой заряд уже абы как смещает стоко-затворную характеристику, но этого достаточно чтобы записать один бит на ячейку. И в таком режиме весь объём ячеек быстро заканчивается. По данным о диске он ещё записан совсем чуть-чуть, но на самом деле он полностью забит данными. И для дальнейшего записывания накопитель начинает уплотнять запись. Но происходит это исключительно перезаписыванием. То есть надо во временное место скопировать данные страницы, далее затереть записанные данные, то есть вытащить из плавающих затворов заряды, дальше взять новый кусок информации, собрать его со старым куском информации и записать в те же ячейки, но уже не абы как, а, допустим, в MLC режиме, то есть с 4-мя градациями уровней заряда плавающих затворов. Далее накопитель так же заполняется полностью уже в режиме MLC. Если надо продолжить запись, а в MLC режиме место опять закончилось, то процесс уплотнения, то есть перезаписи в более плотном формате производиться уже в TLC режиме. Далее ещё может быть произведена запись в QLC режиме. Подобный механизм работает и в случае если вам хватило места до уплотнения. Как только вы перестаёте заполнять накопитель он автоматически начинает уплотнять запись, чтобы в случае необходимости он мог опять кратковременно вести запись в однобитном режиме используя свободный остаток. Хотя ещё раз напомню, что не все накопители так делают. В некоторых выделен фиксированный объём для быстрой записи и дальше накопитель заполняется уже с финальной плотностью.
Естественно такое огромное количество травмирующих ячейки перезаписей а также перезаписей из-за ошибок — крайне негативно сказывается на долговечности работы ячеек. Кроме того при большей плотности записи для изменения одного и того же объёма данных записанных случайным образом потребуется перезаписать больше страниц накопителя. Иными словами — ресурс накопителей от увеличения плотности резко падает и, в общем-то, причин на это аж несколько.
Надеюсь теперь полученные знания сделают для вас тесты накопителей увлекательнее.
- Что приготовить с опятами замороженными
- Sgl 1chl что значит