средняя длина кода хаффмана

Алгоритм сжатия Хаффмана

В преддверии старта курса «Алгоритмы для разработчиков» подготовили для вас перевод еще одного полезного материала.

средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

Кодирование Хаффмана – это алгоритм сжатия данных, который формулирует основную идею сжатия файлов. В этой статье мы будем говорить о кодировании фиксированной и переменной длины, уникально декодируемых кодах, префиксных правилах и построении дерева Хаффмана.

Мы знаем, что каждый символ хранится в виде последовательности из 0 и 1 и занимает 8 бит. Это называется кодированием фиксированной длины, поскольку каждый символ использует одинаковое фиксированное количество битов для хранения.

Допустим, дан текст. Каким образом мы можем сократить количество места, требуемого для хранения одного символа?

Основная идея заключается в кодировании переменной длины. Мы можем использовать тот факт, что некоторые символы в тексте встречаются чаще, чем другие (см. здесь), чтобы разработать алгоритм, который будет представлять ту же последовательность символов меньшим количеством битов. При кодировании переменной длины мы присваиваем символам переменное количество битов в зависимости от частоты их появления в данном тексте. В конечном итоге некоторые символы могут занимать всего 1 бит, а другие 2 бита, 3 или больше. Проблема с кодированием переменной длины заключается лишь в последующем декодировании последовательности.

Как, зная последовательность битов, декодировать ее однозначно?

Рассмотрим строку «aabacdab». В ней 8 символов, и при кодировании фиксированной длины для ее хранения понадобится 64 бита. Заметим, что частота символов «a», «b», «c» и «d» равняется 4, 2, 1, 1 соответственно. Давайте попробуем представить «aabacdab» меньшим количеством битов, используя тот факт, что «a» встречается чаще, чем «b», а «b» встречается чаще, чем «c» и «d». Начнем мы с того, что закодируем «a» с помощью одного бита, равного 0, «b» мы присвоим двухбитный код 11, а с помощью трех битов 100 и 011 закодируем «c» и «d».

В итоге у нас получится:

Таким образом строку «aabacdab» мы закодируем как 00110100011011 (0|0|11|0|100|011|0|11), используя коды, представленные выше. Однако основная проблема будет в декодировании. Когда мы попробуем декодировать строку 00110100011011, у нас получится неоднозначный результат, поскольку ее можно представить как:

Чтобы избежать этой неоднозначности, мы должны гарантировать, что наше кодирование удовлетворяет такому понятию, как префиксное правило, которое в свою очередь подразумевает, что коды можно декодировать всего одним уникальным способом. Префиксное правило гарантирует, что ни один код не будет префиксом другого. Под кодом мы подразумеваем биты, используемые для представления конкретного символа. В приведенном выше примере 0 – это префикс 011, что нарушает префиксное правило. Итак, если наши коды удовлетворяют префиксному правилу, то можно однозначно провести декодирование (и наоборот).

Давайте пересмотрим пример выше. На этот раз мы назначим для символов «a», «b», «c» и «d» коды, удовлетворяющие префиксному правилу.

С использованием такого кодирования, строка «aabacdab» будет закодирована как 00100100011010 (0|0|10|0|100|011|0|10). А вот 00100100011010 мы уже сможем однозначно декодировать и вернуться к нашей исходной строке «aabacdab».

Кодирование Хаффмана

Теперь, когда мы разобрались с кодированием переменной длины и префиксным правилом, давайте поговорим о кодировании Хаффмана.

Метод основывается на создании бинарных деревьев. В нем узел может быть либо конечным, либо внутренним. Изначально все узлы считаются листьями (конечными), которые представляют сам символ и его вес (то есть частоту появления). Внутренние узлы содержат вес символа и ссылаются на два узла-наследника. По общему соглашению, бит «0» представляет следование по левой ветви, а «1» — по правой. В полном дереве N листьев и N-1 внутренних узлов. Рекомендуется, чтобы при построении дерева Хаффмана отбрасывались неиспользуемые символы для получения кодов оптимальной длины.

Мы будем использовать очередь с приоритетами для построения дерева Хаффмана, где узлу с наименьшей частотой будет присвоен высший приоритет. Ниже описаны шаги построения:

средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

Путь от корня до любого конечного узла будет хранить оптимальный префиксный код (также известный, как код Хаффмана), соответствующий символу, связанному с этим конечным узлом.

средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана
Дерево Хаффмана

Ниже вы найдете реализацию алгоритма сжатия Хаффмана на языках C++ и Java:

Примечание: память, используемая входной строкой, составляет 47 * 8 = 376 бит, а закодированная строка занимает всего 194 бита, т.е. данные сжимаются примерно на 48%. В программе на С++ выше мы используем класс string для хранения закодированной строки, чтобы сделать программу читаемой.

Поскольку эффективные структуры данных очереди приоритетов требуют на вставку O(log(N)) времени, а в полном бинарном дереве с N листьями присутствует 2N-1 узлов, и дерево Хаффмана – это полное бинарное дерево, то алгоритм работает за O(Nlog(N)) времени, где N – количество символов.

Источник

Алгоритм Хаффмана

Алгоритм Хаффмана (англ. Huffman’s algorithm) — алгоритм оптимального префиксного кодирования алфавита. Был разработан в 1952 году аспирантом Массачусетского технологического института Дэвидом Хаффманом при написании им курсовой работы. Используется во многих программах сжатия данных, например, PKZIP 2, LZH и др.

Содержание

Определение [ править ]

Алгоритм построения бинарного кода Хаффмана [ править ]

Построение кода Хаффмана сводится к построению соответствующего бинарного дерева по следующему алгоритму:

Время работы [ править ]

Пример [ править ]

средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

В дереве Хаффмана будет [math]5[/math] узлов:

Узелabrсd
Вес52211
Узелabrcd
Вес5222

Затем опять объединим в один узел два минимальных по весу узла — [math]r[/math] и [math]cd[/math] :

Узелarcdb
Вес542

Еще раз повторим эту же операцию, но для узлов [math]rcd[/math] и [math]b[/math] :

Узелbrcda
Вес65

На последнем шаге объединим два узла — [math]brcd[/math] и [math]a[/math] :

Узелabrcd
Вес11

Остался один узел, значит, мы пришли к корню дерева Хаффмана (смотри рисунок). Теперь для каждого символа выберем кодовое слово (бинарная последовательность, обозначающая путь по дереву к этому символу от корня):

Символabrсd
Код01110110001001

Корректность алгоритма Хаффмана [ править ]

Чтобы доказать корректность алгоритма Хаффмана, покажем, что в задаче о построении оптимального префиксного кода проявляются свойства жадного выбора и оптимальной подструктуры. В сформулированной ниже лемме показано соблюдение свойства жадного выбора.

[math]f[x]d_T(x) + f[y]d_T(y) = (f[x] + f[y])(d_(z) + 1) = f[z]d_(z) + (f[x] + f[y])[/math]

из чего следует, что

[math] B(T) = B(T’) + f[x] + f[y] [/math]

Источник

Алгоритм Хаффмана на пальцах

Вы вероятно слышали о Дэвиде Хаффмане и его популярном алгоритме сжатия. Если нет, то поищите информацию в интернете — в этой статье я не буду вас грузить историей или математикой. Сегодня я хочу просто попытаться показать вам практический пример применения алгоритма к символьной строке.

Примечание переводчика: под символом автор подразумевает некий повторяющийся элемент исходной строки — это может быть как печатный знак (character), так и любая битовая последовательность. Под кодом подразумевается не ASCII или UTF-8 код символа, а кодирующая последовательность битов.

К статье прикреплён исходный код, который наглядно демонстрирует, как работает алгоритм Хаффмана — он предназначен для людей, которые плохо понимают математику процесса. В будущем (я надеюсь) я напишу статью, в которой мы поговорим о применении алгоритма к любым файлам для их сжатия (то есть, сделаем простой архиватор типа WinRAR или WinZIP).

Идея, положенная в основу кодировании Хаффмана, основана на частоте появления символа в последовательности. Символ, который встречается в последовательности чаще всего, получает новый очень маленький код, а символ, который встречается реже всего, получает, наоборот, очень длинный код. Это нужно, так как мы хотим, чтобы, когда мы обработали весь ввод, самые частотные символы заняли меньше всего места (и меньше, чем они занимали в оригинале), а самые редкие — побольше (но так как они редкие, это не имеет значения). Для нашей программы я решил, что символ будет иметь длину 8 бит, то есть, будет соответствовать печатному знаку.

Мы могли бы с той же простотой взять символ длиной в 16 бит (то есть, состоящий из двух печатных знаков), равно как и 10 бит, 20 и так далее. Размер символа выбирается, исходя из строки ввода, которую мы ожидаем встретить. Например, если бы я собрался кодировать сырые видеофайлы, я бы приравнял размер символа к размеру пикселя. Помните, что при уменьшении или увеличении размера символа меняется и размер кода для каждого символа, потому что чем больше размер, тем больше символов можно закодировать этим размером кода. Комбинаций нулей и единичек, подходящих для восьми бит, меньше, чем для шестнадцати. Поэтому вы должны подобрать размер символа, исходя из того по какому принципу данные повторяются в вашей последовательности.

Для этого алгоритма вам потребуется минимальное понимание устройства бинарного дерева и очереди с приоритетами. В исходном коде я использовал код очереди с приоритетами из моей предыдущей статьи.

Предположим, у нас есть строка «beep boop beer!», для которой, в её текущем виде, на каждый знак тратится по одному байту. Это означает, что вся строка целиком занимает 15*8 = 120 бит памяти. После кодирования строка займёт 40 бит (на практике, в нашей программе мы выведем на консоль последовательность из 40 нулей и единиц, представляющих собой биты кодированного текста. Чтобы получить из них настоящую строку размером 40 бит, нужно применять битовую арифметику, поэтому мы сегодня не будем этого делать).

Чтобы лучше понять пример, мы для начала сделаем всё вручную. Строка «beep boop beer!» для этого очень хорошо подойдёт. Чтобы получить код для каждого символа на основе его частотности, нам надо построить бинарное дерево, такое, что каждый лист этого дерева будет содержать символ (печатный знак из строки). Дерево будет строиться от листьев к корню, в том смысле, что символы с меньшей частотой будут дальше от корня, чем символы с большей. Скоро вы увидите, для чего это нужно.

Чтобы построить дерево, мы воспользуемся слегка модифицированной очередью с приоритетами — первыми из неё будут извлекаться элементы с наименьшим приоритетом, а не наибольшим. Это нужно, чтобы строить дерево от листьев к корню.

Для начала посчитаем частоты всех символов:

СимволЧастота
‘b’3
‘e’4
‘p’2
‘ ‘2
‘o’2
‘r’1
‘!’1

После вычисления частот мы создадим узлы бинарного дерева для каждого знака и добавим их в очередь, используя частоту в качестве приоритета:
средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

Теперь мы достаём два первых элемента из очереди и связываем их, создавая новый узел дерева, в котором они оба будут потомками, а приоритет нового узла будет равен сумме их приоритетов. После этого мы добавим получившийся новый узел обратно в очередь.
средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана
Повторим те же шаги и получим последовательно:
средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана
средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана
средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана
средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

Ну и после того, как мы свяжем два последних элемента, получится итоговое дерево:
средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

Теперь, чтобы получить код для каждого символа, надо просто пройтись по дереву, и для каждого перехода добавлять 0, если мы идём влево, и 1 — если направо:
средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

Если мы так сделаем, то получим следующие коды для символов:

СимволКод
‘b’00
‘e’11
‘p’101
‘ ‘011
‘o’010
‘r’1000
‘!’1001

Чтобы расшифровать закодированную строку, нам надо, соответственно, просто идти по дереву, сворачивая в соответствующую каждому биту сторону до тех пор, пока мы не достигнем листа. Например, если есть строка «101 11 101 11» и наше дерево, то мы получим строку «pepe».

Важно иметь в виду, что каждый код не является префиксом для кода другого символа. В нашем примере, если 00 — это код для ‘b’, то 000 не может оказаться чьим-либо кодом, потому что иначе мы получим конфликт. Мы никогда не достигли бы этого символа в дереве, так как останавливались бы ещё на ‘b’.

На практике, при реализации данного алгоритма сразу после построения дерева строится таблица Хаффмана. Данная таблица — это по сути связный список или массив, который содержит каждый символ и его код, потому что это делает кодирование более эффективным. Довольно затратно каждый раз искать символ и одновременно вычислять его код, так как мы не знаем, где он находится, и придётся обходить всё дерево целиком. Как правило, для кодирования используется таблица Хаффмана, а для декодирования — дерево Хаффмана.

Входная строка: «beep boop beer!»
Входная строка в бинарном виде: «0110 0010 0110 0101 0110 0101 0111 0000 0010 0000 0110 0010 0110 1111 0110 1111 0111 0000 0010 0000 0110 0010 0110 0101 0110 0101 0111 0010 0010 000»
Закодированная строка: «0011 1110 1011 0001 0010 1010 1100 1111 1000 1001»
Как вы можете заметить, между ASCII-версией строки и закодированной версией существует большая разница.

Приложенный исходный код работает по тому же принципу, что и описан выше. В коде можно найти больше деталей и комментариев.

Все исходники были откомпилированы и проверены с использованием стандарта C99. Удачного программирования!

Чтобы прояснить ситуацию: данная статья только иллюстрирует работу алгоритма. Чтобы использовать это в реальной жизни, вам надо будет поместить созданное вами дерево Хаффмана в закодированную строку, а получатель должен будет знать, как его интерпретировать, чтобы раскодировать сообщение. Хорошим способом сделать это, является проход по дереву в любом порядке, который вам нравится (я предпочитаю обход в глубину) и конкатенировать 0 для каждого узла и 1 для листа с битами, представляющими оригинальный символ (в нашем случае, 8 бит, представляющие ASCII-код знака). Идеальным было бы добавить это представление в самое начало закодированной строки. Как только получатель построит дерево, он будет знать, как декодировать сообщение, чтобы прочесть оригинал.

Источник

Код Хаффмана

Построение кода Хаффмана для таблицы вероятностей.

Вот калькулятор, который рассчитывает коды Хаффмана для заданной вероятности символов.
Немного теории под калькулятором.

средняя длина кода хаффмана. Смотреть фото средняя длина кода хаффмана. Смотреть картинку средняя длина кода хаффмана. Картинка про средняя длина кода хаффмана. Фото средняя длина кода хаффмана

Код Хаффмана

Таблица вероятности символов

Таблица вероятности символов

Импортировать данные Ошибка импорта

Небольшой отрывок из Википедии.

Алгоритм Хаффмана — адаптивный жадный алгоритм оптимального префиксного кодирования алфавита с минимальной избыточностью. Был разработан в 1952 году аспирантом Массачусетского технологического института Дэвидом Хаффманом при написании им курсовой работы. В настоящее время используется во многих программах сжатия данных.

Этот метод кодирования состоит из двух основных этапов:
Построение оптимального кодового дерева.
Построение отображения код-символ на основе построенного дерева.

Идея алгоритма состоит в следующем: зная вероятности символов в сообщении, можно описать процедуру построения кодов переменной длины, состоящих из целого количества битов. Символам с большей вероятностью ставятся в соответствие более короткие коды. Коды Хаффмана обладают свойством префиксности (т. е. ни одно кодовое слово не является префиксом другого), что позволяет однозначно их декодировать.
Классический алгоритм Хаффмана на входе получает таблицу частот встречаемости символов в сообщении. Далее на основании этой таблицы строится дерево кодирования Хаффмана (Н-дерево).

Этот процесс можно представить как построение дерева, корень которого — символ с суммой вероятностей объединенных символов, получившийся при объединении символов из последнего шага, его n0 потомков — символы из предыдущего шага и т. д.

Чтобы определить код для каждого из символов, входящих в сообщение, мы должны пройти путь от корня до листа дерева, соответствующего текущему символу, накапливая биты при перемещении по ветвям дерева (первая ветвь в пути соответствует младшему биту). Полученная таким образом последовательность битов является кодом данного символа, записанным в обратном порядке.

Источник

Код Хаффмана

Алгоритм Хаффмана — адаптивный жадный алгоритм оптимального префиксного кодирования алфавита с минимальной избыточностью. Был разработан в 1952 году аспирантом Массачусетского технологического института Дэвидом Хаффманом при написании им курсовой работы. В настоящее время используется во многих программах сжатия данных.

В отличие от алгоритма Шеннона — Фано, алгоритм Хаффмана остаётся всегда оптимальным и для вторичных алфавитов m2 с более чем двумя символами.

Этот метод кодирования состоит из двух основных этапов:

Содержание

Кодирование Хаффмана

Один из первых алгоритмов эффективного кодирования информации был предложен Д. А. Хаффманом в 1952 году. Идея алгоритма состоит в следующем: зная вероятности символов в сообщении, можно описать процедуру построения кодов переменной длины, состоящих из целого количества битов. Символам с большей вероятностью ставятся в соответствие более короткие коды. Коды Хаффмана обладают свойством префиксности (т.е. ни одно кодовое слово не является префиксом другого), что позволяет однозначно их декодировать.

Классический алгоритм Хаффмана на входе получает таблицу частот встречаемости символов в сообщении. Далее на основании этой таблицы строится дерево кодирования Хаффмана (Н-дерево). [1]

Допустим, у нас есть следующая таблица частот:

157665
АБВГД

Этот процесс можно представить как построение дерева, корень которого — символ с суммой вероятностей объединенных символов, получившийся при объединении символов из последнего шага, его n0 потомков — символы из предыдущего шага и т. д.

Чтобы определить код для каждого из символов, входящих в сообщение, мы должны пройти путь от листа дерева, соответствующего текущему символу, до его корня, накапливая биты при перемещении по ветвям дерева (первая ветвь в пути соответствует младшему биту). Полученная таким образом последовательность битов является кодом данного символа, записанным в обратном порядке.

Для данной таблицы символов коды Хаффмана будут выглядеть следующим образом.

АБВГД
0100101110111

Поскольку ни один из полученных кодов не является префиксом другого, они могут быть однозначно декодированы при чтении их из потока. Кроме того, наиболее частый символ сообщения А закодирован наименьшим количеством бит, а наиболее редкий символ Д — наибольшим.

При этом общая длина сообщения, состоящего из приведённых в таблице символов, составит 87 бит (в среднем 2,2308 бита на символ). При использовании равномерного кодирования общая длина сообщения составила бы 117 бит (ровно 3 бита на символ). Заметим, что энтропия источника, независимым образом порождающего символы с указанными частотами составляет

2,1858 бита на символ, т.е. избыточность построенного для такого источника кода Хаффмана, понимаемая, как отличие среднего числа бит на символ от энтропии, составляет менее 0,05 бит на символ.

Классический алгоритм Хаффмана имеет ряд существенных недостатков. Во-первых, для восстановления содержимого сжатого сообщения декодер должен знать таблицу частот, которой пользовался кодер. Следовательно, длина сжатого сообщения увеличивается на длину таблицы частот, которая должна посылаться впереди данных, что может свести на нет все усилия по сжатию сообщения. Кроме того, необходимость наличия полной частотной статистики перед началом собственно кодирования требует двух проходов по сообщению: одного для построения модели сообщения (таблицы частот и Н-дерева), другого для собственно кодирования. Во-вторых, избыточность кодирования обращается в ноль лишь в тех случаях, когда вероятности кодируемых символов являются обратными степенями числа 2. В-третьих, для источника с энтропией, не превышающей 1 (например, для двоичного источника), непосредственное применение кода Хаффмана бессмысленно.

Адаптивное сжатие

Адаптивное сжатие позволяет не передавать модель сообщения вместе с ним самим и ограничиться одним проходом по сообщению как при кодировании, так и при декодировании.

В создании алгоритма адаптивного кодирования Хаффмана наибольшие сложности возникают при разработке процедуры обновления модели очередным символом. Теоретически можно было бы просто вставить внутрь этой процедуры полное построение дерева кодирования Хаффмана, однако, такой алгоритм сжатия имел бы неприемлемо низкое быстродействие, так как построение Н-дерева — это слишком большая работа и производить её при обработке каждого символа неразумно. К счастью, существует способ модифицировать уже существующее Н-дерево так, чтобы отобразить обработку нового символа.

Обновление дерева при считывании очередного символа сообщения состоит из двух операций.

Первая — увеличение веса узлов дерева. Вначале увеличиваем вес листа, соответствующего считанному символу, на единицу. Затем увеличиваем вес родителя, чтобы привести его в соответствие с новыми значениями веса потомков. Этот процесс продолжается до тех пор, пока мы не доберемся до корня дерева. Среднее число операций увеличения веса равно среднему количеству битов, необходимых для того, чтобы закодировать символ.

Вторая операция — перестановка узлов дерева — требуется тогда, когда увеличение веса узла приводит к нарушению свойства упорядоченности, то есть тогда, когда увеличенный вес узла стал больше, чем вес следующего по порядку узла. Если и дальше продолжать обрабатывать увеличение веса, двигаясь к корню дерева, то дерево перестанет быть деревом Хаффмана.

Чтобы сохранить упорядоченность дерева кодирования, алгоритм работает следующим образом. Пусть новый увеличенный вес узла равен W+1. Тогда начинаем двигаться по списку в сторону увеличения веса, пока не найдем последний узел с весом W. Переставим текущий и найденный узлы между собой в списке, восстанавливая таким образом порядок в дереве (при этом родители каждого из узлов тоже изменятся). На этом операция перестановки заканчивается.

После перестановки операция увеличения веса узлов продолжается дальше. Следующий узел, вес которого будет увеличен алгоритмом, — это новый родитель узла, увеличение веса которого вызвало перестановку.

Переполнение

В процессе работы алгоритма сжатия вес узлов в дереве кодирования Хаффмана неуклонно растет. Первая проблема возникает тогда, когда вес корня дерева начинает превосходить вместимость ячейки, в которой он хранится. Как правило, это 16-битовое значение и, следовательно, не может быть больше, чем 65535. Вторая проблема, заслуживающая ещё большего внимания, может возникнуть значительно раньше, когда размер самого длинного кода Хаффмана превосходит вместимость ячейки, которая используется для того, чтобы передать его в выходной поток. Декодеру все равно, какой длины код он декодирует, поскольку он движется сверху вниз по дереву кодирования, выбирая из входного потока по одному биту. Кодер же должен начинать от листа дерева и двигаться вверх к корню, собирая биты, которые нужно передать. Обычно это происходит с переменной типа «целое», и, когда длина кода Хаффмана превосходит размер типа «целое» в битах, наступает переполнение.

Можно доказать, что максимальную длину код Хаффмана для сообщений с одним и тем же входным алфавитом будет иметь, если частоты символов образует последовательность Фибоначчи. Сообщение с частотами символов, равными числам Фибоначчи до Fib (18), — это отличный способ протестировать работу программы сжатия по Хаффману.

Масштабирование весов узлов дерева Хаффмана

Принимая во внимание сказанное выше, алгоритм обновления дерева Хаффмана должен быть изменен следующим образом: при увеличении веса нужно проверять его на достижение допустимого максимума. Если мы достигли максимума, то необходимо «масштабировать» вес, обычно разделив вес листьев на целое число, например, 2, а потом пересчитав вес всех остальных узлов.

Однако при делении веса пополам возникает проблема, связанная с тем, что после выполнения этой операции дерево может изменить свою форму. Объясняется это тем, что мы делим целые числа и при делении отбрасываем дробную часть.

Правильно организованное дерево Хаффмана после масштабирования может иметь форму, значительно отличающуюся от исходной. Это происходит потому, что масштабирование приводит к потере точности нашей статистики. Но со сбором новой статистики последствия этих «ошибок» практически сходят на нет. Масштабирование веса — довольно дорогостоящая операция, так как она приводит к необходимости заново строить все дерево кодирования. Но, так как необходимость в ней возникает относительно редко, то с этим можно смириться.

Выигрыш от масштабирования

Масштабирование веса узлов дерева через определенные интервалы дает неожиданный результат. Несмотря на то, что при масштабировании происходит потеря точности статистики, тесты показывают, что оно приводит к лучшим показателям сжатия, чем если бы масштабирование откладывалось. Это можно объяснить тем, что текущие символы сжимаемого потока больше «похожи» на своих близких предшественников, чем на тех, которые встречались намного раньше. Масштабирование приводит к уменьшению влияния «давних» символов на статистику и к увеличению влияния на неё «недавних» символов. Это очень сложно измерить количественно, но, в принципе, масштабирование оказывает положительное влияние на степень сжатия информации. Эксперименты с масштабированием в различных точках процесса сжатия показывают, что степень сжатия сильно зависит от момента масштабирования веса, но не существует правила выбора оптимального момента масштабирования для программы, ориентированной на сжатие любых типов информации.

Применение

Сжатие данных по Хаффману применяется при сжатии фото- и видеоизображений (JPEG, стандарты сжатия MPEG), в архиваторах (PKZIP, LZH и др.), в протоколах передачи данных MNP5 и MNP7.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *