таблица расшифровки двоичного кода

Как объяснять двоичную систему счисления

Кто-то только входит в IT-мир, кто-то объясняет информатику своему чаду.

Довольно быстро вы обнаружите, что не так-то просто объяснить, как работает двоичный счёт.

Это вам очевидно, что после 11 идёт 100, а новичку это ещё долго может быть непонятно.

Так вот, чтобы увеличить скорость понимания, мы решили сделать дидактический материал.

Проблема

Важно отметить, что даже распиаренный курс Гарвардского университета по компьютерным наукам «CS50» не помогает.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

Парень из американского университета просто заявляет, что «нуль — это нуль», «один — это один», а потом идёт 10, а потом 11. Понятно? Думаю, нет. Вот спросите кого-то, кто не программист, а каким будет следующее число — высока вероятность, что он не сможет ответить. Слишком быстро проскочили идею о переносе разряда.

То же самое касается школьных методов перевода: во-первых, методы эти академически сухи, во-вторых, не интуитивны — например, не очевидно, почему после каскадного деления на 2 нужно ставить биты задом наперёд.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

А если непонятно, то и не интересно. А если нет интереса, то и запоминается с трудом.

Мы это всё учли, и решили сделать интересное и постепенное объяснение.

Что мы предлагаем

Сначала нужно объяснить, как вообще работает обычная десятичная система счисления — и про конечный «алфавит» цифр, и про идею переноса разряда. Так развивается понимание принципа «системы счисления».

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

Только потом можно переходить к идее двоичной системы — и вот обучаемый уже медленно, но довольно уверенно говорит «1, 10, 11, 100».

Далее, мы решили попробовать совсем не школьный метод — объяснение двоичного счёта на пальцах: это когда загнутый палец это 0, а разогнутый это 1.

Я проверял это на подростках: показываешь им: «это 1, это 2, это 3 — теперь покажите мне 4». И весь класс сосредоточенно, медленно показывает средние пальцы. Отличницы в эсхатологическом восторге, задние парты тыкают друг другу в лицо и кричат «на тебе четвёрку!».

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

Провокативно? Да. Запоминается? 100%.

Теперь, когда тема стала «своей», можно переходить к теме перевода чисел из одной системы счисления в другую — начать лучше с классического школьного сухого перевода (если честно, то больше чтобы постращать).

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

А уже потом с помощью анимации объяснить идею перевода прямо на пальцах, и потом опять же на пальцах пересчитать число 132 в средние пальцы уже на обеих руках.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

На десерт показываем, где двоичная и 16-ричная системы применяется в реальной жизни.

Двоичная система — это например QR-коды вокруг нас.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

А 16-ричная система это в основном коды цветов в CSS и хеши разных стилей, от MD5 до UUID.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

Итак, вот весь пакет видео-уроков (они бесплатные, в Ютубе):

Источник

Двоичный код.

Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн.

Видя что-то впервые, мы зачастую задаемся логичным вопросом о том, как это работает. Любая новая информация воспринимается нами, как что-то сложное или созданное исключительно для разглядываний издали, однако для людей, желающих узнать подробнее о двоичном коде, открывается незамысловатая истина – бинарный код вовсе не сложный для понимания, как нам кажется. К примеру, английская буква T в двоичной системе приобретет такой вид – 01010100, E – 01000101 и буква X – 01011000. Исходя из этого, понимаем, что английское слово TEXT в виде двоичного кода будет выглядеть таким вот образом: 01010100 01000101 01011000 01010100. Компьютер понимает именно такое изложение символов для данного слова, ну а мы предпочитаем видеть его в изложении букв алфавита.

На сегодняшний день двоичный код активно используется в программировании, поскольку работают вычислительные машины именно благодаря ему. Но программирование не свелось до бесконечного набора нулей и единиц. Поскольку это достаточно трудоемкий процесс, были приняты меры для упрощения понимания между компьютером и человеком. Решением проблемы послужило создание языков программирования (бейсик, си++ и т.п.). В итоге программист пишет программу на языке, который он понимает, а потом программа-компилятор переводит все в машинный код, запуская работу компьютера.

Перевод натурального числа десятичной системы счисления в двоичную систему.

Чтобы перевести числа из десятичной системы счисления в двоичную пользуются «алгоритмом замещения», состоящим из такой последовательности действий:

1. Выбираем нужное число и делим его на 2. Если результат деления получился с остатком, то число двоичного кода будет 1, если остатка нет – 0.

2. Откидывая остаток, если он есть, снова делим число, полученное в результате первого деления, на 2. Устанавливаем число двоичной системы в зависимости от наличия остатка.

3. Продолжаем делить, вычисляя число двоичной системы из остатка, до тех пор, пока не дойдем до числа, которое делить нельзя – 0.

4. В этот момент считается, что двоичный код готов.

Для примера переведем в двоичную систему число 7:

1. 7 : 2 = 3.5. Поскольку остаток есть, записываем первым числом двоичного кода 1.

2. 3 : 2 = 1.5. Повторяем процедуру с выбором числа кода между 1 и 0 в зависимости от остатка.

3. 1 : 2 = 0.5. Снова выбираем 1 по тому же принципу.

4. В результате получаем, переведенный из десятичной системы счисления в двоичную, код – 111.

Таким образом можно переводить бесконечное множество чисел. Теперь попробуем сделать наоборот – перевести число из двоичной в десятичную.

Перевод числа двоичной системы в десятичную.

Для этого нам нужно пронумеровать наше двоичное число 111 с конца, начиная нулем. Для 111 это 1^2 1^1 1^0. Исходя из этого, номер для числа послужит его степенем. Далее выполняем действия по формуле: (x * 2^y) + (x * 2^y) + (x * 2^y), где x – порядковое число двоичного кода, а y – степень этого числа. Подставляем наше двоичное число под эту формулу и считаем результат. Получаем: (1 * 2^2) + (1 * 2^1) + (1 * 2^0) = 4 + 2 + 1 = 7.

Немного из истории двоичной системы счисления.

Источник

Двоичный код в текст и обратно

Онлайн конвертер для перевода текста в бинарный код и наоборот. Поможет выполнить кодирование двоичным кодом записав буквы, цифры и символы в бинарный код. Произведёт декодирование двоичного кода в слова, буквы, цифры и символы. Кодирование слов двоичным кодом. Зашифровка и расшифровка производится по стандартам кодировки таблиц ASCII или UTF-8 (Юникод) (UTF-16).

Будьте внимательны, если переводить символы в двоичную систему с помощью онлайн конвертера, то первый нулевой ведущий бит может быть отброшен, что может сбить с толку.

Смотрите также

11010000 10111111 11010000 10111000 11010000 10111111 11010000 10111000 00100000 11010000 10111010 11010000 10111110 11010001 10000000 11010000 10111110 11010001 10000010 11010000 10111010 11010000 10111000 11010000 10111001 00100000 11010000 10111010 11010000 10110000 11010001 10000000 11010000 10111011

11010000 10111000 11010000 10110100 11010000 10111000 00100000 11010001 10000011 11010001 10000000 11010000 10111110 11010000 10111010 11010000 10111000 00100000 11010000 10110100 11010000 10110101 11010000 10111011 11010000 10110000 11010000 10111001 00100000 11010001 10000111 11010000 10110101 00100000 11010001 10000001 11010000 10111100 11010000 10111110 11010001 10000010 11010001 10000000 11010000 10111000 11010001 10001000 11010001 10001100 00111111

А как мне загрузить на компьютер полученный бинарный файл? Смотреть на него глазами что ли? ))

Источник

Перевод текста в цифровой код.

Давайте разберемся как же все таки переводить тексты в цифровой код? Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн.

Кодирование текста.

По теории ЭВМ любой текст состоит из отдельных символов. К этим символам относятся: буквы, цифры, строчные знаки препинания, специальные символы ( «»,№, (), и т.д.), к ним, так же, относятся пробелы между словами.

Необходимый багаж знаний. Множество символов, при помощи которых записываю текст, называется АЛФАВИТОМ.

Число взятых в алфавите символов, представляет его мощность.

Количество информации можно определить по формуле : N = 2b

Алфавит, в котором будет 256 может вместить в себя практически все нужные символы. Такие алфавиты называют ДОСТАТОЧНЫМИ.

Если взять алфавит мощностью 256, и иметь в виду что 256 = 28

Если перевести каждый символ в двоичный код, то этот код компьютерного текста будет занимать 1 байт.

Как текстовая информация может выглядеть в памяти компьютера?

Любой текст набирают на клавиатуре, на клавишах клавиатуры, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111.

Поскольку, байт – это самая маленькая адресуемая частица памяти, и память обращена к каждому символу отдельно – удобство такого кодирование очевидно. Однако, 256 символов – это очень удобное количество для любой символьной информации.

Естественно, встал вопрос: Какой конкретно восьми разрядный код принадлежит каждому символу? И как осуществить перевод текста в цифровой код?

Этот процесс условный, и мы вправе придумать различные способы для кодировки символов. Каждый символ алфавита имеет свой номер от 0 до 255. И каждому номеру присвоен код от 00000000 до 11111111.

Таблица для кодировки – это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для различных типов ЭВМ используют разные таблицы для кодировки.

ASCII(или Аски), стала международным стандартом для персональных компьютеров. Таблица имеет две части.

Таблица кода символов ASCII.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

Первая половина для таблицы ASCII. (Именно первая половина, стала стандартом.)

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

Соблюдение лексикографического порядка, то есть, в таблице буквы (Строчные и прописные) указаны в строгом алфавитном порядке, а цифры по возрастанию, называют принципом последовального кодирования алфавита.

Для русского алфавита тоже соблюдают принцип последовательного кодирования.

Сейчас, в наше время используют целых пять систем кодировок русского алфавита(КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид.

Одним из первых стандартов для кодирования русского алфавита на персональных компьютерах считают КОИ8(«Код обмена информацией, 8-битный»). Данная кодировка использовалась в середине семидесятых годов на серии компьютеров ЕС ЭВМ, а со средины восьмидесятых, её начинают использовать в первых переведенных на русский язык операционных системах UNIX.

С начала девяностых годов, так называемого, времени, когда господствовала операционная система MS DOS, появляется система кодирования CP866 («CP» означает «Code Page», «кодовая страница»).

Гигант компьютерных фирм APPLE, со своей инновационной системой, под упралением которой они и работали (Mac OS), начинают использовать собственную систему для кодирования алфавита МАС.

Международная организация стандартизации (International Standards Organization, ISO)назначает стандартом для русского языка еще одну систему для кодирования алфавита, которая называется ISO 8859-5.

А самая распространенная, в наши дни, система для кодирования алфавита, придумана в Microsoft Windows, и называется CP1251.

С второй половины девяностых годов, была решена проблема стандарта перевода текста в цифровой код для русского языка и не только, введением в стандарт системы, под названием Unicode. Она представлена шестнадцатиразрядной кодировкой, это означает, что на каждый символ отводится ровно по два байта оперативной памяти. Само собой, при такой кодировке, затраты памяти увеличены в два раза. Однако, такая кодовая система позволяет переводить в электронный код до 65536 символов.

Специфика стандартной системы Unicode, является включением в себя абсолютно любого алфавита, будь он существующим, вымершим, выдуманным. В конечном счете, абсолютно любой алфавит, в добавок к этом, система Unicode, включает в себя уйму математических, химических, музыкальных и общих символов.

Давайте с помощью таблицы ASCII посмотрим, как может выглядеть слово в памяти вашего компьютера.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

Очень часто случается так, что ваш текст, который написан буквами из русского алфавита, не читается, это обусловлено различием систем кодирования алфавита на компьютерах. Это очень распространенная проблема, которая довольно часто обнаруживается.

Источник

Как читать двоичный (бинарный) код

Если вам интересно узнать, как читать двоичные числа, важно понять, как работают двоичные числа. Двоичная система известна как система нумерации «base 2», что означает наличие двух возможных чисел для каждой цифры; один или ноль. Большие числа записываются путем добавления дополнительных двоичных единиц или нулей.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

Понимание двоичных чисел

Знание того, как читать двоичные файлы, не является критичным для использования компьютеров. Но хорошо понять концепцию, чтобы лучше понять, как компьютеры хранят числа в памяти. Он также позволяет понимать такие термины, как 16-битные, 32-битные, 64-битные и измерения памяти, такие как байты (8 бит).

Как читать двоичный код

«Чтение» двоичного кода обычно означает перевод двоичного числа в базовое 10 (десятичное) число, с которым люди знакомы. Это преобразование достаточно просто выполнить в своей голове, когда вы поймете, как работает бинарный язык.

Каждая цифра в двоичном числе имеет определенное значение, если цифра не является нулем. После того как вы определили все эти значения, вы просто складываете их вместе, чтобы получить 10-значное десятичное значение двоичного числа. Чтобы увидеть, как это работает, возьмите двоичное число 11001010.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

2. Затем перейдите к следующей цифре. Если это один, то рассчитайте два в степени одного. Запишите это значение. В этом примере значение равно степени два, равной двум.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

3. Продолжайте повторять этот процесс, пока не дойдете до самой левой цифры.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

4. Чтобы закончить, все, что вам нужно сделать, это сложить все эти числа вместе, чтобы получить общее десятичное значение двоичного числа: 128 + 64 + 0 + 0 + 8 + 0 + 2 + 0 = 202.

Двоичные числа с подписью

Приведенный выше метод работает для базовых двоичных чисел без знака. Однако компьютерам нужен способ представления отрицательных чисел также с помощью двоичного кода.

Из-за этого компьютеры используют двоичные числа со знаком. В системе этого типа самая левая цифра известна как знаковый бит, а остальные цифры известны как биты амплитуды.

Чтение двоичного числа со знаком почти такое же, как и без знака, с одним небольшим отличием.

1. Выполните ту же процедуру, как описано выше для двоичного числа без знака, но остановитесь, как только вы достигнете самого левого бита.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

2. Чтобы определить знак, осмотрите крайний левый бит. Если это единица, то число отрицательное. Если это ноль, то число положительное.

таблица расшифровки двоичного кода. Смотреть фото таблица расшифровки двоичного кода. Смотреть картинку таблица расшифровки двоичного кода. Картинка про таблица расшифровки двоичного кода. Фото таблица расшифровки двоичного кода

4. Бинарный метод со знаком позволяет компьютерам представлять числа, которые являются положительными или отрицательными. Однако он потребляет начальный бит, а это означает, что для больших чисел требуется немного больше памяти, чем для двоичных чисел без знака.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *