Tac lte что это

Портал о современных технологиях мобильной и беспроводной связи

В данном справочном материале рассмотрены расшифровки основных англоязычных терминов по тематике «Мобильная связь». Описание и принцип работы отмеченных в таблице технологий приведен в книге «Мобильная связь на пути к 6G». Русскоязычные аббревиатуры и их расшифровки рассмотрены в материале по ссылке.

Система связи 3-го поколения

3rd Generation Partnership Project

Партнерский проект по разработке стандартов мобильной связи 3, 4 и 5-го поколений

Система связи 4-го поколения

Система связи 5-го поколения

5th Generation Non-Orthogonal Waveforms

Европейский проект по стандартизации обработки неортогональных сигналов для сетей 5G

Authentication, Authorization, Accounting

Система аутентификации, авторизации и тарификации

Active Antenna Systems

Активная антенная система

Almost Blank Subframe

Технология почти пустого субфрейма

Advanced Encryption Standard

Улучшенный стандарт шифрования

Assisted Global Navigation Satellite Systems

Cпутниковая система навигации, основанная на вспомогательных данных

Authentication and key agreement

Процедура аутентификации и соглашения о ключах

Adaptive Modulation Coding

Адаптивная модуляция и кодирование

Authentication Management Field

Поле управления аутентификацией

Adaptive Multi Rate

Адаптивное кодирование с переменной скоростью

Automatic Neighbor Relation

Автоматическое определение соседей

Угол прихода сигнала

Application Programming Interface

Интерфейс прикладного программирования

Название точки доступа

per APN Aggregate Maximum Bit Rate

Агрегированная максимальная скорость передачи для UE через точку доступа

Average Price per Minute

Средняя стоимость 1 минуты голосового трафика

Automatic Repeat reQuest

Автоматический запрос на повтор передачи

Allocation and Retention Priority

Приоритет распределения сетевых ресурсов

Average Monthly Revenue Per Data Services User

Выручка на одного пользователя мобильного интернета в месяц

Average revenue per user

Средняя выручка в расчете на одного абонента

Источник

Как это работает: координаты базовых станций. Часть 2

В первой части мы уже рассмотрели, откуда сервис местонахождения базовых станций берет данные и что именно показывает вам. Во второй части мы рассмотрим практическое использование сервиса, посмотрим, какие параметры он использует и где их брать.

Tac lte что это. Смотреть фото Tac lte что это. Смотреть картинку Tac lte что это. Картинка про Tac lte что это. Фото Tac lte что этоБазовая станция сотовой сети

Параметры базовой станции

Зайдя на страницу сервиса, вы видите форму, предлагающую указать параметры базовой станции: MCC, MNC, LAC/TAC, CID/SAC/ECI. Все эти параметры обязательны для того, чтобы найти, где расположена базовая станция.

Tac lte что это. Смотреть фото Tac lte что это. Смотреть картинку Tac lte что это. Картинка про Tac lte что это. Фото Tac lte что этоФорма ввода параметров базовой станции

MCC — это код страны, Mobile Country Code. Номер, состоящий из трех цифр, уникальный для каждой из стран мира.

Вы можете ввести этот код самостоятельно (ручной ввод) или воспользоваться встроенным справочником, в котором есть коды абсолютно всех стран.

MNC — код сотовой сети, Mobile Network Code. Номер, состоящий из двух цифр, присваивается каждой сотовой сети. Является уникальным кодом сотового оператора внутри страны. То есть в разных странах коды сотовых сетей могут повторяться.

Встроенный справочник содержит коды всех сотовых сетей России. Коды операторов «большой тройки» также применимы к Белоруссии и Украине.

Если объединить MCC и MNC, то получится номер мобильной сети PLMNPublic Land Mobile Network. Например, для сети Билайн (MNC — 99) в России (MCC — 250) номер PLMN — 25099.

CID / SAC / ECI — идентификатор соты (Cell ID) в GSM, код зоны обслуживания (Service Area Code) в UMTS и идентификатор соты E-UTRAN (E-UTRAN Cell Identifier) в LTE-сетях. Для GSM и UMTS представляет собой число размером 16 бит (от 0 до 65535), для LTE — число размером в 28 бит, т.е. от 0 до 268435455. Этот номер однозначно указывает на базовую станцию, он уникален внутри каждой зоны обслуживания (LAC или TAC) каждого оператора в стране.

Строго говоря, ECI уникален в пределах сети оператора даже без учета зоны обслуживания, так что некоторые геолокационные сервисы найдут базовую станцию сети LTE, даже если вы введете неверный TAC, например, 0.

Собирая все эти параметры вместе, мы получаем комбинацию чисел, однозначно определяющую базовую станцию по всему миру:

MCCMNCLACCID.

Например, базовая станция оператора МТС (код оператора — 01) с идентификатором соты 1384, расположенная в регионе с кодом местности 114 республики Беларусь (код страны — 257) будет кодироваться такой последовательностью чисел: 257-01-114-1384.

Мониторинг сотовых сетей

Теперь немного о том, где мы можем достать все эти параметры, чтобы посмотреть, где находится базовая станция (вернее, как мы знаем из предыдущей части статьи, где может находиться абонент, зарегистрированный на базовой станции).

Если вы являетесь счастливым обладателем смартфона на базе ОС Android, то лучшими приложениями, которые покажут всю необходимую информацию являются бесплатные G-MoN и G-MoN Pro. Можно также использовать комбинацию *#*#4636#*#* для запуска инженерного меню, в котором также будет вся необходимая информация.

Tac lte что это. Смотреть фото Tac lte что это. Смотреть картинку Tac lte что это. Картинка про Tac lte что это. Фото Tac lte что этоG-MoN (слева) и G-MoN Pro (справа)

Лично мне больше нравится именно версия Pro, т.к. позволяет видеть информацию сразу о двух сетях сотовой связи в двухсимочном смартфоне.

Для владельцев iPhone-ов таких приложений, насколько мне известно, нет. Но вы можете посмотреть нужные параметры в инженерном меню, попасть в которое можно, набрав комбинацию *3001#12345#*

Так вот, если посмотреть на экран любого из приложений (или на экран инженерного меню), то для начала мы увидим параметры сети оператора связи — NET в G-MoN или PLMN в G-MoN Pro. Как вы уже знаете, PLMN представляет собой два параметра — 3 цифры MCC и и 2 цифры MNC, записанные вместе.

Например, на скриншоте G-MoN выше мы видим сеть 26203, т.е. MCC здесь будет — 262, а MNC — 03. Вводим эти данные на сайте и видим, что разработчик приложения, скорее всего, живет в Германии, а воспользовавшись этим списком, понимаем, что он использует оператора связи E-Plus.

Дальше нам нужны параметры LAC (825 на скриншоте) и CID (23395 на скриншоте). Вводим все это на сайте и получаем примерное местонахождение разработчика, когда он сделал этот скриншот.

Tac lte что это. Смотреть фото Tac lte что это. Смотреть картинку Tac lte что это. Картинка про Tac lte что это. Фото Tac lte что этоМестонахождение базовой станции 262-03-825-23395

Чтобы определить место еще точнее, можно последовательно ввести данные всех соседних вышек, которые показаны в разделе Neighbour cells detected программы G-MoN: 40055, 7655, 34105, 39075. Но не забывайте обращать внимание на параметр RXL в крайнем правом столбце, чем он меньше (больше в абсолютном значении), тем хуже уровень приема базовой станции, а значит, тем дальше она находится от абонента.

Tac lte что это. Смотреть фото Tac lte что это. Смотреть картинку Tac lte что это. Картинка про Tac lte что это. Фото Tac lte что этоСоседние базовые станции

На скриншоте выше мы отобразили все базовые станции (вернее, усредненные местоположения абонентов в секторе), которые видит телефон разработчика программы G-MoN. Как видим, базовая станция, на которой абонент зарегистрирован в данный момент (в момент снятия скрина), находится посередине между соседними базовыми станциями, причем, чем хуже сигнал (меньше RXL), тем дальше базовая станция находится от абонента.

Вместо заключения

Я думаю, не надо объяснять, что таким образом вы можете узнать параметры только своего телефона, так что следить за другими людьми у вас не выйдет. Если, конечно, у вас нет доступа к сети SS7 (подробнее об этом можно узнать в исследовании Positive Technologies), но это уже совсем другая история.

А пока пользуйтесь сервисом и не забывайте, что сайт живет на ваши донаты.

Источник

Термины используемые в сотовой связи

В соответствии с решениями ГКРЧ о выделении полос радиочастот для радиоэлектронных сетей связи, на территории Москвы и Московской области сейчас разрешены к использованию следующие полосы частот и стандарты.

Диапазон частот нисходящего направления DwLink МГц

Диапазон частот восходящего направления UpLink МГц

Номер рабочей полосы (Band)

Для стандарта Wi-Fi на территории РФ разрешена работа в следующих диапазонах частот:
• Wi-Fi 2.4 ГГц (802.11b/g/n/ax) диапазон 2400—2483,5 МГц
• Wi-Fi 5 ГГц (802.11a/h/j/n/ac/ax) диапазоны 5150 — 5350 МГц и 5650 — 6425 МГц

Абсолютный номер радиочастотного канала (Absolute Radio Frequency Channel Number) связи стандарта GSM, на котором транслируется канал BCCH базовой станции.

ARFCN определяет пару частот, используемых для приема и передачи информации

Уровень сигнала, принимаемого от данного ARFCN

Mobile Country Code – мобильный код страны. MCC определяет страну, на территории которой действует сеть оператора сотовой связи

Mobile Network Code – код мобильной сети. MNC в комбинации с MCC используется для однозначной идентификации сети сотовой связи

Local Area Code – код локальной зоны. Локальная зона представляет собой совокупность базовых станций, обслуживаемых одним контроллером базовых станций (BSC)

CellID – идентификатор соты. Определяет базовую станцию и ее сектор, которые обслуживают данный ARFCN

Метка времени, определяющая момент обнаружения данного ARFCN

Cell Reselection Hysteresis – гистерезис уровня приема сигнала, требующийся для перевыбора соты. CRH служит для предотвращения нежелательного переключения абонентов, находящихся у границы локальной зоны (LA – Location Area), на соты соседней LA

Cell Reselection Offset – смещение критерия перевыбора соты. CRO используется для регулировки предпочтения переключения МПО абонента на соту, использующую данный ARFCN

RXLEV-ACCESS-MIN – параметр, характеризующий минимальный уровень принимаемого на МПО сигнала, при котором возможен доступ МПО к данной соте

Индикатор поддержки технологии GPRS базовой станцией, обслуживающей данный ARFCN.

В данном столбце могут быть отображены следующие значения:

– «1», если базовая станция поддерживает технологию GPRS;

– «0», если базовая станция не поддерживает технологию GPRS

Определяет значение таймера, задающего периодичность осуществления МПО абонента регулярной процедуры обновления местоположения (Location Update)

Индикатор наличия сообщения «System Information 2ter» в составе системной информации, транслируемой по каналу BCCH той соты, которая обслуживает данный ARFCN.

В данном столбце могут быть отображены следующие значения:

– «1», если сообщение «System Information 2ter» присутствует;

– «0», если сообщение «System Information 2ter» отсутствует

Список ARFCN, выделенных соте, которая обслуживает данный ARFCN

Список ARFCN, на которых транслируются каналы BCCH соседних сот. Список формируется по следующему принципу:

– для выбранных ARFCN стандарта GSM 900 отображается список ARFCN соседних сот стандарта GSM 900;

– для выбранных ARFCN стандарта GSM 1800 отображается список ARFCN соседних сот стандарта GSM 1800

Список ARFCN, на которых транслируются каналы BCCH соседних сот. Список формируется по следующему принципу:

– для выбранных ARFCN стандарта GSM 900 отображается список ARFCN соседних сот стандарта GSM 1800;

– для выбранных ARFCN стандарта GSM 1800 отображается список ARFCN соседних сот стандарта GSM 900

Абсолютный номер радиочастотного канала связи в системе UMTS (UTRA Absolute Radio-Frequency Channel Number), на котором транслируется канал BCCH базовой станции

Chip energy – уровень энергии на chip

Mobile Country Code – мобильный код страны. MCC определяет страну, на территории которой действует сеть сотовой связи

Mobile Network Code – код мобильной сети. MNC в комбинации с MCC используется для однозначной идентификации сети сотовой связи

Primary Scrambling Code – Ортогональный код

Метка времени, определяющая момент обнаружения данного UARFCN

Отношение энергии сигнала к интерференции

Signal to Interference Rate – отношение уровня сигнала к интерференции

Описание заносимых в столбец данных

Абсолютный номер радиочастотного канала связи в системе LTE (E-UTRA Absolute Radio-Frequency Channel Number), на котором транслируется канал BCCH базовой станции

Mobile Country Code – мобильный код страны. MCC определяет страну, на территории которой действует сеть сотовой связи

Mobile Network Code – код мобильной сети. MNC в комбинации с MCC используется для однозначной идентификации сети сотовой связи

Tracking Area Code – код зоны отслеживания. Зона отслеживания представляет собой совокупность зон обслуживания нескольких базовых станций стандарта LTE

Physical Cell Identity – физический идентификатор соты. Данный идентификатор используется для дифференциации сигналов разных сот

Cell Identity – идентификатор соты. Данный идентификатор определяет базовую станцию и ее сектор, которые обслуживают данный EARFCN

Ширина полосы частот данного EARFCN

Метка времени, определяющая момент обнаружения данного EARFCN

Уровень сигнала, принимаемого от данного EARFCN

Описание заносимых в столбец данных

Номер частотного канала

Название точки доступа на данном частотном канале

MAC адрес точки доступа на данном частотном канале

Источник

Tac lte что это

Tac lte что это. Смотреть фото Tac lte что это. Смотреть картинку Tac lte что это. Картинка про Tac lte что это. Фото Tac lte что это

This time we will give you a brief overview of an LTE Tracking Area (TA) and Tracking Area Update (TAU).

While an LTE device (UE) is in active state (i.e. while communicating, or while in EMM-Registered/ECM-Connected/RRC-Connected state in LTE terms), its location is known by the LTE network at cell level (i.e. on a cell granularity), e.g. in cell2 in eNB1.
However, while the UE is in idle state (i.e. while not communicating, or while in EMM-Registered/ECM-Idle/RRC-Idle state in LTE terms), its location is known by the LTE network at TA level (i.e. on a TA granularity), instead of cell level. An operator defines a group of neighbor eNBs as a TA (These grouping are performed at the initial deployment of the network. Each eNB is configured with its own TA.). A TA can be made up of cells or eNBs, but only those made up of eNBs will be used here in this post. For example, eNBs in A neighborhood are defined as TA1, those in B neighborhood as TA2, those in C neighborhood as TA3, and so on.

Why do we need TAs?

If there is data traffic heading to a UE in idle state (e.g. if someone sends a text message to a UE), the LTE network has to wake up the UE so that it can receive the data. Here, this «waking up (called paging)» is performed TA-wide. Let’s say a UE is located in C neighborhood. Then, the network considers the UE is located in TA3. So, when the network has to wake up the UE as some data for the UE is being received, it sends a paging message to every eNB in TA3. Then each eNB broadcasts the paging message over the radio link to wake up the UE. A UE in idle state wakes up at certain periods to check for a paging message to see if there is any incoming data. If the UE finds it has been paged by an eNB, it turns back to active state to receive the data.

Let’s take a look at the format of TAs.

In the right side of the figure are a Tracking Area Identifier (TAI) and a Tracking Area Code (TAC). A TAC is the unique code that each operator assigns to each of their TAs (e.g. TA1=0x0001 for A neighborhood, TA2=0x0002 for B neighborhood, etc.). A TAI consists of a PLMN ID and a TAC. Here, a PLMN ID, a combination of a Mobile Country Code (MCC) and a Mobile Network Code (MNC), is the unique code assigned to each operator in the world. Korea’s MCC is 450, and SKT’s MNC is 05. So, SKT, a Korean operator, has an MCC of 450 and an MNC of 05. This format of assigning makes a TAI uniquely identified globally.

We will go further and learn about Tracking Area Update (TAU).

As seen above, the LTE network (the MME, to be accurate) has to have updated location information about UEs in idle state to find out in which TA a particular UE is located. For this, the UE notifies the LTE network (MME) of its current location by sending a TAU message (TAU Request message) every time it moves between TAs.

To explain this process further, a UE obtains a TAI list when it attaches to an LTE network. This list shows the tracking areas where the LTE network believes a UE is located and within which a UE can travel without TAU. In the example shown in the figure above, the TAI list has . This means the UE does not have to send a TAU message to the MME as long as it stays in TA1 or TA2, but it has to send one to the MME when it moves to a new TA other than the two (e.g. TA3). The MME is supposed to provide the UE with a new TAI list reflecting the specific details of the UE’s move (e.g. new location, moving speed, etc.) for more efficient paging.

One more thing worth mentioning is Periodic TAU, through which a UE in idle state sends a TAU message (TAU Request message) to an MME periodically even when the UE stays within a TA in the TAI list. If a UE in idle state has stayed in one location (or moved within the TAs in the TAI list) and has not notified the MME of its current location, the network cannot tell whether the UE is still in idle state, or is not able to communicate. So, the UE, even when the TA is not changed, sends TAU Request messages to the MME periodically to announce «it is able to receive data». Otherwise, the network believes the UE is not able to receive data and does not perform paging even when there is data traffic heading to the UE.

Источник

LTE Краткое руководство

LTE означает Long Term Evolution, и он был начат как проект в 2004 году телекоммуникационным органом, известным как Проект партнерства третьего поколения (3GPP). SAE (эволюция системной архитектуры) является соответствующей эволюцией эволюции базовой сети GPRS / 3G. Термин LTE обычно используется для обозначения как LTE, так и SAE.

LTE возникла из более ранней системы 3GPP, известной как Универсальная система мобильной связи (UMTS), которая, в свою очередь, возникла из Глобальной системы мобильной связи (GSM). Даже связанные спецификации были формально известны как развитая наземная радиодоступ UMTS (E-UTRA) и развитая наземная сеть радиодоступа UMTS (E-UTRAN). Первая версия LTE была задокументирована в Выпуске 8 спецификаций 3GPP.

Стремительный рост использования мобильных данных и появление новых приложений, таких как MMOG (мультимедийные онлайн-игры), мобильное телевидение, Web 2.0, потоковое содержимое, побудили Проект партнерства третьего поколения (3GPP) работать над долгосрочной эволюцией (LTE). на пути к мобильной четвертого поколения.

Основная цель LTE — обеспечить высокую скорость передачи данных, низкую задержку и оптимизированную пакетную технологию радиодоступа, поддерживающую гибкое развертывание полосы пропускания. В то же время его сетевая архитектура была разработана с целью поддержки трафика с коммутацией пакетов с беспрепятственной мобильностью и отличным качеством обслуживания.

LTE Evolution

ГодСобытие
Март 2000Выпуск 99 — UMTS / WCDMA
Март 2002Rel 5 — HSDPA
Март 2005Rel 6 — HSUPA
Год 2007Rel 7 — DL MIMO, IMS (мультимедийная IP-подсистема)
Ноябрь 2004Начата работа над спецификацией LTE
Январь 2008Спецификация доработана и утверждена с выпуском 8
2010Целевое первое развертывание

Факты о LTE

LTE — это технология-преемник не только UMTS, но и CDMA 2000.

LTE важен, потому что он обеспечит повышение производительности в 50 раз и намного лучшую спектральную эффективность для сотовых сетей.

LTE введен для получения более высоких скоростей передачи данных, пиковой нисходящей линии связи 300 Мбит / с и пиковой восходящей линии связи 75 Мбит / с. На несущей частоте 20 МГц скорость передачи данных свыше 300 Мбит / с может быть достигнута при очень хороших условиях сигнала.

LTE является идеальной технологией для поддержки высоких скоростей передачи данных для таких услуг, как передача голоса по IP (VOIP), потоковая передача мультимедиа, видеоконференции или даже высокоскоростной сотовый модем.

LTE использует как дуплекс с временным разделением (TDD), так и дуплекс с частотным разделением (FDD). В FDD восходящей линии связи и нисходящей линии связи используются разные частоты, в то время как в TDD и восходящая линия связи, и нисходящая линия связи используют одну и ту же несущую и разделены по времени.

LTE поддерживает гибкую полосу пропускания несущей от 1,4 МГц до 20 МГц, а также как FDD, так и TDD. LTE, спроектированный с масштабируемой полосой пропускания несущей от 1,4 МГц до 20 МГц, используемая ширина полосы которой зависит от полосы частот и объема спектра, доступного у оператора сети.

Все устройства LTE должны поддерживать передачи (MIMO) с несколькими входами и несколькими выходами, которые позволяют базовой станции одновременно передавать несколько потоков данных по одной несущей.

Все интерфейсы между сетевыми узлами в LTE теперь основаны на IP, включая транзитное соединение с базовыми радиостанциями. Это большое упрощение по сравнению с более ранними технологиями, которые первоначально основывались на каналах E1 / T1, ATM и Frame Relay, причем большинство из них были узкополосными и дорогими.

Механизм качества обслуживания (QoS) был стандартизирован на всех интерфейсах, чтобы гарантировать, что требование голосовых вызовов для постоянной задержки и пропускной способности, все еще может быть удовлетворено, когда пределы емкости достигнуты.

Работает с системами GSM / EDGE / UMTS, используя существующий спектр 2G и 3G и новый спектр. Поддерживает передачу и роуминг в существующие мобильные сети.

LTE — это технология-преемник не только UMTS, но и CDMA 2000.

LTE важен, потому что он обеспечит повышение производительности в 50 раз и намного лучшую спектральную эффективность для сотовых сетей.

LTE введен для получения более высоких скоростей передачи данных, пиковой нисходящей линии связи 300 Мбит / с и пиковой восходящей линии связи 75 Мбит / с. На несущей частоте 20 МГц скорость передачи данных свыше 300 Мбит / с может быть достигнута при очень хороших условиях сигнала.

LTE является идеальной технологией для поддержки высоких скоростей передачи данных для таких услуг, как передача голоса по IP (VOIP), потоковая передача мультимедиа, видеоконференции или даже высокоскоростной сотовый модем.

LTE использует как дуплекс с временным разделением (TDD), так и дуплекс с частотным разделением (FDD). В FDD восходящей линии связи и нисходящей линии связи используются разные частоты, в то время как в TDD и восходящая линия связи, и нисходящая линия связи используют одну и ту же несущую и разделены по времени.

LTE поддерживает гибкую полосу пропускания несущей от 1,4 МГц до 20 МГц, а также как FDD, так и TDD. LTE, спроектированный с масштабируемой полосой пропускания несущей от 1,4 МГц до 20 МГц, используемая ширина полосы которой зависит от полосы частот и объема спектра, доступного у оператора сети.

Все устройства LTE должны поддерживать передачи (MIMO) с несколькими входами и несколькими выходами, которые позволяют базовой станции одновременно передавать несколько потоков данных по одной несущей.

Все интерфейсы между сетевыми узлами в LTE теперь основаны на IP, включая транзитное соединение с базовыми радиостанциями. Это большое упрощение по сравнению с более ранними технологиями, которые первоначально основывались на каналах E1 / T1, ATM и Frame Relay, причем большинство из них были узкополосными и дорогими.

Механизм качества обслуживания (QoS) был стандартизирован на всех интерфейсах, чтобы гарантировать, что требование голосовых вызовов для постоянной задержки и пропускной способности, все еще может быть удовлетворено, когда пределы емкости достигнуты.

Работает с системами GSM / EDGE / UMTS, используя существующий спектр 2G и 3G и новый спектр. Поддерживает передачу и роуминг в существующие мобильные сети.

Преимущества LTE

Высокая пропускная способность: высокая скорость передачи данных может быть достигнута как в нисходящей линии связи, так и в восходящей линии связи. Это вызывает высокую пропускную способность.

Низкая задержка: время, необходимое для подключения к сети, находится в диапазоне нескольких сотен миллисекунд, и теперь состояния энергосбережения можно вводить и выходить очень быстро.

FDD и TDD на одной платформе: дуплекс с частотным разделением (FDD) и дуплекс с временным разделением (TDD), обе схемы могут использоваться на одной платформе.

Превосходное взаимодействие с конечным пользователем: Оптимизированная сигнализация для установления соединения и других процедур радиоинтерфейса и управления мобильностью еще больше улучшила взаимодействие с пользователем. Уменьшенная задержка (до 10 мс) для лучшего взаимодействия с пользователем.

Бесшовное соединение: LTE также будет поддерживать бесшовное соединение с существующими сетями, такими как GSM, CDMA и WCDMA.

Подключи и играй: пользователю не нужно вручную устанавливать драйверы для устройства. Вместо этого система автоматически распознает устройство, загружает новые драйверы для оборудования, если это необходимо, и начинает работать с вновь подключенным устройством.

Простая архитектура: из-за простой архитектуры низкие эксплуатационные расходы (OPEX).

Высокая пропускная способность: высокая скорость передачи данных может быть достигнута как в нисходящей линии связи, так и в восходящей линии связи. Это вызывает высокую пропускную способность.

Низкая задержка: время, необходимое для подключения к сети, находится в диапазоне нескольких сотен миллисекунд, и теперь состояния энергосбережения можно вводить и выходить очень быстро.

FDD и TDD на одной платформе: дуплекс с частотным разделением (FDD) и дуплекс с временным разделением (TDD), обе схемы могут использоваться на одной платформе.

Превосходное взаимодействие с конечным пользователем: Оптимизированная сигнализация для установления соединения и других процедур радиоинтерфейса и управления мобильностью еще больше улучшила взаимодействие с пользователем. Уменьшенная задержка (до 10 мс) для лучшего взаимодействия с пользователем.

Бесшовное соединение: LTE также будет поддерживать бесшовное соединение с существующими сетями, такими как GSM, CDMA и WCDMA.

Подключи и играй: пользователю не нужно вручную устанавливать драйверы для устройства. Вместо этого система автоматически распознает устройство, загружает новые драйверы для оборудования, если это необходимо, и начинает работать с вновь подключенным устройством.

Простая архитектура: из-за простой архитектуры низкие эксплуатационные расходы (OPEX).

LTE — QoS

Архитектура LTE поддерживает жесткий QoS с сквозным качеством обслуживания и гарантированной скоростью передачи битов (GBR) для радиоканалов. Например, как Ethernet и Интернет имеют различные типы QoS, например, различные уровни QoS могут применяться к трафику LTE для различных приложений. Поскольку LTE MAC полностью запланирован, QoS является естественным соответствием.

Каналы-носители Evolved Packet System (EPS) обеспечивают однозначное соответствие с однонаправленными радиоканалами RLC и обеспечивают поддержку шаблонов потока трафика (TFT). Существует четыре типа носителей EPS:

Ресурсы канала GBR, постоянно распределяемые посредством контроля доступа

Носитель без GBR без контроля доступа

Выделенный Носитель, связанный с определенным TFT (GBR или не-GBR)

Носитель по умолчанию, не GBR, универсальный для неназначенного трафика

Ресурсы канала GBR, постоянно распределяемые посредством контроля доступа

Носитель без GBR без контроля доступа

Выделенный Носитель, связанный с определенным TFT (GBR или не-GBR)

Носитель по умолчанию, не GBR, универсальный для неназначенного трафика

Основные параметры LTE

В этом разделе будут обобщены основные параметры LTE:

UL: QPSK, 16QAM, 64QAM (опционально)

DL: QPSK, 16QAM, 64QAM

UL: SC-FDMA (множественный доступ с частотным разделением с одной несущей) поддерживает 50 Мбит / с + (спектр 20 МГц)

DL: OFDM (множественный доступ с ортогональным частотным разделением каналов) поддерживает 100 Мбит / с + (спектр 20 МГц)

UL: многопользовательская совместная MIMO

DL: TxAA, пространственное мультиплексирование, CDD, массив 4×4 макс.

UL: 75 Мбит / с (полоса пропускания 20 МГц)

DL: 150 Мбит / с (UE категории 4, 2×2 MIMO, полоса пропускания 20 МГц)

DL: 300 Мбит / с (UE категории 5, 4×4 MIMO, полоса пропускания 20 МГц)

(Множественный вход, множественный выход)

DL: 2 x 2, 4 x 2, 4 x 4

покрытие5 — 100 км с небольшой деградацией после 30 кмQoSE2E QOS, позволяющая расставить приоритеты для разных классов обслуживанияЗадержкаЗадержка конечного пользователя

UL: QPSK, 16QAM, 64QAM (опционально)

DL: QPSK, 16QAM, 64QAM

UL: SC-FDMA (множественный доступ с частотным разделением с одной несущей) поддерживает 50 Мбит / с + (спектр 20 МГц)

DL: OFDM (множественный доступ с ортогональным частотным разделением каналов) поддерживает 100 Мбит / с + (спектр 20 МГц)

UL: многопользовательская совместная MIMO

DL: TxAA, пространственное мультиплексирование, CDD, массив 4×4 макс.

UL: 75 Мбит / с (полоса пропускания 20 МГц)

DL: 150 Мбит / с (UE категории 4, 2×2 MIMO, полоса пропускания 20 МГц)

DL: 300 Мбит / с (UE категории 5, 4×4 MIMO, полоса пропускания 20 МГц)

(Множественный вход, множественный выход)

DL: 2 x 2, 4 x 2, 4 x 4

E-UTRA Рабочие группы

Ниже приведена таблица рабочих диапазонов E-UTRA, взятая из спецификации LTE 36.101 (v860), таблица 5.5.1:

Tac lte что это. Смотреть фото Tac lte что это. Смотреть картинку Tac lte что это. Картинка про Tac lte что это. Фото Tac lte что это

Сетевая архитектура LTE

Сетевая архитектура высокого уровня LTE состоит из следующих трех основных компонентов:

Оборудование пользователя (UE).

Развитая наземная сеть радиодоступа UMTS (E-UTRAN).

Эволюционное пакетное ядро ​​(EPC).

Оборудование пользователя (UE).

Развитая наземная сеть радиодоступа UMTS (E-UTRAN).

Эволюционное пакетное ядро ​​(EPC).

Усовершенствованное пакетное ядро ​​связывается с сетями пакетной передачи данных во внешнем мире, такими как Интернет, частные корпоративные сети или мультимедийная IP-подсистема. Интерфейсы между различными частями системы обозначены как Uu, S1 и SGi, как показано ниже:

Tac lte что это. Смотреть фото Tac lte что это. Смотреть картинку Tac lte что это. Картинка про Tac lte что это. Фото Tac lte что это

Пользовательское оборудование (UE)

Внутренняя архитектура пользовательского оборудования для LTE идентична архитектуре, используемой UMTS и GSM, которая фактически является мобильным оборудованием (ME). Мобильное оборудование состояло из следующих важных модулей:

Мобильное завершение (MT) : это обрабатывает все функции связи.

Терминальное оборудование (TE) : завершает потоки данных.

Универсальная карта с интегральной микросхемой (UICC) : она также известна как SIM-карта для оборудования LTE. Он запускает приложение, известное как универсальный модуль идентификации абонента (USIM).

Мобильное завершение (MT) : это обрабатывает все функции связи.

Терминальное оборудование (TE) : завершает потоки данных.

Универсальная карта с интегральной микросхемой (UICC) : она также известна как SIM-карта для оборудования LTE. Он запускает приложение, известное как универсальный модуль идентификации абонента (USIM).

USIM хранит пользовательские данные, очень похожие на SIM-карту 3G. Здесь хранится информация о номере телефона пользователя, идентификаторе домашней сети, ключах безопасности и т. Д.

E-UTRAN (сеть доступа)

Архитектура развитой наземной сети радиодоступа UMTS (E-UTRAN) была проиллюстрирована ниже.

Tac lte что это. Смотреть фото Tac lte что это. Смотреть картинку Tac lte что это. Картинка про Tac lte что это. Фото Tac lte что это

LTE Mobile связывается только с одной базовой станцией и одной сотой за раз, и eNB поддерживает следующие две основные функции:

ENB отправляет и принимает радиопередачи на все мобильные устройства, используя функции обработки аналогового и цифрового сигналов радиоинтерфейса LTE.

ENB управляет работой на всех своих мобильных устройствах низкого уровня, отправляя им сигнальные сообщения, такие как команды передачи обслуживания.

ENB отправляет и принимает радиопередачи на все мобильные устройства, используя функции обработки аналогового и цифрового сигналов радиоинтерфейса LTE.

ENB управляет работой на всех своих мобильных устройствах низкого уровня, отправляя им сигнальные сообщения, такие как команды передачи обслуживания.

Каждый eNB соединяется с EPC посредством интерфейса S1, и он также может быть подключен к соседним базовым станциям через интерфейс X2, который в основном используется для сигнализации и пересылки пакетов во время передачи обслуживания.

Домашний eNB (HeNB) — это базовая станция, которая была приобретена пользователем для обеспечения покрытия фемтосот внутри дома. Домашний eNB принадлежит к закрытой группе абонентов (CSG) и может быть доступен только с мобильных телефонов с USIM, который также принадлежит к закрытой группе абонентов.

Evolved Packet Core (EPC) (Базовая сеть)

Архитектура Evolved Packet Core (EPC) была проиллюстрирована ниже. Есть еще несколько компонентов, которые не показаны на диаграмме для простоты. Эти компоненты похожи на Систему предупреждения о землетрясениях и цунами (ETWS), Регистр идентификации оборудования (EIR) и Функцию управления политиками и правил зарядки (PCRF).

Tac lte что это. Смотреть фото Tac lte что это. Смотреть картинку Tac lte что это. Картинка про Tac lte что это. Фото Tac lte что это

Ниже приводится краткое описание каждого из компонентов, показанных в приведенной выше архитектуре:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *